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We demonstrate that, as in the forward cascade of three-dimensional turbulence that dis-
plays intermittency (a lack of self-similarity) due to the concentration of energy dissipation
in a small set of fractal dimension less than three, the inverse cascade of two-dimensional
turbulence can also display a lack of self-similarity and intermittency if the energy injection
is constrained in a fractal set of dimension less than two. A series of numerical simulations
of two-dimensional turbulence are examined, using different forcing functions of the same
forcing length scale but different fractal dimension D that varies from the classical D = 2
case to the point vortex case D = 0. It is shown that as the fractal dimension of the forcing
is decreased from D = 2, the self-similarity is lost and intermittency appears. The present
model thus provides a unique example that intermittency is controlled and can thus shed
light and provide test beds for multifractal models of turbulence.
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I. INTRODUCTION

Turbulence is pervasive in natural and industrial flows. In his first statistical description of
turbulence, Kolmogorov [1] argued that the energy in turbulent flows cascades to smaller and smaller
scales in such a way that there is a constant flux of energy from the large scales where energy is
injected to the small viscous scales where energy is dissipated. Assuming further that this process
is self-similar leads to the prediction that the different moments of velocity differences

Sp(r) ≡
〈∣∣∣r

r
· [u(x + r) − u(x)]

∣∣∣
p〉

(1)

separated by a distance r = |r| scale as Sp ∝ rp/3, with the case p = 3 being an exact result
[without the absolute value in Eq. (1)]. There is a mass of evidence, however, from the past years
that this result is not exact; self-similarity is broken and the powers of velocity differences scale
with different exponents Sp(r) ∝ rζp where ζp �= p/3. This breaking of self-similarity is referred
to as intermittency. It appears because as the cascade develops towards smaller scales, energy is
concentrated in a set that occupies a smaller and smaller fraction of the domain volume so that
finally energy dissipation is concentrated in a fractal set of dimension smaller than three [2]. The
modern theory of turbulence attempts to understand quantitatively the origin of intermittency and
predict these exponents [3,4].
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TABLE I. Resolution N , scale separation λ = L/� f , and hypoviscous Reynolds number Reα .

N 512 1024 2048 4096

λ 16 32 64 128
Reα 4.4 × 104 2.8 × 105 1.8 × 106 1.1 × 107

In two dimensions, on the other hand, due to the presence of a second invariant, enstrophy, the
energy cascades in an inverse way from small to large scales [5]. This behavior was first predicted
by Kraichnan-Leith-Batchelor (KLB) theory (see Refs. [6–8]). What was equally interesting was
that the inverse cascade of energy in two dimensions is in fact self-similar so that all moments of
velocity differences scale with r with exponents ζp = p/3 [9]. This is explained by the fact that
larger eddies extract energy from an ensemble of smaller eddies averaging out this way any extreme
events. This behavior, as we argue in this paper, does not always have to be the case. If the energy
injection in two-dimensional turbulence is not space filling but is restricted in a set of dimension D
smaller than two, then as energy moves up in scale it can occupy a larger and larger area fraction so
that only at large scales is it concentrated in a two-dimensional set.

Fractal forcing has been employed extensively in three-dimensional turbulence with the use of
fractal grids in simulations and wind tunnel experiments in order to enhance turbulence [10–14].
In nature, atmospheric and oceanic flows driven by winds over rough topography [15,16] resemble
two-dimensional turbulence driven by a fractal forcing. Furthermore, quasi-two-dimensional flows
are believed to transition to an inverse cascade in a critical manner [4]. In such flows the energy
injected in the two-dimensional manifold appears in a set of smaller dimension occupying a fraction
of the domain area that approaches zero as criticality is approached [17,18].

In this paper we show using an extensive set of numerical simulations that indeed intermittency
can appear in the inverse cascade of energy when the energy-injection mechanism is restricted to
a set of fractal dimension D < 2. This model not only gives different insights in two-dimensional
turbulence but also provides a unique example that intermittency can be controlled and can thus
provide test beds for multifractal models of turbulence.

II. NUMERICAL SIMULATIONS

We begin by considering the incompressible flow in a double periodic square domain of side
2πL. In terms of the vorticity ω the two-dimensional Navier-Stokes equation can be written as

∂tω + u · ∇ω = ν∇2ω + α∇−2ω + fω (2)

where the velocity u is linked to ω by ω = ∇ × u, ν is the viscosity, and α is a hypoviscosity used
to absorb energy arriving at the largest scales at a rate εα = α〈|∇−1u|2〉. The curl of the forcing is
given by fω that injects energy at a rate ε at a length scale � f . Given the functional form of fω, there
are three independent nondimensional control numbers: the Reynolds number Re = ε1/3�

4/3
f /ν, the

hypoviscous Reynolds number Reα = ε1/3�
−8/3
f /α, and the domain to forcing-scale ratio λ = L/� f .

