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Dynamics of elliptical vortices with continuous profiles
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This work examines the dynamics of elliptical vortices in two-dimensional ideal fluid
using an adaptively refined and remeshed vortex method. Four examples are considered
comprising two compact vortices denoted by MMZ (smooth) and POLY (nonsmooth),
and two noncompact vortices denoted by Gaussian and smooth Kirchhoff. The vortices
all have the same maximum vorticity and 2:1 initial aspect ratio, but unlike the top-hat
Kirchhoff vortex, they have continuous profiles with different degrees of regularity. In each
case the phase portrait of the vortex in a corotating frame has two hyperbolic points, and
the separatrix divides space into four regions, a center containing the vortex core, two
crescent-shaped lobes next to the core, and the exterior. As the vortices start to rotate, two
spiral filaments emerge and form a halo of low-amplitude vorticity around the core; this
is attributed to vorticity advection along the unstable manifolds of the hyperbolic points.
In the case of the Gaussian vortex the core rapidly axisymmetrizes, but later it starts to
oscillate and two small lobes enclosing weak vortical fluid form within the halo; this is
attributed to a resonance stemming from the core oscillation. In the case of the MMZ,
POLY, and smooth Kirchhoff vortices, the core remains elliptical for longer time, and the
filaments entrain weak vortical fluid into two large lobes which together with the core
form a nonaxisymmetric tripole; afterwards, however, the lobes repeatedly detrain some of
their fluid into the halo; the repeated detrainment is attributed to a heteroclinic tangle near
the hyperbolic points. While prior work suggested that elliptical vortices could evolve to
become either an axisymmetric monopole or a nonaxisymmetric tripole, the current results
suggest they may oscillate between these states.
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I. INTRODUCTION

The dynamics of elliptical vortices is a topic of longstanding interest in fluid and plasma
dynamics. The simplest example is the Kirchhoff vortex with a discontinuous top-hat profile having
uniform vorticity inside an ellipse and zero vorticity outside and which rotates with constant angular
velocity in two-dimensional (2D) ideal fluid [1,2]. Love [3] showed that the Kirchhoff vortex
is linearly stable for aspect ratio less than three. The nonlinear stability of the Kirchhoff vortex
can be studied through contour dynamics simulations [4,5], and in this way Mitchell and Rossi
[6] computed cases with high aspect ratio where the perturbed vortex splits into compact regions
connected by thin filaments.
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In contrast to the Kirchhoff vortex, the present work is concerned with elliptical vortices having
continuous vorticity profiles. While several studies considered such vortices in an external strain
field [7–11], or having nonmonotone profiles with opposite-sign vorticity [12], we focus on freely
evolving vortices with monotone single-sign profiles. For context, the following subsections briefly
review some of the many previous studies of elliptical vortices.

A. Experimental studies

Elliptical vortices have been studied experimentally in rotating fluids and magnetically confined
electron plasmas, where the electron density is analogous to the fluid vorticity. In a rotating fluid
experiment initialized with a compact axisymmetric vortex, van Heijst et al. [13] observed the
formation of a tripole structure with an elliptical core surrounded by two crescent-shaped lobes
having opposite-sign vorticity to the core. In the case of plasma experiments, Briggs et al. [14]
found that neutrally stable normal modes exist for top-hat electron density profiles, but these modes
disappear when the profile is smoothed. Driscoll and Fine [15] showed that a large-amplitude
elliptical perturbation of the Kirchhoff vortex evolves into a tripole structure in which the lobes
have low-amplitude electron density. Schecter et al. [16] considered elliptically perturbed top-hat
and Gaussian electron density profiles; their experimental and theoretical study showed that the
ellipticity of the vortex decays exponentially at early times due to inviscid damping, but while
the theory predicts a transition to algebraic decay at later times, the experiments instead displayed
saturated oscillations.

B. Analytical studies

Elliptical vortices have been studied extensively by linear stability theory and weakly nonlinear
asymptotics. Bernoff and Lingevitch [17] found that an elliptically perturbed Gaussian vortex in
high Reynolds number flow rapidly relaxes to an axisymmetric state due to differential rotation
and viscous diffusion. Bassom and Gilbert [18] studied the spiral wind-up of vorticity filaments
around an azimuthally perturbed smooth inviscid vortex and found that the vorticity tends to ax-
isymmetry in the sense of weak convergence at a rate that depends on the perturbation wave number.
Le Dizès [19] studied elliptical perturbations of axisymmetric viscous vortices with a flat plateau
and Gaussian decay and showed there is a threshold amplitude depending on the Reynolds number
below which the vortex returns to an axisymmetric state and above which a critical layer forms
leading to a nonaxisymmetric tripole. Balmforth et al. [20] considered a family of compact vortices
approximating a Gaussian profile and showed that for elliptical perturbations of sufficient amplitude,
nonlinearity prevents the perturbation from decaying and the vortex tends to a nonaxisymmetric
tripole. Hall et al. [21] studied inviscid vortices with a sharp edge and showed that as the edge
vorticity profile becomes steeper, a decaying quasimode emerges and vorticity winds up in a critical
layer; moreover when additional fine structure is present in the critical layer, the quasimode may be
destabilized and exhibit oscillatory behavior. Turner and Gilbert [22] applied the asymptotic theory
of Balmforth et al. [20] to determine a threshold amplitude for the persistence of satellite vortices
around a compact vortex perturbed by an elliptical skirt of weak vorticity.

In addition to linear stability theory and weakly nonlinear asymptotics, several other analytical
methods have been applied to study elliptical vortices. For example, Whitaker and Turkington [23]
applied statistical equilibrium theory to elliptical vortices evolving in a circular disk and showed that
in the case of large disks, the maximum entropy state is axisymmetric, while Bedrossian et al. [24]
rigorously proved that axisymmetrization occurs by inviscid damping in the linearized 2D Euler
equations for vortices having smooth monotone profiles.

