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Turbulence model form errors in separated flows
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In turbulence modeling, model form errors are introduced in the prediction of the
Reynolds stresses through the Boussinesq hypothesis and other modeling choices, such as
the specific form of the eddy viscosity. These linear eddy viscosity models have known
points of failure in flows that feature significant complexity, such as separated flows.
In this work, an implied models approach is used to better understand the sources and
dynamics of model form error in separated flows through a priori analysis, focusing on the
Boussinesq hypothesis using exact inputs for determining the eddy viscosity. In the implied
models approach, a transport equation is derived for the model error through the transport
equation implied by the model for the quantity of interest; that is, the Reynolds stresses in
this work. A boundary layer over a flat plate with a statistically stationary separation bubble
is analyzed and shown to have two error modes corresponding to the qualitative behavior
of turbulent wall-bounded and turbulent free-shear model form errors. The wall-bounded
mode is observed sufficiently upstream of the separation bubble, and the free-shear mode
is observed near and within the separation bubble, with a superposition of these two modes
observed in the intermediate regions. These results indicate on the one hand a complex
picture of model error that changes through the flow but on the other hand a simple
picture of model error that comprises elements of canonical flows. Therefore, calibration
of turbulence models against simpler canonical flows can capture the main modes of model
failure in more complex flows.

DOI: 10.1103/PhysRevFluids.8.024606

I. INTRODUCTION

Reynolds-averaged Navier-Stokes (RANS) models are popular tools due to their relatively
inexpensive computational cost compared with large eddy simulation (LES) and direct numerical
simulation (DNS). The physical assumptions that give rise to these models are well suited to certain
flows, specifically flows that are in a state of quasi-equilibrium. In practice, this designation can
only be applied to fairly simple flows that do not have features that violate the tenuous nature
of quasi-equilibrium turbulent flow. Transgressive features include, but are not limited to, sudden
changes in mean strain rate, curved surfaces, rotation, and three-dimensionality [1]. Due to the
limitations of quasi-equilibrium turbulence, in theory, the simplest, complete RANS models, such
as the two equation k-ε and k-ω models, only provide valid predictions for flows with slowly varying
properties, such as homogeneous or free-shear flows.

In practice, however, two equation RANS models are also able to provide predictions that match
well with high fidelity data for canonical flows that have sharp gradients and thus properties that
are not slowly varying (e.g., wall-bounded flows), although this has been shown to be the result of
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fortuitous error cancellation [2]. In many cases, these models require flow specific corrections, such
as wall functions [3], cross-diffusion terms for free shear flows [4], or stress limiters applied to the
eddy viscosity for shock waves in compressible flows [5]. While not necessarily a disadvantage,
the need for such corrections poses a challenge for the generalizability of RANS models, requiring
that knowledge of key physical features of a flow is necessarily understood prior to simulation. This
is particularly challenging for complex flows in which a priori knowledge is often unavailable or
unattainable.

One particular class of complex flows that challenge the predictive capabilities of RANS models
is flows with separation, characterized by boundary layer detachment and flow reversal near a
solid surface. Standard linear eddy viscosity RANS models often fail to accurately predict the
characteristics of separation in a given flow, such as the reattachment point in a backward-facing
step [6], location of separation and reattachment points in a separation bubble [1], and the size of the
recirculation zone in flow past both square and circular cylinders [7]. To rectify this, corrections have
been made to account for discrepancies between model predictions and experimental or numerical
data. For example, in Knopp et al. [8], a wall function was employed with the Spalart-Allmaras and
k-ω models for compressible flow and was shown to improve the prediction of the reattachment
point in flow over an airfoil. An alternative approach has been to use a hybrid RANS approach
that also incorporates a higher fidelity model, such as a LES or a detached eddy simulation (DES)
[9]. The drawback of a hybrid approach is that the higher-fidelity model necessitates an increased
computational cost.