This system of equations was solved numerically using the pseudospectral code GHOST [19] with
2/3 dealiasing and second-order Runge-Kutta method for the time advancement. Since we are
interested in the inverse cascade the Reynolds number was kept fixed to a small value Re = 10. This
value of Re is sufficiently large to allow for the development of the inverse cascade but suppresses
the forward enstrophy cascade and any intermittency related to it. As a result the smallest scales in
the system are given by � f and energy in these scales is concentrated close to the forcing. The
hypoviscous Reynolds number Reα was set to Reα = 20λ8/3 so that the large-scale dissipation
length scale �α remains fixed and close to the domain size �α � L. Five different resolutions N
were used, varying λ as given in Table I.
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FIG. 1. Demonstration of how a fractal set of box-counting dimension 1/2 is formed. At every step (down)
the initial set is split into four equal subsets out of which subsets 1 and 3 are disregarded. After N steps there
are n = 2N sets left of length � = L/4N . Therefore the number of “boxes” of length � required to cover the
remaining sets are n = (L/�)D with D = 1/2.

Finally, five different forcing functions of different fractal dimension D are considered. The first
one corresponding to D = 2 is the classical random forcing where all Fourier modes of wave vectors
k satisfying |k| � 1/� f are forced with random phases. The D = 1 forcing corresponds to four
vertical and four horizontal vortex lines with Gaussian profiles of width � f randomly placed in
the domain. Similarly, D = 0 corresponds to eight point vortices with a Gaussian profile of width
� f randomly placed in the domain. The D = 3/2 and D = 1/2 correspond to Cantor sets that are
constructed as follows. For D = 3/2 a dense set of horizontal and vertical vortex lines are uniformly
placed in the domain. This set is split into four equal subsets from which subsets one and three
are removed. The remaining sets are then split again in four from which again subsets one and
three are removed and so on, as demonstrated in Fig. 1, until no further splitting can be done. The
resulting box-counting dimension is D = 3/2 [20,21]. For D = 1/2 we start with point vortices
placed along one vertical and one horizontal line and we follow the same procedure leading this
time to a box-counting dimension D = 1/2.

For all forcing functions the forcing length scale � f was fixed so that energy injection was around
a similar wave number k f � 1/� f . Furthermore, in all cases the amplitude of the forcing function
was varied, randomly delta correlated in time, fixing thus the energy injection rate ε. In addition, the
forcing pattern moved is space following a slow random walk. The forcing function thus is written
as

fw = A(t ) fD([x − x∗(t )]/� f ), (3)

where fD(x) gives the functional form A(t ) random and delta correlated and x∗(t ) follows a
random walk. The random displacement in space makes at long timescales all points in space to
be equivalent. The timescale of the random displacement is smaller than the eddy turnover time
so that the forcing appears fixed within the survival time of the eddies. We note that although the
instantaneous forcing is very inhomogeneous, homogeneity is recovered in a statistical sense only
when averaging over very long timescales where the random shifting has led the forcing to cover
the hole domain. Inhomogeneity and nonsteadiness have been claimed to alter the properties of the
cascade even in three-dimensional turbulence in Ref. [22] where a fractal forcing was also used.

A color plot of a realization of the forcing functions for the five forcing functions is shown in the
upper panels of Fig. 2. For this figure we used the smallest λ (largest � f ) so that the point vortices
in the left panel are clearly visible.

III. RESULTS

All forcing functions lead to an inverse cascade of energy marked by an energy spectrum close
to k−5/3 (left panel of Fig. 3) and a negative flux of energy

�(k) = 〈u<
k · (u · ∇u)〉 (4)
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FIG. 2. Top panels: Random forcing function for different dimension D at resolution N = 512. Lower
panels: Vorticity of the flow for the same cases as above at steady state.

(where u<
k indicates the field u filtered so that only wave numbers with |k| � k are kept) shown in

the lower panel of Fig. 3. The flux is negative, approximately constant in the range 0.01k f < k <

0.2k f .
Although all five cases have an inverse cascade, they do not have the same turbulent statistical

behavior. This can already be seen in the vorticity plots shown in the lower panels of Fig. 2.
Turbulence, marked by intense vorticity regions, is uniformly spread in the domain for the D = 2
case but as D is decreased intense vorticity regions occupy a smaller area fraction but with a larger
intensity. This behavior can be seen to be more pronounced in the high-resolution cases N = 4096
shown in Fig. 4 where the color plots of tanh(0.01ω) are displayed for the two extreme cases
D = 2 and D = 0. In the D = 2 no particular structure can be identified other than some large-scale
vortices. In the D = 0 case one can easily see clusters of vortices of different sizes and at the same
time regions with almost no activity. Clearly, the two flows differ.