C. Computational studies

The nonlinear dynamics of elliptical vortices has been studied in several direct numerical simu-
lations using various computational techniques. Melander et al. [25] simulated a smooth compact
elliptical vortex (denoted MMZ) in weakly dissipative fluid using a pseudospectral method; as the
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vortex starts to rotate, two filaments emerge from the tips and wrap around the core; a nonaxisym-
metric tripole develops with an elliptical core surrounded by two crescent-shaped lobes enclosing
irrotational fluid, but over time the structure tends to axisymmetrize. Dritschel [26] considered
a compact parabolic vorticity profile represented by nested elliptical contours and used contour
dynamics with surgery to track the evolution, obtaining qualitatively similar results to those of
Melander et al. [25]; however, calculations with a steeper fourth degree polynomial profile showed
more persistent nonaxisymmetrization [27]. Polvani et al. [28] studied a perturbed Kirchhoff vortex
using contour dynamics; they noted that the phase portrait in the corotating frame has two hyperbolic
points; in the unperturbed case where the ellipse rotates without change in shape, the hyperbolic
points lie outside the vortex, but during the evolution of the perturbed ellipse, one of the hyperbolic
points enters the vortex and this results in filamentation of the vortex boundary. Koumoutsakos [29]
studied inviscid elliptical vortices using a remeshed vortex method; two examples were considered,
the MMZ profile and a compact fourth degree polynomial profile [27] (denoted POLY); as seen
previously, the MMZ vortex tends to axisymmetrize [25], but the POLY vortex evolves into a
nonaxisymmetric tripole similar to that in the plasma experiment of Driscoll and Fine [15]. Rossi
et al. [30] computed the viscous evolution of elliptically perturbed Gaussian vortices using the
corrected core-spreading vortex method; they found there is a threshold perturbation amplitude
below which the vortex tends to an axisymmetric state and above which it tends to a quasisteady
rotating tripole. Dritschel [31] studied inviscid elliptical vortices having a parabolic profile with
a discontinuity at the edge using the contour-advective semi-Lagrangian method and found that
vortices with sufficiently steep edges can remain nonaxisymmetric indefinitely. Velasco Fuentes [32]
performed inviscid vortex-in-cell calculations of a perturbed Kirchhoff vortex and several compact
polynomial profiles; the results show that filamentation can start even when the hyperbolic point
is outside the vortex, and subsequently the filament is advected along the unstable manifold of
the hyperbolic point. Barba and Leonard [33] considered initial vorticity consisting of a Gaussian
monopole with an elliptical perturbation; they studied the viscous evolution using a core-spreading
vortex method with spatial adaption by radial basis function interpolation; the results show there
is a threshold perturbation amplitude depending on the Reynolds number below which the vortex
tends to an axisymmetric state and above which it tends to a tripole state. Pakter and Levin [34] and
Farias et al. [35] did point vortex and vortex-in-cell simulations of a perturbed Kirchhoff vortex and
observed the formation of a nonaxisymmetric tripole with an elliptical core surrounded by a halo of
weak vorticity in a thin layer around the unperturbed separatrix.

To summarize, the previous computational studies have investigated several different elliptical
vorticity profiles using spectral methods, contour dynamics, and vortex methods. Depending on
the initial profile characteristics and perturbation amplitude, in some cases the vortex tends to
axisymmetrize, whereas in other cases it evolves to a long-lived tripole state which could in principle
eventually tend to axisymmetrize on a longer timescale. The present work therefore seeks to further
study this issue.

D. Present work

The present work reexamines the dynamics of elliptical vortices using an adaptively refined and
remeshed vortex method [36,37]. Chorin [38] introduced the vortex method for incompressible fluid
simulations, and several reviews describe later developments [39–41]. In this method the vorticity
is carried by Lagrangian particles and the velocity is obtained by evaluating a smoothed form of
the Biot-Savart integral. The accuracy and stability of the method depend on the relation between
the smoothing parameter and the particle spacing [42,43]. Perlman [44] showed that the accuracy
of these calculations can deteriorate when the particles become disordered, and remeshing methods
were developed to overcome this problem [29,40,45].

Four vorticity profiles are considered here, the compact Melander-McWilliams-Zabusky (MMZ)
[25] and polynomial (POLY) [29] profiles, and noncompact Gaussian (G) and smoothed Kirchhoff
(SK) profiles. The profiles are continuous, although with different regularity, and they are elliptically
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stretched so that the initial vorticity distribution has 2:1 aspect ratio as in prior work [25,29]. In
addition to vorticity snapshots at various times, movies are presented to show what happens between
the snapshots.

In all four cases as the vortices start to rotate, two filaments emerge and form a halo of low-
amplitude vorticity outside the core, but the subsequent evolution depends on the profile. In the
case of the Gaussian vortex, the core rapidly axisymmetrizes and the filaments form nearly circular
spirals, but later on two small lobes enclosing weak vortical fluid form within the halo. In the case
of the MMZ, POLY, and SK vortices, the core remains elliptical for longer time and the filaments
entrain fluid into two large lobes which together with the core form a nonaxisymmetric tripole;
afterwards the lobes repeatedly detrain some of their fluid into the halo. Throughout this work we
seek to understand these computational observations by reference to dynamical systems theory.

The paper is organized as follows. Section II presents the governing equations, Sec. III recalls
the phase portrait of the Kirchhoff vortex, Sec. IV presents the four continuous vorticity profiles,
Sec. V describes the version of the vortex method used here, Sec. VI presents the numerical results,
and Sec. IX provides a summary.

