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Locomotion of biological and artificial microswimmers has received considerable at-
tention due to its fundamental biological relevance and promising biomedical applications
such as drug delivery and microsurgery. Purcell’s well-known discussion on “Life at Low
Reynolds Number” [Am. J. Phys. 45, 3 (1977)] elucidated the stringent fluid dynamical
constraints on swimming at the microscopic scale. He also presented the “simplest animal,”
now known as Purcell’s swimmer, that can swim in the absence of inertia, which has
now become a useful model for exploring different fundamental aspects of microscopic
locomotion. While extensive studies have improved our understanding of locomotion in
Newtonian fluids, microswimmers often encounter biological fluids that display complex
(non-Newtonian) rheological behaviors, and much less is known about swimming in
complex fluids. In this work, we utilize Purcell’s swimmer as a model swimmer to probe
the impacts of shear-thinning rheology, a ubiquitous non-Newtonian behavior of biological
fluids such as blood and mucus, on swimming at low Reynolds numbers. We show how
the propulsion characteristics of Purcell’s swimmer in a shear-thinning fluid differ from
those in a Newtonian fluid in terms of both the magnitude and direction of propulsion,
depending on the details of the swimming strokes. The simplicity of Purcell’s swimmer
allows us to rationalize the results by examining how the shear-thinning effect manifests
in different swimming strokes in a cycle. We also demonstrate how unequal arm rotational
rates can couple with the shear-thinning effect to induce a net vertical displacement of the
swimmer, which is not possible in a Newtonian fluid. These results suggest modulating
the arm rotational rates as a way to enable different two-dimensional motions of Purcell’s
swimmer in a shear-thinning fluid.

DOI: 10.1103/PhysRevFluids.8.033301

I. INTRODUCTION

Microscopic locomotion has attracted considerable recent attention for both the important roles
of swimming cells in diverse biological processes [1–4] and the potential biomedical applications
of artificial microswimmers [5–8]. Purcell’s well-known discussion on “Life at Low Reynolds
Number” [9] elucidated the fundamental fluid dynamical constraints on swimming at low Reynolds
numbers. For instance, now known as the scallop theorem, no reciprocal motion (i.e., sequence of
motions with time-reversal symmetry), such as a single-hinged scallop opening and closing its shell,
can lead to net displacement as a consequence of the linearity and time independence of the Stokes
equations. Common macroscopic locomotion strategies such as a rigid flapping motion therefore
become ineffective at the microscopic scale. Microorganisms have evolved different strategies
to swim in the microscopic world. For instance, flagellated bacteria swim via the use of rotary
motors powered by ion fluxes to rotate helical filaments; some sperm cells utilize the action of
molecular motors within flagella to generate bending waves traveling along their flagellum for
swimming. Extensive studies over the past several decades have led to an improved understanding
of the hydrodynamics underlying their motility [10–12]. However, without complex molecular
machinery empowering cell motility, the design of simple mechanisms that can overcome the
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FIG. 1. (a) The four arm strokes of Purcell’s swimmer. (b) Notations for describing the motion of Purcell’s
swimmer in the x-y plane.

stringent constraints on low-Reynolds-number swimming represents a fundamental challenge in
the development of artificial microswimmers [13].

Purcell presented an elegant example of the “simplest animal,” now known as Purcell’s swimmer,
that can generate net translation with kinematically irreversible cyclic motions [9]. The swimmer
consists of three rigid links connected by two hinges. The middle link is connected to two other
links (arms) which take turns rotating relative to the middle link to undergo the four arm strokes
illustrated in Fig. 1(a). Symmetry arguments concluded that such a linkage would move in a straight
line over one cycle [9]. Although the direction of net displacement was left as an exercise for the
readers, the answer was not obvious [14] until a detailed analysis of the swimmer by Becker et al.
[15]. Purcell’s swimmer has now been widely adopted as a useful model for exploring various
fundamental aspects of swimming at low Reynolds numbers [15–17], optimal locomotion [18–20],
and the effect of swimmer elasticity [21,22]. The model was also studied as the simplest inertialess
swimmer in granular media [23]. Furthermore, a possible connection between the locomotion of the
helical bacteria Spiroplasmas and Purcell’s swimmer was suggested [15,24].