As the models continue to adapt to be able to better predict separated flow features, uncertainty
quantification is a necessary tool for understanding the reliability and fidelity of the model predic-
tions. Multiple works have quantified uncertainty in separated flows, looking at a range of RANS
models and both model-form [10–12] and parameter [13,14] uncertainties. The works focused on
parametric uncertainty have explored the sensitivity of the models to the values of the parameters
in separated flows [13], and have also explored more cost-effective methods for quantifying this
kind of uncertainty, such as latin hypercube sampling [14]. In general, parametric uncertainty,
while important for understanding a model’s sensitivity, does not address the underlying physical
assumptions in the models. Parameter uncertainty quantification can be used to more accurately tune
model parameters but cannot help to improve the physical accuracy of the model, where physical
accuracy is lacking.

In contrast, model-form uncertainty quantification is able to address the physical deficiencies
in these models. In Gorlé et al. [15], a marker function technique was used based on deviation
from parallel shear flow in two flows with regions of separation. This method, while successful in
identifying regions of linear eddy viscosity model failure, only focused on one particular assumption
present in these models. In Gorlé et al. [11], Iaccarino et al. [10], and Thompson et al. [12], the
approach developed by Emory et al. [16] was used and adapted in studying a separated flow case.
In this approach, the anisotropic stress tensor is decomposed into its eigenvalues and eigenvectors,
and perturbations are introduced in order to provide error bounds on the quantity of interest. In
Gorlé et al. [11], uncertainty in flow over a wavy wall was analyzed. The production of turbulent
kinetic energy was found to have the largest effect on the prediction of the Reynolds stresses, so
perturbations to the turbulent kinetic energy were introduced via this term and also the eigenvalues
of the anisotropic Reynolds stress tensor. In contrast, in both Refs. [10,12], the eigenvector perturba-
tions were studied, citing misalignment between the mean strain rate and anisotropic Reynolds stress
tensor as one of the major sources of model error in linear eddy viscosity RANS models. For various
separated-flow cases (flow over a backward facing step and flow in an axisymmetric diffuser), with
the introduction of the eigenvector perturbations, the models were able to provide better predictions
compared with solely using eigenvalue perturbations. These works highlight the shortcomings of
these models for separated flows and provide insight into the response of the models to various
perturbations. However, these approaches utilize a given model structure to quantify model error,
rather than identify the physics not captured by the model. Therefore, physics-based uncertainty
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quantification analysis of separated flows that explore the sources and structure of the model error
serve to enhance general understanding of RANS model limitations.

In this work, an implied models approach—a physics-based uncertainty quantification method-
ology developed by Klemmer and Mueller [2]—is used to analyze model error first in a turbulent
planar jet to understand the model error in a canonical free-shear flow, building upon previous work
on turbulent channel flow to understand the model error in a canonical wall-bounded flow [2]. Then,
the implied models approach is used to understand the model error in a turbulent boundary layer over
a flat plate with a statistically stationary separation bubble to understand the physical mechanisms
responsible for model failure. The general approach is outlined in Sec. II; the planar jet results are
presented in Sec. III; the separation bubble results are presented in Sec. IV; and the implications of
these results are discussed in Sec. V.

II. IMPLIED MODELS APPROACH

In the implied models approach [2], the model error e is defined as the difference between a true
physical quantity R and the modeled quantity M:

e = R − M. (1)

The quantity R is assumed to have an exact transport equation, and it is also assumed that an
analogous transport equation can be derived for the modeled quantity M. The transport equation for
the model error can then be derived by taking the difference between these two transport equations:

De

Dt
= DR

Dt
− DM

Dt
. (2)

In turbulence, a transport equation can be derived for almost any physical quantity, a fact exploited
in this method. In the present work, the anisotropic Reynolds stress tensor ai j is taken to be the true
physical quantity:

Ri j = ai j = u′
iu

′
j − 2

3 kδi j, (3)

where u′
iu

′
j is the Reynolds stress tensor and k = 1

2 u′
iu

′
i is the turbulent kinetic energy. The model

used in this work for the anisotropic Reynolds stress tensor is the Boussinesq eddy viscosity model:

Mi j = −2νT Si j, (4)

where νT is the eddy viscosity and Si j = 1
2 ( ∂Ui

∂x j
+ ∂Uj

∂xi
) is the mean strain rate tensor. The model

error and its transport equation are then found by substituting Eqs. (3) and (4) into Eqs. (1) and (2),
yielding

ei j = ai j + 2νT Si j (5)

and

Dei j

Dt
= Dai j

Dt
+ 2νT

DSi j

Dt
+ 2Si j

DνT

Dt
, (6)

where D/Dt is the mean Lagrangian derivative in which advection is by the mean velocity Uk . The
transport equation for the model error ei j is derived through the specification of the three transport
equations in Eq. (6) for the anisotropic Reynolds stress tensor, the mean strain rate tensor, and
the eddy viscosity. The transport equations for νT depend on the choice of the model. There are
many different choices for the eddy viscosity based on the variables chosen to represent νT and also
whether the transport equations for these variables are exactly derived or modeled. In this work, the
standard k-ε and k-ω [1] models are explored, and the exact transport equations for k, ε, and ω are
used and evaluated with high-fidelity data. Note that using the exact transport equations for these
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TABLE I. Simulation parameters for the turbulent planar jet. Lx , Ly, Lz are the dimensions in the stream-
wise, cross-stream, and spanwise directions; Nx , Ny, and Nz are the number of grid points in the streamwise,
cross-stream, and spanwise directions; and �x/H , �z/H , and �yc/H are the grid spacings in the streamwise,
spanwise, and cross-stream (at the centerline) directions normalized by the jet height H at the inlet.

ReH Lx Ly Lz Nx × Ny × Nz �x/H �z/H �yc/H

5000 25H 24H 3H 768 × 576 × 256 0.03211 0.01176 0.00163

quantities results in equivalent formulations for these two models, such that only one analysis is
presented for both model forms.

Additional a priori and a posteriori analyses using the modeled transport equations for k, ε, and
ω were performed in Klemmer and Mueller [2] for a turbulent channel flow. The model equation a
priori analysis was shown to be overwhelmed by large errors that were introduced due to the
physical inadequacy of the model transport equations relative to their exact counterparts. The a
posteriori analysis in contrast did not exhibit these large errors and is instead illustrative of the
degree of error cancellation between the Boussinesq model and the modeled transport equations for
k, ε, and ω. However, the challenge in the present work is that the k-ε and k-ω models are not known
to be appropriate for flows with separation and reattachment. As such, prediction errors generated
upstream would propagate downstream and accumulate, making it difficult to parse the sources of
model error in a given region of the flow. In the present work, these additional analyses are not
undertaken since the main objective of this paper is to study the deficiencies of the linear eddy
viscosity model, which would be obfuscated by the sources of error mentioned above.

With all of these transport equations, a transport equation for the model error is derived by
substituting the transport equations for ai j , Si j , and the chosen equations for the transport of νT

into Eq. (6). The error transport equation, in compact form, is given by

Dei j

Dt
= Pei j + Tei j + Rei j − εei j , (7)

where Pei j represents production terms (nonviscous source), Tei j represents transport terms (diver-
gence of a flux), Rei j represents redistribution terms (traceless contributions without a counterpart
in the turbulent kinetic-energy transport equation), and εei j represents dissipation terms (viscous
source).

The detailed derivation of the model error transport equation and the specification of Eq. (6) are
presented in Klemmer and Mueller [2].

III. TURBULENT PLANAR JET ANALYSIS

The implied models approach has been previously utilized to analyze the model error in a
turbulent channel flow. In this work, a turbulent planar jet is first analyzed to understand the
difference in the model error between these two canonical flows. A turbulent planar jet with
ReH = UH/ν = 5000, where ReH is the Reynolds number, U is the bulk velocity of the inflow,
and H is the jet height, was simulated using NGA, which is a structured, finite difference solver
[17,18]. The computational details of the simulation can be found in Table I. Lx, Ly, and Lz are the
domain size in the streamwise, cross-stream, and spanwise directions, respectively, normalized by
the jet height H . Nx, Ny, and Nz are the number of grid points in the streamwise, cross-stream, and
spanwise directions, respectively, resulting in the nondimensional uniform grid spacings �x/H and
�z/H in the streamwise and spanwise directions, and the nondimensional nonuniform grid spacing
�y/H in the cross-stream direction. For the inflow, a channel profile was used that matched the
bulk Reynolds number of the jet. At worst, there are a few locations where the ratio of the local
grid spacing to the Kolmogorov length scale is up to a factor of ≈5.5. However, additional limited
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FIG. 1. Model error ei j in the turbulent planar jet. (a) x/H = 5 and (b) x/H = 10.

statistics were collected for a finer grid and indicated only very minor changes to the model error
budgets that do not affect the qualitative behavior discussed in this work.