II. GOVERNING EQUATIONS

The Eulerian formulation of vortex dynamics in 2D ideal fluid relates the vorticity ω(x, t ),
velocity u(x, t ), and stream function ψ (x, t ),

∂ω

∂t
+ u · ∇ω = 0, u = ∇⊥ψ, ∇2ψ = −ω, x = (x, y) ∈ R2. (1)

The Lagrangian formulation specifies the evolution of the flow map x(a, t ), which gives the location
at time t of the fluid particle initially located at x(a, 0) = a [46]. The velocity of a fluid particle
following the flow is given by the Biot-Savart integral,

∂x(a, t )

∂t
=

∫
R2

K(x(a, t ), x(b, t ))ω0(b)db, (2)

where the kernel is

K(x, y) = ∇⊥
x G(x, y), (3)

and the 2D Laplace Green’s function is

G(x, y) = − 1

2π
ln |x − y|. (4)

This formulation utilizes the fact that the vorticity is conserved on particle trajectories,
ω(x(a, t ), t ) = ω0(a).

III. KIRCHHOFF VORTEX

The Kirchhoff vortex is recalled here for reference; it has uniform vorticity inside an ellipse and
zero vorticity outside [1,2],

ωK (x, y) =
{
ωmax, r � 1,

0, r > 1,
r =

(
x2

a2
+ y2

b2

)1/2

, (5)

where we take ωmax > 0, r is the stretched radius, and a, b are the ellipse semiminor and semimajor
axes with 0 < a < b. The Kirchhoff vortex rotates with constant angular velocity,

� = ωmax
ab

(a + b)2
, (6)

and retains its elliptical shape.
Figure 1(a) shows the phase portrait of the Kirchhoff vortex in the corotating frame with a =

0.8, b = 1.6 yielding 2:1 aspect ratio, comprising the separatrix (red), streamlines (green), vortex
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FIG. 1. Phase portrait of Kirchhoff vortex in corotating frame, 2:1 aspect ratio. (a) Separatrix (red),
streamlines (green), vortex (shaded gray), and vortex boundary (dashed blue); (b) two hyperbolic points h1, h2,
four heteroclinic orbits, inner and outer orbits si

12, so
12 from h1 to h2, inner and outer orbits si

21, so
21 from h2 to

h1, four invariant regions, center C, lobes L1, L2, and exterior E .

(shaded gray), and vortex boundary (dashed blue). Figure 1(b) defines features of the phase portrait,
two hyperbolic points h1, h2 on the ellipse major axis outside the vortex, and four heteroclinic orbits
comprising inner and outer orbits si

12, so
12 from h1 to h2, and inner and outer orbits si

21, so
21 from h2

to h1. The heteroclinic orbits define the stable and unstable manifolds of the hyperbolic points.
The separatrix divides space into four invariant regions, the center C, two crescent-shaped lobes

L1, L2, and exterior E . The boundary of the vortex comes close to the separatrix, but it is contained
entirely within the center region. The lobes and exterior contain irrotational fluid. In the corotating
frame, the fluid rotates counterclockwise in the center, and clockwise in the lobes and exterior, and
the hence phase portrait may be considered as having a tripole structure. The Kirchhoff vortex is
steady in the corotating frame and there is no exchange of fluid among the four regions. However, in
the case of unsteady elliptical vortices, while the instantaneous phase portrait has the same topology
as Fig. 1, the dynamics can be more complex; the stable and unstable manifolds of the hyperbolic
points can intersect, resulting in a heteroclinic tangle that permits an exchange of fluid among the
regions, and resonances can occur in the regions with closed streamlines [47–50]. We shall see some
evidence of this in the simulations below.

IV. CONTINUOUS VORTICITY PROFILES

This work examines the dynamics of four elliptical vortices with continuous profiles: Gaussian
(G), MMZ [25], POLY [29], and SK. The initial vorticity distributions are

ωG(x) = ωmax exp(−12r2), r � 0, (7a)

ωMMZ(x) =
{
ωmax

{
1 − exp

[− q
r exp

(
1

r−1

)]}
, r � 1,

0, r > 1,
(7b)

ωPOLY(x) =
{
ωmax(1 − r4), r � 1,

0, r > 1,
(7c)

ωSK(x) =
∫
R2

−∇2
xGδ (x, y)ωK (y)dy, (7d)
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FIG. 2. Vorticity profiles (top) and derivatives (bottom) of elliptical vortices from Eq. (7) along the x axis,
[(a) and (e)] Gaussian, [(b) and (f)] MMZ, [(c) and (g)] POLY, and [(d) and (h)] smooth Kirchhoff with
smoothing parameter δ = 0.1, dashed lines in (g) indicate discontinuity, Kirchhoff vortex shown as dashed
lines in (d).

where r is the stretched radius defined in Eq. (5). Note that ωMMZ(x) is computed with constant q =
0.5e2 ln 2 ≈ 2.57 [25], and ωSK(x) is obtained by convolving the top-hat Kirchhoff vortex ωK (x)
from Eq. (5) with an approximate delta function −∇2

yGδ (x, y), where

Gδ (x, y) = − 1

4π
ln(|x − y|2 + δ2) (8)

is a regularized form of the Green’s function in Eq. (4) and the convolution is computed numerically
with smoothing parameter δ = 0.1. The maximum vorticity is ωmax = 20, and the semiminor and
semimajor axes are a = 0.8, b = 1.6, so the vortices have 2:1 initial aspect ratio [25,29]. Note that
this form of elliptical perturbation using a stretched radius ensures that the vorticity remains positive,
in contrast to additive perturbations that introduce satellites having opposite-sign vorticity to that in
the core [22,30,33].

Figure 2 plots the vorticity profiles (top) along the x axis and their derivatives (bottom). The
MMZ and POLY vortices have compact support, while the Gaussian and SK vortices have non-
compact support and are nonzero on the entire plane. The Gaussian vortex decays rapidly and
the SK vortex decays slowly as |x| → ∞. The vorticity profiles are continuous, but they have
different regularity; the Gaussian and SK vortices are analytic everywhere, the MMZ vortex is
infinitely differentiable but nonanalytic at the boundary, and the POLY vortex has a discontinuous
derivative at the boundary. The Gaussian vortex essentially has no plateau, while the MMZ, POLY,
and SK vortices have progressively wider plateaus. Using the maximum derivative as a measure of
steepness, the POLY and SK vortices have the steepest profiles, followed by the Gaussian vortex,
and then the MMZ vortex. While the vortices have the same maximum vorticity, they have different
total circulation, �G = 6.70, �MMZ = 22.12, �POLY = 53.62, �SK = 80.14; for reference the
Kirchhoff vortex has total circulation �K = ωmaxπab = 80.42.