Here, we employ Purcell’s swimmer to probe the impact of shear-thinning rheology on swim-
ming at low Reynolds numbers. Many microorganisms often encounter biological fluids that
display non-Newtonian rheological behaviors, including viscoelasticity and shear-thinning viscos-
ity. To better understand their locomotion and to guide the design of artificial microswimmers for
biomedical applications, it is important to examine how different complex rheological properties of
biological fluids influence locomotion [8]. While considerable efforts have focused on swimming in
viscoelastic fluids [25,26], the effect of shear-thinning rheology has been studied only more recently.
A shear-thinning fluid such as blood and mucus [27,28] loses its viscosity with increased shear
rates. The shear-thinning effect can either hinder or enhance propulsion, depending on the specific
types of swimmers (e.g., undulatory swimmers [29–37], helical swimmers [38–40], and squirmers
[30,41–44], among others [29,30,45]) and the details of their swimming gaits. Various theories have
been proposed to explain the physical mechanisms underlying the speed hindrance and enhance-
ment. In particular, the shear-thinning effect can hinder the swimming of undulatory filaments by
reducing the thrust more than drag [37], whereas the speed enhancements in undulatory sheets [34]
and helical swimmers [38,40] have been attributed to a soft confinement effect due to the presence
of a low-viscosity region surrounding the swimmer. The non-Newtonian effect has also been used
to demonstrate the breakdown of the scallop theorem by enabling the swimming of a single-hinged
scallop in a shear-thinning fluid [46,47]. Findings from these recent studies suggest that when and
why a swimmer goes faster or slower in a shear-thinning fluid highly depend on the specific types of
swimmers. In this work, we examine the effect of shear-thinning rheology on the motion of Purcell’s
swimmer. The simplicity of Purcell’s swimmer allows us to rationalize the results by examining how
the shear-thinning effect manifests in different swimming strokes, leading to the overall changes in
the swimmer displacement. Our results show that shear-thinning rheology impacts not only the
magnitude but also the direction of propulsion of Purcell’s swimmer. In addition, while Purcell’s
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swimmer can generate only net movements in a single direction in a Newtonian fluid [9,15], here,
we explore the possibility of exploiting the shear-thinning effect to enable two-dimensional motion.
Taken together, the analysis of this canonical swimmer here contributes another specific example to
illustrate different consequences that shear-thinning rheology can have on microswimmers.

This paper is organized as follows. In Sec. II, we describe in more detail Purcell’s three-link
swimmer model (Sec. II A) and formulate the equations governing its motion in a shear-thinning
fluid (Sec. II B). In Sec. III, we first revisit the results in the Newtonian limit (Sec. III A), which
lay the foundation for understanding the effect of shear-thinning in Sec. III B and the new dynamics
emerging from symmetry breaking in Sec. III C. Finally, we conclude this work with remarks on its
limitations and directions of future work in Sec. IV.

II. PROBLEM FORMULATION

A. Swimmer model

We consider a Purcell’s swimmer of a total length L, which consists of three slender, rigid links
(each with length � = L/3 and radius a) connected by two hinges with negligible hydrodynamic
effects. In its initial configuration, the middle link is connected to the left and right links (arms)
symmetrically at an angle φ [configuration I in Fig. 1(a)]. The swimmer performs four arm strokes
to complete a swimming cycle. During these strokes, the swimmer alternately rotates its left
or right link (arm) relative to the middle link by a fixed angle (±2φ) in the clockwise (+) or
counterclockwise (−) direction [Fig. 1(a)] at a constant rotational rate ω: In stroke 1, the swimmer
rotates its left arm in the counterclockwise direction. In stroke 2, the swimmer rotates its right arm
in the clockwise direction. In stroke 3, the swimmer rotates its left arm in the clockwise direction.
Finally, in stroke 4, the swimmer rotates its right arm in the counterclockwise direction to return to
its original configuration, completing the swimming cycle.