In order to quantify this observation we plot in Fig. 5 the probability distribution function (pdf)
of velocity differences for all cases for different values of r starting from the largest r = L/4 to the
forcing scale r = L/128 = � f . In the D = 2 case the pdfs are close to Gaussian for all examined r.
Furthermore, no significant change is observed as r is varied, i.e., they are self-similar. For smaller

FIG. 3. Left: Energy spectra for the highest-resolution runs. The dashed lines give the forcing spectrum.
The straight dotted line gives the k−5/3 scaling. Right: Energy flux for the same cases.
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FIG. 4. The panels show tanh(0.01ω) obtained from simulations at steady state at the highest resolution
N = 4096 for fractal forcing dimension D = 2 (left) and D = 0 (right). Despite all flows being forced at the
same length scale and with the same energy injection rate, the resulting structures are visibly different.

values of D, on the other hand, the pdfs deviate from the Gaussian distribution having larger tails.
Most importantly, as smaller values of r are considered, the deviations from Gaussianity become
stronger with distributions more peaked and with stronger tails. In other words, self-similarity is
lost. The bottom panel shows the area fraction of points that have |δu(r)| larger than the variance
σu = S2(r)1/2 as a function of r showing that the area fraction is decreasing with L/r, indicating

FIG. 5. Top: The probability distribution function of δu(r) normalized by its variance σu = S2(r)1/2 for
different values of r and for different values of D. The curves have been shifted vertically for clarity. Bottom:
Area fraction of points with δu(r) > σu as a function of r for all D.
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FIG. 6. The left panel shows K (r) for the flows at highest λ for the five different forcing functions. The
right panel shows K (r) for D = 0 and four different values of λ.

that the breaking of self-similarity is linked to the fact that intense regions occupy a smaller area
fraction as smaller scales are examined.

A quantitative way to measure this lack of self-similarity is to measure the kurtosis K (r) =
S4(r)/S2

2 (r). Kurtosis gives a measure of how heavy tailed is the distribution of δu. K (r) = 3 corre-
sponds to a Gaussian distributed field while larger values correspond to fields of wider distribution.
If the distribution is self-similar, K (r) will be independent of r. In Fig. 6 we plot the kurtosis for
different cases. The top panel shows K (r) for the flows at highest λ = 128 (highest resolution) for
the five different forcing functions. For D = 2, K (r) is almost flat and close to 3, indicating that δu
follows a self-similar, nearly Gaussian distribution. As the dimension of the forcing is decreased,
K (r) takes larger and larger values in the small r range, with the D = 0 case having more than an
order of magnitude larger K (� f ) than a Gaussian field. The lower panel shows the case D = 0 for the
different values of λ. As λ and Reα are increased, the non-self-similar behavior extends to a larger
range of r with the deviation from Gaussianity increasing. Therefore this amounts to a phenomenon
that persists and extends as a larger-scale separation between the forcing scale and the dissipation
scale is achieved. This implies that in the limit of large Reα and λ new power laws can form as the
flow statistics transition from the highly intermittent behavior at the forcing stale � f to the nearly
Gaussian statistics at the box scale L.

To test this possibility, in Fig. 7 we plot Sp(r)1/p up to order p = 6 for the different flows. For all
D the scaling S1/3

3 (r) ∝ r1/3 (indicated by the orange dashed line) appears to be reasonably satisfied
in a range of scales rmin < r < rmax (inertial range) marked by the vertical dotted lines. Furthermore,
for the D = 2 case all structure functions appear to also satisfy S1/p

p (r) ∝ S1/3
3 (r), demonstrating

self-similarity. This is no longer the case, however, for smaller values of D. As D is decreased, the
slopes of S1/p

p (r) for larger values of p deviate from the r1/3 scaling and appear to become less steep,
indicating an absence of self-similarity.

The deviation from self-similarity can be measured by calculating the exponents ζp. The fitting
range for these exponents is rather small but we note that as Fig. 6 demonstrates this range will
increase as larger domains are examined. We measured the exponents by using the extended self-
similarity assumption [23] that extends the range that a power-law behavior is observed. In the
extended self-similarity method Sp(r) is fitted as Sp(r) ∝ S3(r)ζ

′
p instead of Sp(r) ∝ rζp . Assuming

the theoretically predicted linear scaling of the third moment S3(r) ∝ r, one then obtains ζp = ζ ′
p.