Figure 3 shows the phase portraits of the elliptical vortices in a corotating frame with the
separatrix (red), streamlines (green), vorticity (shaded gray), vorticity contours (blue), and the
boundary of the compact MMZ and POLY vortices (dashed blue). The caption gives the rotation
rate � used for each vortex which was determined empirically by trial and error. In all cases the
phase portrait has the same topology as the Kirchhoff vortex in Fig. 1, with a center region, two
lobes, and the exterior. The separatrix is smallest for the Gaussian vortex and increases in size for
the MMZ, POLY, and SK vortices. Outside the separatrix the streamlines are almost circular in all
cases. Unlike the Kirchhoff vortex where the hyperbolic points lie outside the vortex, they lie inside
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FIG. 3. Phase portraits of elliptical vortices from Eq. (7) in corotating frame, angular velocity �, separatrix
(red), streamlines (green), vorticity (shaded gray), vorticity contours (blue), boundary of compact MMZ and
POLY vortices (dashed blue), (a) Gaussian, � = 2, (b) MMZ, � = 3.14, (c) POLY, � = 3.9, and (d) smooth
Kirchhoff, � = ωmaxab/(a + b)2 = 4.4.

the MMZ vortex, on the edge of the POLY vortex, and inside the Gaussian and SK vortices (by
default); this is important because filamentation occurs when the hyperbolic points lie inside the
vortex [25,28] or even outside but close to the vortex in unsteady cases [32]. Note also the location
of the heteroclinic orbits; the outer orbits (so

12, so
21) cut through the support of the Gaussian, MMZ,

and SK vortices but not the POLY vortex, while the inner orbits (si
12, si

21) lie entirely inside the
vortex support in all four cases, although for the POLY vortex they are very close to the edge.

V. VORTEX METHOD

The vortex method is based on the Lagrangian formulation of vortex dynamics given in Eq. (2)
[40,46]. There are several versions of the vortex method; one version, called the vortex-in-cell
(VIC) method, is essentially the same as the particle-in-cell (PIC) method popular in plasma physics
[51–53], where particles are tracked in physical space (VIC) or phase space (PIC) and the fields are
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FIG. 4. Panel with 4 × 4 tensor product particle grid, 12 boundary particles (◦), 4 interior particles (•)
denoted xq

j , j = 1:4, nonvertex particles have one or two coordinates at two-point Gaussian quadrature nodes.

computed using grid-based solvers. The present version of the vortex method also tracks particles,
but it uses a Biot-Savart-treecode field solver on adaptively refined panels. The sections below
describe the present vortex method comprising the particle and panel representation of the flow
map, the remeshing scheme, a convergence study for circular vortices, the domain focusing and
adaptive refinement schemes, and, finally, the treecode.

A. Particle and panel representation

The flow map is represented by Lagrangian particles, xi(t ) ≈ x(ai, t ), for i = 1 : N , where ai is
the initial particle position, xi(0) = ai, and each particle carries its initial vorticity, ωi = ω0(ai ). The
computational domain [−L, L]2 is discretized into square panels with mesh size h, and the panels
are indexed by k = 1 : Npanel. As shown in Fig. 4, each panel has a 4 × 4 tensor product particle
grid, where there are four vertex particles and the remaining particles have one or two coordinates
given by the two-point Gaussian quadrature nodes. The four interior particles, denoted xq

j , j = 1 : 4,
are the quadrature points used in computing the Biot-Savart integral, and the entire 4 × 4 particle
grid is used in the remeshing and adaptive refinement schemes described below.

The flow map Eq. (2) then takes the discrete form,

dxi

dt
=

Npanel∑
k=1

4∑
j=1

Kδ

(
xi, xq

j

)
ω

q
j Ak, i = 1 : N, (9a)

Kδ (x, y) = ∇⊥
x Gδ (x, y), (9b)

where the singular Biot-Savart kernel is replaced by a regularized version utilizing Eq. (8), the
Biot-Savart integral is written as a sum over panels, the integral over each panel is computed by
tensor product two-point Gaussian quadrature, ω

q
j is the vorticity carried by particle xq

j , and Ak

accounts for the panel area and Gaussian quadrature weights. Equation (9) is a system of ordinary
differential equations for the motion of the particles which is solved by the fourth-order Runge-Kutta
method with time step given below in Table I.

B. Remeshing

In the vortex method described above the panels initially form a regular mesh to ensure the
accuracy of the quadrature scheme, but as the particles evolve, they typically become disordered and
the calculation loses accuracy [44]. To overcome this problem, remeshing schemes were developed
[29,40,54]; before the particles become too disordered they are replaced by new particles on a
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TABLE I. Numerical parameters for elliptical vortex computations.

Parameter Symbol Gaussian, MMZ POLY Smooth Kirchhoff

Computational domain [−L, L]2 L 3.2 6.4 12.8
Number of focusing levels nf 4 3 4
Focusing subdomains [−ri, ri]2 ri 3.2, 3, 2.6, 2.2 6.4, 5.2, 4 12.8, 10, 7.5, 5
Focusing mesh sizes hi 0.2, 0.1, 0.05, 0.025 0.2, 0.1, 0.05 0.8, 0.4, 0.2, 0.1
Number of AMR levels nAMR 2 2 2
AMR tolerances ε1, ε2 (1, 0.70), (1, 0.75) 0.8, 0.45 0.8, 0.25
Time step 
t 0.001 0.001 0.002
Kernel smoothing parameter δ 0.1 0.1 0.1

regular mesh, the vorticity is interpolated from the old particles to the new particles, and the
calculation proceeds.