The motion of the swimmer occurs in the x-y plane spanned by the basis vectors ex and ey. The
ith link (i = 1, 2, 3) is specified by the position vector of its left end xi = xiex + yiey and the angle
θi made between its tangent vector ti = cos θiex + sin θiey and ex [Fig. 1(b)]. A point along the ith
link is therefore given by Xi(s, t ) = xi + sti, where s ∈ [0, �] is the arclength parameter along the
link.

B. Governing equations

The hydrodynamic force on a slender body at low Reynolds numbers in a Newtonian fluid can
be described by the leading-order slender-body approximation known as the resistive force theory
(RFT) [48,49], which assumes nonlocal hydrodynamic interactions between different parts of the
slender body are negligible. As a local drag model, RFT linearly relates, in a tensorial fashion, the
hydrodynamic force density along the slender body to its local velocity. More recently, Riley and
Lauga [37] proposed a modified RFT for studying the locomotion of slender bodies in a shear-
thinning fluid. Here, we apply the modified RFT to describe the hydrodynamics of the slender, rigid
links in Purcell’s swimmer. The hydrodynamic force density on the ith link is given by

fi = −RC (t, Xi )[ξ⊥(I − titi ) + ξ‖titi] · ui, (1)

where ui = ∂Xi/∂t is the local velocity along the link, ξ‖ = 2πη0/[ln(L/a) − 1/2] and ξ⊥ =
4πη0/[ln(L/a) + 1/2] are the classical RFT coefficients in a Newtonian fluid with dynamic vis-
cosity η0 [48,49], and I is the identity tensor. Here, RC is a correction factor accounting for the local
shear-thinning effect based on the Carreau constitutive model [37,50]

RC (t, Xi ) = [1 + (λC γ̇avg)2](n−1)/2, (2)

where 1/λC represents a critical shear rate beyond which the shear-thinning effects become signif-
icant and n is the shear-thinning index. For biological fluids [32,51–53], the value of λC can span
a wide range, on the order of 0.1–100 s, with n in the range of 0.1–0.8. For xanthan gum solutions
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with different concentrations [33,54], λC can vary between 0.1 and 10 s, with n in the range of
0.3–0.9. Here, γ̇avg is the local average shear rate around a slender body, given by

γ̇avg =
√

ξ 2
⊥u2

⊥ + 2ξ 2
‖ u2

‖

2
√

2aπη0

· (3)

The local shear rate varies along the body depending on the tangential (u‖) and normal (u⊥) velocity
components. The correction factor RC therefore varies both spatially and temporally along the
swimmer.

The total hydrodynamic force on the ith link of Purcell’s swimmer is therefore given by

Fi =
∫ �

0
fi(Xi ) ds, (4)

and the total hydrodynamic torque on the ith link about x j is given by

Ti, j =
∫ �

0
(Xi − x j ) × fi(Xi ) ds. (5)

Finally, the set of equations describing the dynamics of Purcell’s swimmer is closed with the overall
force-free and torque-free conditions,

3∑
i=1

Fi = 0,

3∑
i=1

Ti,1 = 0, (6)

for a free swimmer at low Reynolds numbers.
In this work we nondimensionalize lengths by L, time by 1/ω, and forces by L2ξ⊥ω. In

dimensionless form, the correction factor RC is given by

RC = (
1 + Cu2 ˜̇γ 2

avg

)(n−1)/2
, (7)

where ˜̇γavg is the dimensionless local average shear rate and Cu = ωλC is the Carreau number
comparing the characteristic rotational rate ω with the critical shear rate 1/λC . For the slender-
body approximation to be valid, we set a small slenderness ratio of a/L = 1/1000 in this work.
Hereafter, we use the same notations for the corresponding dimensionless variables and refer to
only dimensionless variables unless otherwise stated.