Cross-stream statistics in the planar jet are taken at two streamwise locations, x/H = 5 and
x/H = 10, and are normalized by the local mean centerline velocity Uc and the jet half-width y1/2.
Due to noise in the statistics, a moving average with a Gaussian filter in MATLAB (the smoothdata
function [19]) was used to smooth the model error and model error budgets. In moving downstream,
there is a slight increase in the magnitude of the model error, particularly in the e11 and e33 model
error components, but overall the model errors at the two streamwise locations are qualitatively
similar [see Figs. 1(a) and 1(b)]. Analysis of the model error budgets at x/H = 5 [Figs. 2(a)–2(c)]
and at x/H = 10 [Figs. 2(d)–2(f)] points to a similar behavior. Figure 2 shows the model error
production, dissipation, and redistribution at x/H = 5 and x/H = 10. The dominant component
of the model error production is the streamwise error term Pe11 ; however, all four components are
roughly of the same order. The terms that contribute most to the model error production for each
component are

Pe11 ≈ 2νT
∂U1

∂x2

∂U1

∂x2
− 2e12

∂U1

∂x2
+ 2

3
(ek� − 2νT Sk�)

∂Uk

∂x�

, (8)

Pe22 ≈ Pe33 ≈ 2

3
(ek� − 2νT Sk�)

∂Uk

∂x�

, (9)

Pe12 ≈ −e22
∂U1

∂x2
+ 2νT

∂U1

∂x2

∂U2

∂x2
− 2

∂νT

∂x2

∂νT S12

∂x2
+ ∂νT

∂x2

∂e12

∂x2
. (10)

All the terms in Eqs. (8) and (9) and the first two terms in Eq. (10) arise from the discrepancy
between the production predicted by the models and exact production, indicating that these errors
come from the misalignment of the anisotropic Reynolds stress tensor and the mean strain rate
tensor. While the relevant terms in the normal components of the model error production are the
same as those found in turbulent channel flow [2], there are important differences. In particular,
in the streamwise component in the planar jet, 2νT (∂U1/∂x2)(∂U1/∂x2) is roughly three times
larger than 2e12∂U1/∂x2, while in the channel 2νT (∂U1/∂x2)(∂U1/∂x2) is roughly equivalent to
2e12∂U1/∂x2. In comparing these two terms, the important differences arise in the comparison of the
shear component model error e12 with the shear component model νT ∂U1/∂x2. When the magnitude
of e12 relative to the magnitude of νT ∂U1/∂x2 is small, this indicates that the model performs
relatively well compared with a case where the magnitude of e12 relative to the magnitude of
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FIG. 2. Budgets for ei j in the turbulent planar jet. (a) x/H = 5: Production, (b) x/H = 5: Dissipation,
(c) x/H = 5: Redistribution, (d) x/H = 10: Production, (e) x/H = 10: Dissipation, and (f) x/H = 10:
Redistribution.

νT ∂U1/∂x2 is comparable or larger. Additionally, in the shear component of model error production,
there is a minor (less than 15% of the largest term) additional misalignment term [the second term
in Eq. (10)], which is not present in the channel due to the unidirectional nature of the flow. This
illustrates the ways in which the two-dimensionality of the flow can contribute to the model error.