In the present work the vorticity at the new particles is computed using bicubic polynomial
interpolation in each panel,

p(x, y) =
3∑

i=0

3∑
j=0

ci j (x − xc)i(y − yc) j, (10)

where (xc, yc) is the panel center defined by averaging the four panel vertices. The coefficients ci j

are determined by interpolating the vorticity at the 16 particles in the panel,

p
(
xold

�

) = ωold
� , � = 1:16, (11)

where the superscript old denotes the particle location and vorticity before remeshing. Equation (11)
yields a linear system which is solved for the coefficients ci j , and the vorticity at the new particles
is obtained by interpolation,

ω
(
xnew

�

) = p
(
xnew

�

)
, � = 1:16. (12)

To carry out the last step, each new particle xnew
� is located in a unique panel associated with the

old particles; this is done by searching the old panels for the one that minimizes the distance, |xnew
� −

xold
c |, between the new particle and the old panel centers. In the present calculations remeshing is

done every time step.

C. Convergence study

Next we present a convergence study of the remeshed vortex method described above for circular
Gaussian, MMZ, POLY, and smooth Kirchhoff vortices; this is the case r2 = x2 + y2 in Eq. (7). In
the exact solution the vorticity is radially symmetric and independent of time, and the particles rotate
with angular velocity dependent on their radius.

The computational domain is [−1.6, 1.6]2, which contains the compact MMZ and POLY
vortices, and is large enough to ensure that truncating the noncompact Gaussian and SK vortices in-
duces negligible error. Solutions were computed with panels of mesh size h = 0.2, 0.1, 0.05, 0.025.
The smoothing parameter for the SK profile in Eq. (7d) is δ = 0.1, and for particle time-stepping in
Eq. (9) it is δ = 4h. We record the max-norm vorticity error,

eh
max = maxi

∣∣ωh
i − ω0(xi )

∣∣
maxi |ω0(xi )| , (13)

where the maximum is taken over all panel vertex particles xi, ω0(xi ) is the exact particle vorticity,
and ωh

i is the particle vorticity computed with mesh size h. Remeshing is done every time step,
and the time step is 
t = 0.001, which is small enough to ensure that the temporal discretization
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FIG. 5. Convergence of remeshed vortex method for circular vortices, error eh
max versus mesh size h at

time t = 1, Gaussian, MMZ, POLY, smooth Kirchhoff vortices, smoothing parameter δ = 0.1 in Eq. (7d), and
particle time-stepping with δ = 4h in Eq. (9).

error is negligible. Hence eh
max measures the spatial discretization error which has two sources, the

two-point Gaussian quadrature applied to the panel integrals and the bicubic interpolation used for
remeshing.

Figure 5 shows the error eh
max versus mesh size h at time t = 1. For all four profiles, the error

decreases as the mesh is refined. Dashed lines indicate convergence at the rate O(hp) for p = 1, 2, 3.
Based on the two finest meshes, the observed convergence rates are p = 1.06 for the POLY vortex,
p = 1.83 for the SK vortex, p = 2.49 for the MMZ vortex, and p = 2.83 for the Gaussian vortex.

Several factors affect the convergence rate. In principle, two-point Gaussian quadrature and
bicubic interpolation are fourth-order accurate on square panels, but the panel shape distorts slightly
in each time step and this reduces the convergence rate. Another factor is the regularity of the
vorticity profile. The low convergence rate for the POLY profile is attributed to its discontinuous
derivative [Fig. 2(g)]. The SK vortex has the next highest convergence rate; the profile is analytic
but has a steep gradient and high curvature, and there is a transition from p ≈ 1 for a coarse mesh
to p ≈ 2 for a fine mesh. The MMZ profile has the next highest convergence rate; the profile is
infinitely differentiable but not analytic at the edge. Finally, the Gaussian profile is everywhere
analytic with moderate steepness and curvature, and it has the highest convergence rate. Overall the
results confirm the convergence of the remeshed vortex method with respect to spatial refinement.

D. Domain focusing and adaptive mesh refinement

The remeshed vortex method described above uses uniform panels, but this is inefficient for
simulating elliptical vortices which require a large computational domain and develop small-scale
features. To address this we employ domain focusing and adaptive mesh refinement.

Assume the vortex is centered at the origin. Domain focusing employs a sequence of uniform
meshes with decreasing mesh size hi on nested square subdomains [−ri, ri]2 for i = 1 : n f , where
n f is the number of focusing levels. Figure 6 shows an example with three focusing levels; level
1 panels have mesh size h1 on the entire domain [−r1, r1]2, level 2 panels have mesh size h2 on
subdomain [−r2, r2]2, and level 3 panels have mesh size h3 on subdomain [−r3, r3]2. We employ
dyadic subdivision with mesh spacing hi+1 = hi/2, and hence the process yields a fine mesh near
the origin and a progressively coarser mesh further away.

Adaptive mesh refinement (AMR) was developed to improve the efficiency of fluid dynamics
simulations, originally for finite-difference schemes [55,56] and later also for particle methods
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FIG. 6. Example of domain focusing with three levels, mesh size hi on domain [−ri, ri]2, i = 1, 2, 3,
level 1 panels (black), level 2 panels (blue), and level 3 panels (red).

[57–59]. In the present work we employ two AMR criteria on each panel,

|ωmax − ωmin| � ε1,
|ωmax − ωmin|

|ωmax| � ε2, (14)

where ωmax, ωmin are the maximum and minimum vorticity over the 16 particles in the panel, and
ε1,2 are user-specified tolerances; these criteria control the absolute and relative vorticity variation
in the panel. The AMR process is applied recursively to each panel in the focused mesh; if a panel
violates either criterion, then it is refined, subject to a specified maximum number nAMR of AMR
levels. The refinement bisects the panel in the x and y directions, creating four child subpanels
each with its own 4 × 4 particle grid whose vorticity is interpolated from the parent panel. A final
check ensures that neighbor panels differ by at most one level. The resulting panels have an adaptive
quadtree structure [36,60,61].