For numerical implementation, we use the numerical routine FSOLVE in the SCIPY library, a root-
finding algorithm based on the Powell hybrid method [55], to solve the equations of force and torque
balances [Eq. (6)] for the translational velocity ẋ1 and angular velocity θ̇1, with a relative tolerance
of 1×10−10. We then obtain the updated position x1 and orientation θ1 by solving the first-order
system with ẋ1 and θ̇1 using LSODA [56,57] from the ODEPACK library through the ODEINT routine
with a relative tolerance of 1×10−9. The remaining position vectors xi and angles θi (i = 2, 3) are
then determined by the prescribed kinematics of the linkage.

We remark on the regime of validity of the modified RFT in a shear-thinning fluid: In order
to be self-consistent with the local nature of the RFT, the shear-thinning effect on the viscosity
around each section of the slender body should also be local (i.e., caused by the local movement
of the body) [32]. This requires the shear rate at the relevant length over which the slender body
can be approximated as straight (taken as ω) to be smaller than the critical shear rate (1/λC), i.e.,
Cu = ωλC < 1, limiting the validity of the current model to the low-Carreau-number regime. We
therefore confine our investigation to only small values of the Carreau number (Cu � 0.1) in this
work.
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FIG. 2. Propulsion performance of Purcell’s swimmer characterized by (a) the net horizontal swimmer
displacement �x and (inset) the average swimming velocity V as a function of the stroke angle φ in Newtonian
(Cu = 0) and shear-thinning (Cu = 0.05, Cu = 0.1) fluids with n = 0.25. (b) The variation of �x as a function
of φ at different values of n with Cu = 0.1; inset: the stroke angle φm that maximizes the magnitude of
�x at different values of Cu and n. (c)–(e) The shape and orientation of the linkage when the swimmer
completes individual strokes (t = 0, T/4, T/2, 3T/4, T ) are compared for the Newtonian (black dash-dotted
lines, Cu = 0) and shear-thinning (red solid lines, Cu = 0.1) cases for different stroke angles: (c) φ = π/3,
(d) φ = π/2, and (e) φ = 2π/3.

III. RESULTS AND DISCUSSION

We apply the framework described in Sec. II B to examine the propulsion of Purcell’s swim-
mer in a shear-thinning fluid. The displacement of the center of the middle link, denoted as
[Dx(t ), Dy(t )] = X2(s = �/2, t ), is used to track the swimmer displacement. After the prescribed
strokes in a swimming cycle of period T are performed, the net horizontal and vertical displacements
of the swimmer are, respectively, given by �x = Dx(t + T ) − Dx(t ) and �y = Dy(t + T ) − Dy(t ).
In the following, we first revisit results for the dynamics of Purcell’s swimmer in a Newtonian fluid
(Sec. III A), which lay the foundation for understanding the effect of shear-thinning rheology in
Secs. III B and III C.

A. Newtonian results

We first reproduce the results in the Newtonian limit [15] by considering a vanishing Carreau
number, Cu = 0. Because of symmetry considerations (see further details in [9,15] and a summary
of the discussion below), the swimmer can displace itself only horizontally (�y = 0). In Fig. 2(a),