Another interesting difference is observed when studying the inhomogeneity terms that arise
from wall-normal or cross-stream derivatives of the eddy viscosity. These terms are significant in
the shear component and wall-normal component in the channel, and, while they are present in the
shear and cross-stream components in the planar jet, they are not nearly as significant in terms of
their relative magnitudes. In the wall-normal component in the channel, the model error production
is also given by Eq. (9). Additionally, however, there are also large inhomogeneity terms given by

∂νT

∂x2

∂e22

∂x2
+ 4

3

∂νT

∂x2

∂k

∂x2
, (11)

that are balanced by 2
ρ

(∂νT /∂x2)(∂P/∂x2), such that they do not contribute to the overall model error
production in the wall-normal component. In the jet, these terms are also present and are balanced in
the same way so that they do not contribute to the overall model error production in the cross-stream
component. The differences in the inhomogeneity terms are seen in their relative magnitudes (sim-
ilar to the discussion of the relevant terms in the streamwise model error production above). In the
wall-normal model error production in the channel, (∂νT /∂x2)(∂k/∂x2) and (∂νT /∂x2)(∂e22/∂x2)
are both roughly an order of magnitude larger than 2

3 (ek� − 2νT Sk�)∂Uk/∂x�. In the jet, these terms
at their peak are only about 1/3 of the peak of the most dominant term 2

3 (ek� − 2νT Sk�)∂Uk/∂x�.
Similarly, in the channel shear component, 2(∂νT /∂x2)(∂νT S12/∂x2) and (∂νT /∂x2)(∂e12/∂x2) are
comparable in magnitude to e22∂U1/∂x2, while in the jet the peaks of the inhomogeneity terms are
roughly an order of magnitude smaller than the peak of the largest term e22∂U1/∂x2. This is due to
the very steep gradients present in the vicinity of the walls in the channel (relative to those in the
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planar jet or free-shear flows in general), which lead to rapid changes in the state of the turbulence
in the near wall region.

The model error dissipation is roughly an order of magnitude smaller than the model error
production and redistribution, which is another point of departure from the model error budgets in a
turbulent channel [2]. This is due to the fact that, in free shear flows, the turbulence is relatively
isotropic at the small scales [20,21], which means that the dissipation is well described by an
isotropic model dissipation. Again, this is not true in the vicinity of a solid boundary. The isotropic
nature of the small scales is also an important factor in the model error redistribution because, in the
normal components, the dominant term is given by

Rei j ≈ − 1

ρ

〈
u′

i

∂ p′

∂x j
+ u′

j

∂ p′

∂xi

〉
+ 2

3ρ

∂u′
k p′

∂xk
δi j, (12)

which is the pressure redistribution term. This indicates the importance of the pressure redistribution
mechanism in the jet because this physical mechanism is the means through which the small scales
achieve local isotropy. This “return to isotropy” has been theoretically outlined for inhomogeneous
shear flows [22] and shown experimentally for a planar jet [23]. Additionally, this highlights the
lack of redistributive mechanism in these simple RANS models, and their inability to capture
nonlocal affects. In the streamwise and cross-stream components there is an additional, but minor,
contribution from misalignment, specifically −4/3kSi j . This misalignment term is also important in
the shear component error redistribution, where the pressure redistribution also contributes, but to a
lesser extent. The shear component redistribution is then given by

Re12 ≈ −4

3
kS12 − 1

ρ

〈
u′

1
∂ p′

∂x2
+ u′

2
∂ p′

∂x1

〉
. (13)

This differs slightly from the turbulent channel analysis, in that pressure redistribution and mis-
alignment contribute to the redistribution errors in each component (except for the spanwise
component where misalignment is not relevant), with pressure redistribution dominating for the
normal components and misalignment dominating for the shear component. This difference arises
due to the two-dimensional nature of the planar jet flow in contrast to the channel. As a result, the
normal components of the mean strain rate are no longer zero, so they contribute to the normal
model error redistribution.

In the turbulent planar jet, the dominant sources of model error in the anisotropic Reynolds
stresses are found to be misalignment of the anisotropic Reynolds stress tensor and mean strain
rate tensor and the lack of redistribution mechanisms in the models. In contrast to the turbulent
channel [2], there does not appear to be any overly dominant component, as there was with the shear
component of the model error in the turbulent channel. Additionally, the small-scale isotropy in the
planar jet (and generally in free shear flows) manifests in two ways. First, the model error dissipation
was found to be an order of magnitude smaller than the model error production and redistribution,
indicating that isotropic dissipation is a reasonable assumption for this flow. Second, the pressure
redistribution term is shown to be an integral mechanism in this flow, and, although it is present
in the normal component model error redistribution in the channel, the dominance of the shear
component redistribution and the large model error dissipation indicates that shear misalignment
and small-scale anisotropy play a much larger role in the model error in wall-bounded flows.