The particle and panel data are stored in arrays. The particle array contains the particle locations
xi and vorticity ωi. Each entry in the panel array contains the panel side length and refinement level,
a flag indicating whether the panel has children, indices of the child panels, indices of the neighbor
panels, and indices of the particles belonging to the panel. Note that some vertex and edge particles
belong to more than one panel, but they are not duplicated in the particle array; when a panel is
refined, the neighbor panels are checked to see whether the new vertex and edge particles already
exist.

E. Treecode

The most time-consuming part of the calculation is computing the particle velocities in Eq. (9).
With N particles the cost using direct summation scales like O(N2), and hence we employ a
Cartesian Taylor treecode which reduces the cost to O(N log N ). The treecode organizes the particles
into a quadtree of clusters, and the well-separated particle-particle interactions are computed by a
particle-cluster approximation, while the nearby particle-particle interactions are computed directly
[62–64]. The computations were done on an iMac desktop computer with eight 2.3-GHz Intel Xeon
cores and the treecode was parallelized using MPI.

VI. NUMERICAL RESULTS

Table I presents the numerical parameters used for the elliptical vortex computations. These
values were obtained by trial and error to ensure that the numerical results are converged to within
plotting accuracy. In these examples the vorticity either has compact support or vanishes rapidly at
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infinity; the computational domain [−L, L]2 encompasses the separatrix and a buffer region so that
the vorticity at the boundary is less than 1e-10 and this cut-off has negligible effect on the results.
Hence the Gaussian and MMZ vortices have the smallest domain, while the POLY and SK vortices
have larger domains. The computations extend over the time interval 0 � t � 10 and the results
are plotted using ParaView. In the following figures only a subdomain surrounding each vortex is
shown. In addition to the figures, movies in the supplementary material show the evolution of the
vortices and adaptively refined panels [65].

A. Gaussian vortex

Figure 7 shows the evolution of the Gaussian vortex, where column 1 shows the vorticity down
to amplitude ω = 1e-3, column 2 shows the logarithm of vorticity ln ω, and column 3 shows the
adaptively refined panels. At time t = 0, the vorticity and its logarithm appear as diffuse elliptical
patches. The AMR scheme produces two patches of refined panels on the slopes of the core where
the vorticity profile is steepest. The center of the vortex was not refined because the vorticity
variation there is small.

At time t = 1 the core has become more circular and two filaments with low-amplitude vorticity
emerge from the tips of the rotating core. Recall that Fig. 3 showed the initial phase portraits of
the elliptical vortices in a corotating frame, with two hyperbolic points h1, h2 and their stable and
unstable manifolds, and we expect these features to persist in time. Hence the filamentation is
attributed to vorticity advection along the outer branches of the unstable manifolds [25,28]; one
filament moves from h1 to h2 along so

12 and the other moves from h2 to h1 along so
21; note however

that this advection occurs in a corotating frame, so in the nonrotating physical frame the filaments
amount to weak vorticity left behind by the rapidly rotating core.

At time t = 3 the core has become even more circular, while the filaments are longer and form
spirals winding around inside and outside the core, as shown more clearly in Fig. 8. The inner
portions of the filaments are attributed to vorticity advection along the inner branches of the unstable
manifolds, si

12, si
21; these portions of the filaments are harder to see because they have relatively

small vorticity variation in comparison to the core vorticity, but the AMR scheme detected this
variation and refined the panels accordingly. More precisely, the AMR scheme refines the sides the
filaments, where the vorticity variation is relatively large, rather than the filament plateau where it
is relatively small.

At time t = 6 the core remains nearly axisymmetric and the filaments have more turns separated
by channels of weak vortical fluid. At time t = 10 the core is surrounded by a halo of nearly
circular spiral filaments, but two small lobes with low-amplitude vorticity are present within the
halo; these are shown more clearly in Fig. 9. The movie shows what happened; the vortex core starts
to oscillate noticeably past time t = 6, and the lobes develop gradually by a local accumulation of
weak vortical fluid in the channels between the filaments. The lobes seen here resemble features
seen in simulations of vortex sheet roll-up (Fig. 4 in Ref. [66]), and as in that case we attribute them
to a resonance stemming from the core oscillation.

B. MMZ vortex

Figure 10 shows the evolution of the MMZ vortex. As for the Gaussian vortex, the core becomes
more circular in time and is surrounded by a halo of thin filaments with low-amplitude vorticity,
but unlike the Gaussian vortex, the MMZ vortex core remains elliptical and the halo has a different
structure.

At time t = 0, the vorticity and its logarithm appear as elliptical patches. A thin ring of refined
panels is present around the edge of the vortex where the vorticity profile has high curvature, and
two patches of refined panels appear on the slopes of the core where the profile is steepest.

At time t = 1 two filaments with low-amplitude vorticity emerge, but they are longer and thinner
than for the Gaussian vortex. Recall from Fig. 3(b) that the hyperbolic points h1, h2 in the corotating
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FIG. 7. Gaussian vortex, time 0 � t � 10, column 1: vorticity ω, column 2: logarithm of vorticity ln ω,
column 3: panels, subdomain shown is [−1.725, 1.725]2, see the movie in the supplementary material [65].

frame lie inside the vortex [25,28], and hence the filaments are again attributed to vorticity advection
along the outer branches of the unstable manifolds, so

12, so
21.
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(a) (b)

FIG. 8. Gaussian vortex, time t = 3; (a) logarithm of vorticity and (b) panels, subdomain shown is
[−1.65, 1.65]2.