033301-5



KE QIN AND ON SHUN PAK

the net horizontal displacement of the swimmer after a cycle �x is displayed as a function of the
stroke angle φ in a Newtonian fluid (black circles). The propulsion direction of Purcell’s swimmer,
left as an exercise for readers by Purcell [9] and analyzed in detail by Becker et al. [15], can,
indeed, be either to the left (�x < 0) or to the right (�x > 0), depending on φ. The magnitude of
the displacement |�x| varies nonmonotonically with the stroke angle φ: |�x| first increases with
φ, reaching a maximum between π/3 and π/2, and then decreases to zero, before a switch in the
propulsion direction to the positive x direction (to the right) with a sufficiently large stroke angle
(e.g., φ = 2π/3). As a remark, given the same arm rotational rates, the time period T required for a
Purcell’s swimmer to complete a swimming cycle varies with the stroke angle. One may therefore
also measure the propulsion performance by defining an average swimming velocity, V = �x/T ,
over one period of the swimming cycle, as shown in the inset in Fig. 2(a), which shows features
qualitatively similar to the net swimmer displacement. We also remark that the parametric study
here is performed only up to φ = 2π/3, beyond which the swimmer’s two arms would cross each
other, as illustrated in Fig. 2(e). Moreover, since a local drag model is employed here, the results are
expected to be less accurate for large values of φ, where the links become close in proximity and
nonlocal hydrodynamic interactions would become important. In Figs. 2(c)–2(e), we display the
motion of Purcell’s swimmer with different stroke angles at different time instants in a swimming
cycle. The propulsion characteristics of Purcell’s swimmer in a Newtonian fluid were qualitatively
explained in detail based on the drag anisotropy of the links and the orientation of the linkages by
Becker et al. [15]. Below, we revisit some of these ideas, which are essential for understanding the
impact of shear-thinning rheology on the propulsion of Purcell’s swimmer in the following sections.

In explaining the propulsion of Purcell’s swimmer, one can focus on the first stroke of the
swimming cycle [stroke 1 in Fig. 1(a); t = 0 to t = T/4 in Figs. 3(a) and 3(b)] because the
remaining strokes (strokes 2–4) follow from the first stroke via symmetry considerations [15];
for example, stroke 2 is related to stroke 1 through a combination of time-reversal and rotational
symmetries. These symmetry considerations imply that the horizontal displacements of the center
of the middle link �x,n resulting from the nth stroke are identical: �x,1 = �x,2 = �x,3 = �x,4; the
corresponding vertical displacements �y,n are given by �y,1 = �y,2 = −�y,3 = −�y,4, leading to
zero net vertical displacement of the swimmer after a swimming cycle. The detailed time evolution
of the displacement of the middle link’s center, Dx and Dy, are shown in Figs. 3(a) and 3(b), verifying
these symmetry properties.

It is therefore sufficient to consider the first stroke in the following discussion: In stroke 1
[Figs. 3(c) and 3(d)], the left arm rotates counterclockwise, and the remaining structure (middle
link and right arm) rotates in the opposite direction to maintain an overall torque-free condition.
In the initial phase of the stroke, i.e., before the left arm reaches the horizontal level [Fig. 3(d),
(i)–(iii)], the counterclockwise rotation of the left arm acts to displace the swimmer to the right;
meanwhile, the clockwise rotation of the right arm acts to displace the swimmer in the opposite
direction, which initially lessens the swimmer’s overall displacement to the right [Fig. 3(d), (i) and
(ii)] and eventually causes the swimmer to move to the left [Fig. 3(d), (ii) and (iii)]. In the remaining
phase of the stroke, i.e., after the left arm moves past the horizontal level [Fig. 3(d), (iii) and (iv)],
both the counterclockwise rotation of the left arm and the clockwise rotation of the right arm act
in tandem to displace the swimmer to the left. Overall, we note that while the displacement caused
by the counterclockwise rotation of the left arm switches direction during the stroke, the clockwise
rotation of the right arm always acts to displace the swimmer to the left. As shown in Fig. 3(c), the
overall displacement of the swimmer is to the left after the first stroke. Since the remaining strokes
follow from the first strokes by symmetries (�x,1 = �x,2 = �x,3 = �x,4), the swimmer moves to
the left at the end of the swimming cycle [Fig. 3(a)].