The lower panels of Fig. 7 show S1/p
p (r) plotted as a function of S1/3

3 (r) where it has been normalized
by S1/3

3 (r) to intensify the differences.
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FIG. 7. Top: Structure functions S1/p
p (r) for p = 1 to p = 6 for all cases. The orange dashed line indicates

the S1/p
p ∝ r1/3 scaling predicted by self-similarity. The vertical dotted lines indicate rmin and rmax that mark

the range of the the inertial scales where the scaling S1/3
3 ∝ r1/3 appears reasonable. Bottom: Same structure

functions normalized by S1/3
3 (r) and plotted as a function of S1/3

3 (r). The vertical dotted lines correspond to the
same lines as the top panel marking S1/3

3 (rmin ) and S1/3
3 (rmax).

The measured exponents up to p = 6 are shown in Fig. 8. For D = 2 the exponents follow the
linear scaling ζp = p/3. As D is decreased, the exponents with p < 3 increase while exponents with
p > 3 decrease. The flow thus becomes more intermittent as D is decreased with the high-order
moments being dominated by a few but strong events in the tail of the distribution. In particular,

FIG. 8. Scaling exponents ζp measured using the extended self-similarity method.
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for D = 0 the exponents appear to become almost constant as large values of p are approached,
something that has to be verified however with larger resolutions and larger values of p.

IV. CONCLUSIONS

In this paper we have shown that the inverse cascade of energy can display intermittent features
provided that the forcing function injects energy in a fractal set of dimension smaller than two.
Intermittency is demonstrated by long tails in the distribution of the velocity differences at small
scales caused by the forcing, that as larger scales are approached they flatten out, becoming closer
to Gaussian. This behavior was shown to persist as larger domains (larger λ) are considered. Most
importantly, it is shown that the strength of intermittency caused by the fractal forcing is sensitive
on its dimension and thus it provides a way to create a cascade for which the intermittency can
be varied from self-similar to strongly intermittent. The overall picture that emerges is that larger
eddies that occupy a certain area fraction are forced by smaller eddies that occupy a smaller area
fraction that themselves are forced by even smaller eddies occupying an even smaller area fraction
and so on up to the forcing scale (to paraphrase Richardson’s poem). There is thus a non-self-similar
cascade process that connects the strongly intermittent forced scales to the Gaussian large scales.
Given the simplicity of the present model, ideas about the behavior and origin of intermittency can
thus be put in the test using it.

There are thus various limitations of the present results that we would like to discuss. Although,
the present results demonstrated the existence of intermittency in 2D flows when fractally forced,
we have not examined how universal are these results (given the dimensionality of the forcing). In
this work we have used a particular type of fractal forcing. However, the fractal dimension alone
does describe all the geometrical properties of the forcing and other geometrical parameters as
well as properties of its time evolution can also become important. Various extensions of it can
thus be considered in order to identify the key ingredients besides the dimension, that determine
the statistical properties of the resulting flows. For example, in the present study the pattern of the
forcing moved is space as a slow random walk. As such, large eddies that sweep through the forcing
location lead to the generation of a streak of forcing-scale size eddies instead of a single eddy. This
behavior could be altered if the random shifting of the forcing is faster or if the location of the
forcing moves with the flow. Such alterations in the forcing can increase or decrease the number of
eddies generated by the forcing and change the resulting statistics. Another possible variation of the
present model is to change the monofractality of the forcing. Here, we employed only monofractal
forcing. Bifractal or multifractal forcing can also be considered by adding with appropriate weight
different fractal forcing functions. This could lead to an intermittent behavior that is closer to the
three-dimensional cascade.

Another aspect that should be further investigated is the role of Re and Reα . Here, we limited
ourselves to low Re values. It would be interesting to investigate if the present results persist as Re is
increased. Also, the effect of hypoviscosity used in this work should also be investigated examining
larger or smaller powers of the inverse Laplacian.

Of course, although numerical simulations are invaluable at this state, a theoretical framework
that will lead to clear predictions about fractally forced two-dimensional turbulence is still missing.
Furthermore, the realization of laboratory experiments of two-dimensional turbulence forced by
fractal forcing (as, for example, stirring with thin rods) would be very useful.

Finally, one cannot help but wonder how a fractal forcing can affect intermittency properties in
three-dimensional turbulence.
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