At time t = 3 portions of the filament emerging from h1 have reached the vicinity of h2, and
similarly for the other filament, and in this way the filaments entrain irrotational fluid to form two
crescent-shaped lobes next to the core, similarly to the phase portrait in Fig. 3(b). This is in contrast
to the Gaussian vortex, but as in that case the filaments extend inside the core as shown more clearly
in Fig. 11, and this is again attributed to vorticity advection along the inner branches of the unstable
manifolds, si

12, si
21.

At time t = 6 the core and lobes form a rotating tripole surrounded by filaments, while at time
t = 10 the lobes have become smaller and the filaments have more turns. The movie shows how the
lobes become smaller; after the lobes form, they are stretched around the core, the rear of each lobe
opens up, and some irrotational fluid is detrained from the lobe into the halo. We surmise that this
detrainment process repeats in time, and as the lobes become depleted of fluid, the structure tends
to axisymmetrize.

To understand this better recall the four invariant regions in the corotating phase portraits of the
elliptical vortices in Fig. 1 and Fig. 3, comprising the center, two lobes, and exterior. In a steady flow
like the Kirchhoff vortex, the stable manifold of one hyperbolic point coincides with the unstable
manifold of the other point, and there is no exchange of fluid among the regions. However, in

(a) (b)

FIG. 9. Gaussian vortex, time t = 10; (a) logarithm of vorticity and (b) panels, subdomain shown is
[−1.5, 1.5]2.
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FIG. 10. MMZ vortex, time 0 � t � 10. Column 1: vorticity ω; column 2: logarithm of vorticity ln ω;
column 3: panels; subdomain shown is [−1.725, 1.725]2; see the movie in the supplementary material [65].

an unsteady flow like the MMZ vortex, the stable and unstable manifolds can intersect to form a
heteroclinic tangle, and this permits vorticity to be advected from one region to another [47–50]; we
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(a) (b)

FIG. 11. MMZ vortex, time t = 3. (a) Logarithm of vorticity and (b) panels; subdomain shown is
[−1.75, 1.75]2.

surmise that this is the mechanism behind the repeated detrainment of fluid from the lobes into the
halo.

C. POLY vortex

Figure 12 shows the evolution of the POLY vortex which is generally similar to that of the
MMZ vortex, with filaments forming a halo outside the core and entrainment of irrotational fluid
into crescent-shaped lobes. At time t = 1 the POLY vortex nearly retains its initial 2:1 aspect ratio,
while the outer filaments are thinner than those of the MMZ vortex. At time t = 3 the POLY vortex
lobes are similar in size and shape to the lobes in the initial phase portrait in Fig. 3(c). The panels
show some trace of filaments winding around the slopes of the core, but they are clustered near the
edge of the core because the inner branches of the unstable manifolds, si

12, si
21, lie close to the edge

of the vortex in Fig. 3(c). At time t = 6 the rear of each lobe has opened up and some irrotational
fluid is being detrained from the lobe into the halo. The movie shows that by time t = 6.5, the
lobe closes and the detrainment stops, but another detrainment occurs around time t = 9. Although
detrainment reduces the lobe area, at time t = 10 the POLY lobes remain larger than the MMZ
lobes. Throughout the evolution, the POLY vortex core retains a nearly 2:1 aspect ratio, while the
halo oscillates between nearly circular and oval shapes; this is in contrast to the Gaussian and MMZ
vortices whose core and halo evolve to be closer to circular.

D. Smooth Kirchhoff vortex

Figure 13 shows the evolution of the smooth Kirchhoff vortex. The vorticity in column 1 shows
that the core rotates without much change in shape, similarly to the exact Kirchhoff vortex, but the
logarithm of vorticity in column 2 shows significant structure outside the core. At time t = 0 the
relatively slow decay of vorticity away from the core causes the logarithm of vorticity to appear
diffuse. At time t = 1 two filaments emerge and wrap around the core as before, although here
they have a long tail of smoothly varying weak vorticity. By time t = 3 a tripole structure has
formed, although in this case the lobes enclose weak vortical fluid. At time t = 6 the filaments form
nearly circular spiral turns outside the core and lobes. The movie shows that the lobes open up and
detrainment occurs around time t = 5 and t = 8. At time t = 10 the core has changed only slightly
from its initial size and aspect ratio. A thin band of low-amplitude vorticity ω ≈ 0.5 surrounds the
separatrix, and the outer filaments have nearly circular spiral turns with lower amplitude vorticity. In
previous cases we saw that the filaments extend inside the core; we surmise that this happens here,
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FIG. 12. POLY vortex, time 0 � t � 10. Column 1: vorticity, ω; column 2: logarithm of vorticity, ln ω;
column 3: panels. Subdomain shown is [−2.4, 2.4]2; see the movie in the supplementary material [65].

too, but these vorticity variations are barely visible, although their presence is indirectly indicated
by the dense panel refinement near the edge of the core.
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FIG. 13. Smooth Kirchhoff vortex, time 0 � t � 10. Column 1: vorticity, ω; column 2: logarithm of
vorticity, ln ω; column 3: panels. Subdomain shown is [−4.8, 4.8]2; see the movie in the supplementary
material [65].
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FIG. 14. Conserved quantities relative to their initial value, vorticity maximum ωmax (◦, blue), circulation
� (	, red), enstrophy γ (×, black), time 0 � t � 10, [(a)–(c)] Gaussian vortex, frames (a) and (b) use uniform
mesh size h as indicated, (d) MMZ vortex, (e) POLY vortex, (f) smooth Kirchhoff vortex, and [(c)–(f)] with
mesh size h and AMR levels as in Table I.