The above discussion focuses only on the motion of the left and right arms. As discussed by
Becker et al. [15], the propulsion of Purcell’s swimmer is affected not only by the motion of the two
arms but also that of the middle link. When the stroke angle is small, the latter effect is secondary
due to the small inclinations of the middle link relative to the horizontal level and its relatively low
velocities. For larger stroke angles, however, the inclination of the middle link becomes significant
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FIG. 3. The displacement of the middle link’s center in the (a) horizontal (Dx) and (b) vertical (Dy)
directions as a function of time t in a swimming cycle. In (c), the dashed lines indicate the time instants
when the swimmer switches its swimming direction from rightward to leftward in the first stroke (t = 0 to
t = T/4). (d) displays the shape and orientation of the linkage at different representative time instants from the
start (i) to the end (iv) of the first stroke as indicated in (c). Here (ii) is the time instant when the swimmer in
a Newtonian fluid starts to switch its swimming direction from rightward to leftward; (iii) is the time instant
when the left arm of the swimmer in a Newtonian fluid becomes horizontal and starts to contribute to leftward
displacement. The swimmer at the same time instants in a shear-thinning fluid is shown for comparison. In
all panels, φ = π/3, and the black dash-dotted lines and red solid lines represent Newtonian (Cu = 0) and
shear-thinning (Cu = 0.1) results, respectively. Here, n = 0.25.

enough to affect the swimmer’s displacement, leading to the nonmonotonic variation of swimmer
displacement shown in Fig. 2(a) and even a change in swimming direction when φ = 2π/3.

B. Effect of shear-thinning rheology

We now examine the impact of shear-thinning rheology on the propulsion of Purcell’s swimmer.
As shown in Fig. 2(a), the shear-thinning effect (Cu = 0.05, Cu = 0.1) acts to favor the propulsion
of Purcell’s swimmer in the negative x direction (to the left). That is, for stroke angles where
Purcell’s swimmer moves to the left in a Newtonian fluid, the swimmer moves farther to the
left in a shear-thinning fluid; when φ = 2π/3, where Purcell’s swimmer moves to the right in a

033301-7



KE QIN AND ON SHUN PAK

Newtonian fluid, shear-thinning rheology can lead to a change in the swimming direction, causing
the swimmer to move to the left instead. Similar qualitative features are observed in Fig. 2(b) when
the fluid becomes more shear thinning as the shear-thinning index n decreases from unity. In the
Newtonian case (Cu = 0 or n = 1), a stroke angle φm exists that maximizes the magnitude of the
swimmer displacement �x. We note that shear-thinning rheology modifies φm for different values of
Cu > 0 and n < 1. Specifically, in the inset in Fig. 2(b), we show that φm increases when the fluid
becomes more shear thinning (i.e., when Cu increases or when n decreases). In Figs. 2(c)–2(d), we
contrast the motion of Purcell’s swimmer in a Newtonian fluid (black dot-dashed lines) with that
in a shear-thinning fluid (Cu = 0.1, red solid lines) at the end of individual strokes in a swimming
cycle. As will be explained below, shear-thinning rheology alters the orientation of the linkages in
manners that favor swimmer displacement to the left. The detailed time evolutions of the horizontal
and vertical displacements, Dx and Dy, of the swimmer in a shear-thinning fluid are shown (red
solid lines) in Figs. 3(a) and 3(b). From these results, we verify numerically that, in spite of the
shear-thinning effect, Purcell’s swimmer still retains the properties �x,1 = �x,2 = �x,3 = �x,4 and
�y,1 = �y,2 = −�y,3 = −�y,4, which means that the net swimmer displacement remains in the
horizontal direction and it is still sufficient to focus on the first stroke of the swimming cycle to
understand the swimmer dynamics in a shear-thinning fluid.