VII. CONSERVED QUANTITIES

Here we consider several invariant conserved quantities for the Euler equations comprising the
maximum vorticity ωmax, total circulation �, and total enstrophy γ ,

ωmax(t ) = max
x∈R2

ω(x, t ), �(t ) =
∫
R2

ω(x, t )dx, γ (t ) =
∫
R2

ω2(x, t )dx. (15)

Figure 14 shows the computed values relative to the initial values for time 0 � t � 10. The top
three frames [Figs. 14(a)–14(c)] concern the Gaussian vortex, and they show the effect of the grid
spacing h and AMR. The maximum vorticity ωmax is well conserved in all cases, and while the
circulation and enstrophy drift slightly in time, the deviation from exact conservation is less than
4% in all cases. The calculation becomes more accurate as the spatial discretization is refined from
Figs. 14(a) to Fig. 14(b) to Fig. 14(c); while reducing the grid spacing h improves the accuracy,
AMR is even more effective in enforcing conservation. Similar trends were observed for the MMZ,
POLY, and smooth Kirchhoff vortices as seen in the bottom three frames. Using two levels of AMR,
the deviation from exact conservation is less than 2.5% for all four vortices at the final time t = 10.
These relatively small deviations may be taken to indicate the accuracy of the calculations.

VIII. EFFECT OF SMOOTHING PARAMETER

The vortex method implemented here uses a regularized Biot-Savart kernel with smoothing
parameter δ as indicated in Eq. (9); this yields a regularized version of the Euler equations and the
exact Euler solution is recovered in the limit δ → 0. However, in practice it is difficult to accurately
resolve the solution for small δ and hence the elliptical vortex calculations in Sec. VI used the value
δ = 0.1, but this naturally raises a question about the effect this has on the results.

Figure 15 addresses this question by comparing results with three smoothing parameter values,
δ = 0.2 (column 1), δ = 0.1 (column 2), and δ = 0.05 (column 3), where the MMZ vortex is used
as a representative example and the logarithm of vorticity is plotted for time t = 0, 1, 2, 3, 4. It is
clear that the large scales are not strongly affected by the value of δ, the main effect being that
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FIG. 15. Effect of smoothing parameter, MMZ vortex, logarithm of vorticity, time t = 0, 1, 2, 3, 4,
subdomain shown is [−2.2, 2.2]2, column 1: δ = 0.2, column 2: δ = 0.1, and column 3: δ = 0.05.

the evolution is somewhat slower for larger δ, but the sequence of events (filamentation, lobe, and
halo formation) is similar for the different values of δ. Concerning the small scales, for example the
width of the filaments, here too, the value of δ does not have a strong effect. The results in Fig. 15
are all well resolved, but extending the δ = 0.05 calculation to time t = 10 would require higher
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resolution and be substantially more expensive. Nonetheless the evidence suggests that the δ = 0.1
calculation gives an accurate approximate picture of the true Euler dynamics in the limit δ → 0.

IX. SUMMARY

This work examined the dynamics of elliptical vortices in 2D ideal fluid using an adaptively
refined and remeshed vortex method. Four examples were considered comprising the compact MMZ
[25] and POLY vortices [29], and noncompact Gaussian and SK vortices. The vortices have the same
maximum vorticity and 2:1 initial aspect ratio, but unlike the top-hat Kirchhoff vortex, they have
continuous profiles although with different regularity.

In each case the phase portrait of the vortex in a corotating frame has two hyperbolic points,
and the separatrix divides space into four regions, a center containing the vortex core, two crescent-
shaped lobes next to the core, and the exterior. As the vortices start to rotate, two spiral filaments
emerge and form a halo of low-amplitude vorticity around the core; this filamentation is attributed
to vorticity advection along the unstable manifolds of the hyperbolic points [25,28,32]. Afterwards
there are two scenarios.

In the case of the Gaussian vortex, the core rapidly axisymmetrizes and the filaments form nearly
circular spirals, but a steady state is not reached; instead, the core starts to oscillate, fluid accumu-
lates locally in the channels between the filaments, and two small lobes enclosing weak vortical
fluid form within the halo; this is attributed to a resonance stemming from the core oscillation. In
this way the emergence of lobes from a nearly axisymmetric state opposes axisymmetrization.

In the case of the MMZ, POLY, and SK vortices, something different happens; the core remains
elliptical for longer time, and the filaments entrain fluid into two large lobes next to the core.
The resulting nonaxisymmetric tripole has an elliptical core, two crescent-shaped lobes enclosing
irrotational (MMZ, POLY) or weakly vortical fluid (SK), and a halo of nearly circular spiral
filaments around the core and lobes. The structure resembles the separatrix in the corotating frame,
but it is unsteady; the lobes repeatedly open up at the rear, detrain some of their fluid into the halo
and then close up again; this is attributed to a heteroclinic tangle near the hyperbolic points [47–50].
In this way the lobes are gradually depleted of fluid thereby promoting axisymmetrization, although
this happens faster for the MMZ vortex than for the POLY and SK vortices.

There is a striking contrast between the rapid axisymmetrization of the Gaussian vortex and the
persistent core ellipticity in the MMZ, POLY, and SK vortices. It is notable that the Gaussian profile
has high curvature at the center and essentially no plateau, while the other three profiles are almost
flat near the center with progressively wider plateaus. The idea that profile curvature at the vortex
center plays a critical role in determining the rate of inviscid axisymmetrization was already seen in
the asymptotic analysis of Bassom and Gilbert [18].

In summary we found several competing tendencies, some that promote axisymmetrization
(filamentation, depletion of lobes), and others that oppose it (flatness of core plateau, emergence
of lobes). While it has been suggested that elliptical vortices could evolve to either an axisymmetric
monopole state or a nonaxisymmetric tripole state, it may be that a steady state is not reached as
the core oscillates in time, and lobes repeatedly form, are depleted, and re-form. The dynamics may
resemble to some extent the top-hat Kirchhoff vortex in a strain field [67], where, however, in the
present case the strain is self-induced rather than externally imposed. Future longer time calculations
may clarify these issues using more powerful algorithms and computing hardware [68]. Another
potential application for the vortex method described here is to the control of externally driven
vortices [10,11,69].
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