The enhanced displacement of Purcell’s swimmer to the left may be rationalized by a detailed
examination of the changes in the displacement and orientation of the linkage due to shear-thinning
rheology in the first stroke of the swimming cycle [Figs. 3(c) and 3(d)]. Due to the smaller rotational
resistance of the left arm relative to the remaining structure (middle link and the right arm), a higher
rotational rate and hence higher shear rates in the fluid around the left arm than in that around the
right arm are expected. A stronger shear-thinning effect thus occurs around the left arm than around
the right arm, causing the left arm to rotate more in the counterclockwise direction and the right arm
to rotate less in the clockwise direction [red solid lines in Fig. 3(d)], relative to the Newtonian case
(black dash-dotted lines). Both of these changes favor the swimmer displacement to the left: The
left arm spends more time in the phase moving past the horizontal level, and the increased vertical
alignment of the left arm due to its further counterclockwise rotation [Fig. 3(d), (iv)] promotes
leftward displacement. Similarly, the reduced clockwise rotation of the right arm allows it to remain
more vertically aligned and thereby to contribute more to the leftward displacement of the swimmer
throughout the stroke. These effects result in an earlier switch of the direction of the swimmer
displacement, as indicated in Fig. 3(c), favoring the displacement of the swimmer to the left.
Since the remaining strokes follow from the first stroke, the swimmer overall has an increased net
displacement in the negative x direction (to the left) in a shear-thinning fluid, as shown in Fig. 3(a).

The simplicity of Purcell’s swimmer allows for a detailed examination of the impact of shear-
thinning rheology on swimming. The above rationalization illustrates how changes in propulsion in
a shear-thinning fluid may be qualitatively understood as a consequence of varying magnitudes of
the shear-thinning effect along a swimmer and the resulting changes in the swimmer orientation.

C. Effect of unequal arm rotational rates

In a Newtonian fluid, due to the kinematic reversibility and linearity of the Stokes equation, the
net displacement of Purcell’s swimmer is independent of the arm rotational rates. Equal rotational
rates are therefore typically prescribed for the two arms in Purcell’s swimmer, which we followed in
the results presented in Secs. III A and III B. However, for a shear-thinning fluid, we expect that one
could exploit the nonlinearity of the rheological behavior by modulating the arm rotational rates to
alter the net swimmer displacement. In particular, by prescribing unequal arm rotational rates, we
anticipate that the symmetry breaking not only will lead to changes in the net horizontal swimmer
displacement but also will induce net vertical swimmer displacement, which is exactly zero in a
Newtonian fluid.

To test the above hypothesis, we simulate the dynamics of Purcell’s swimmer with unequal arm
rotational rates. The magnitudes of the rotational rates at the left and right arms relative to the

033301-8



PURCELL’S SWIMMER IN A SHEAR-THINNING FLUID

-6 -5 -4 -3 -2 -1 0 1

-0.6

-0.4

-0.2

0

0.2

0.5 0.7 0.9 1.1 1.3 1.5
-6.5

-6

-5.5

-5

-4.5
10

-2

0.5 0.7 0.9 1.1 1.3 1.5
-1

-0.5

0

0.5

1
10

-3

α = 1.5

α = 0.5

α = 1

Δx Δy

α α

(a) (b)

(c) 20 periods100 periods starting position

x

y

60 periods

Cu = 0

Cu = 0.05
Cu = 0.1

Cu = 0

Cu = 0.05
Cu = 0.1
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(c) Visualization of the displacement of swimmers with equal (α = 1) and unequal (α = 0.5 and α = 1.5) arm
rotational rates in a shear-thinning fluid (Cu = 0.1) after different numbers of periods. Here, n = 0.25.

middle link are denoted, respectively, as ω1 and ω2. Here, we use ω2 in the definition of the Carreau
number, Cu = ω2λC , and a new dimensionless group measuring the ratio of the arm rotational rates,
α = ω1/ω2, emerges. We note that the stroke angle φ is kept constant, so that the time spent during
the rotation of the left arm is different from that for the right arm. Figures 4(a) and 4(b) show
the dynamics of Purcell’s swimmer with unequal arm rotational rates (α �= 1) in a shear-thinning
fluid. The results in Secs. III A and III B are recovered when α = 1. In Fig. 4(a), the net horizontal
swimmer displacement in a Newtonian fluid (Cu = 0, black circles) remains unaffected by the
unequal arm rotational rates (varying α), as expected from the kinematic reversibility and linearity
of the Stokes equation. The corresponding net vertical swimmer displacement remains zero for all
values of α, as shown in Fig. 4(b). However, in a shear-thinning fluid (Cu = 0.05 and Cu = 0.1), the
net horizontal swimmer displacement varies with the ratio of the arm rotational rates α. Moreover,
we show in Fig. 4(b) that the symmetry breaking due to unequal arm rotational rates can, indeed,
lead to net vertical swimmer displacement: When the left arm rotates faster than the right arm
(α > 1), Purcell’s swimmer displaces in the negative y direction (downward), and the opposite holds
for α < 1. As a remark, while we anticipated that different magnitudes of the shear-thinning effect
induced by unequal arm rotational rates would cause these net vertical displacements, a physical
understanding of why they occur upward versus downward remains unclear to us. It is also observed
from Fig. 4(b) that the magnitude of the resulting vertical displacement for α < 1 and α > 1 is not
symmetric about α = 1.

We visualize the displacement of Purcell’s swimmer with various ratios of unequal arm rotational
rates (α = 0.5, α = 1, and α = 1.5) in a shear-thinning fluid (Cu = 0.1) after different numbers of
periods in Fig. 4(c). The above results demonstrate that shear-thinning rheology can lead to both
quantitative (modification of net horizontal displacement) and qualitative (new dynamics in the
vertical direction) changes in the propulsion behaviors. In particular, the emergence of the new
dynamics in the vertical direction, enabled by the nonlinear rheological behavior, adds versatility to
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Purcell’s swimmer by allowing more complex (two-dimensional) movements otherwise impossible
in a Newtonian fluid.

IV. CONCLUDING REMARKS

In this work, we examined the impact of shear-thinning rheology on low-Reynolds-number
locomotion via Purcell’s swimmer. Through this canonical model swimmer, we demonstrated how
shear-thinning rheology can modify both the magnitude and direction of propulsion depending
on the details of the swimming strokes, including the stroke angle and the arm rotational rate.
The simplicity of Purcell’s swimmer allows us to rationalize how varying the magnitude of the
shear-thinning effect along a swimmer leads to changes in the orientation of the linkage that
favor the swimmer displacement in a particular direction. We also demonstrate how symmetry
breaking due to unequal arm rotational rates can couple with the shear-thinning effect to induce net
vertical swimmer displacements, which cannot occur in a Newtonian fluid. These findings suggest
modulating the arm rotational rates as a way to exploit the non-Newtonian rheological behavior to
enable different two-dimensional motions of Purcell’s swimmer.

We remark on several limitations of the current study and suggest directions of future work. First,
the use of a local drag model in this work addresses only the local influence due to changes in the
viscosity in a shear-thinning fluid [37], without accounting for the nonlocal effect due to the change
in the flow field around the swimmer [34,38,40,42]. The local approximations in both the flow and
viscosity variations also limit the validity of the current model to the low-Carreau-number regime
[37]. Considering future experimental realizations, for shear-thinning fluids made of xanthan gum
solutions, typical λC can be on the order of 0.1–10 s with n in the range of 0.3–0.9, depending
on the xanthan gum concentration in the solution [33,54]. With a typical rotation rate of 1 s−1

[46], the Carreau number can vary in the range Cu ∼ O(0.1–10) or even higher in the experiments.
Given these larger values of Cu, we expect the shear-thinning effect to be more significant in the
experiments than that revealed by the low-Cu analysis here. However, subsequent investigations
extending the study to larger Cu and accounting for both local and nonlocal shear-thinning effects
are required to capture experimental measurements quantitatively. Finally, we considered in this
work unequal but constant arm rotational rates. Further allowing the rotation rates to be functions of
time could lead to more complex swimmer dynamics and new optimization problems for locomotion
in complex fluids.
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