IV. SEPARATION BUBBLE ANALYSIS

The implied models approach is used to analyze a turbulent boundary layer over a flat plate with
a separation bubble. This flow is used to highlight the shortcomings of the Boussinesq hypothesis
and the k-ε and the k-ω eddy viscosity models in flows with more complex strain, which are known
points of failure for these models. In performing this analysis, the deficiencies in these models
are better understood for these kinds of flow configurations, and novel insight is provided into the
specific physics.
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TABLE II. Simulation parameters for the statistically stationary separation bubble. Lx , Ly, and Lz are the
dimensions in the streamwise, wall-normal, and spanwise directions; Nx , Ny, and Nz are the number of grid
points in the streamwise, wall-normal, and spanwise directions; and �x+, �z+, and �y+

min are the grid spacing
in the streamwise, spanwise, and wall-normal (at the wall) directions.

Reθ0 Reτ0 Lx Ly Lz Nx × Ny × Nz �x+ �z+ �y+
min

2500 830 570θ0 70θ0 54θ0 2560 × 384 × 384 23 15 0.85

The data for the separation bubble test case come from Wu and Piomelli [24] and have been
generated using wall-resolved LES, where the subfilter stresses are modeled by the integral length
scale approximation (ILSA) model [25] in its local form [26]. The details of the simulation can be
found in Table II, and Fig. 3 shows the mean streamwise velocity in the x-y plane. The two Reynolds
numbers shown are both based off of values taken at x = 0. Specifically, Reθ0 = U0θ0/ν, where the
free stream velocity is U0 = U∞(x = 0) and θ0 is the momentum thickness at x = 0. These two
quantities are used to normalize the data in all the subsequent figures, unless otherwise specified.
The friction Reynolds number is given by Reτ0 = uτ0δ0/ν, where uτ0 is the friction velocity at x = 0
and δ0 is the boundary layer thickness at x = 0. The friction velocity and the viscous length scale
δν = ν/uτ are the scales used for normalization when inner units are used.

The model error transport equation in this case is slightly modified due to the fact that the
separation bubble utilizes data from LES. As a result, the viscosity ν is taken to be the sum
of the subfilter viscosity νSFS and the kinematic viscosity ν0. This modified viscosity is now an
instantaneous, spatially varying quantity and is decomposed in the Reynolds-averaging operation,
such that ν = V + ν ′, where V is the mean total viscosity and ν ′ is the fluctuating total viscosity. The
derivation of the model error transport equation for this case of incompressible flow with variable
viscosity is given in Appendix. The additional terms that are present in the model error transport
equation are only found to be significant in the model error dissipation. Additionally, it should be
noted that, due to the nature of the data and noise in the statistics near and within the separation
bubble, a moving average with a Gaussian filter in MATLAB (as in Sec. III) was used to smooth the
model error and model error budgets for the streamwise locations downstream of x/θ0 = 0.

Figure 4 shows the model error ei j at four streamwise locations in the flow: far upstream of the
separation bubble in the zero pressure gradient region [Fig. 4(a)], roughly at the mean separation
point [Fig. 4(b)], inside the separation bubble [Fig. 4(c)], and downstream of the reattachment point
[Fig. 4(d)]. The nature of the model error clearly changes moving downstream, behaving more like
a fully wall-bounded flow (based on comparison with the model error in the turbulent channel [2])
in the upstream region and then becoming more like the planar jet (see Fig. 1) near and within the
separation bubble. After the reattachment point [Fig. 4(d)], there is a superposition of these different
qualitative behaviors where the behavior resembles a wall-bounded flow in the near wall region and
a free-shear flow in the far wall region. This superposition can be seen most clearly in the peaks in

FIG. 3. Mean streamwise velocity in the separation bubble configuration, where — is the streamline that
passes through zero streamwise velocity.
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FIG. 4. Comparison of ei j at different x/θ0 locations in the separation bubble configuration. (a) x/θ0 = 0,
(b) x/θ0 = 150, (c) x/θ0 = 200, and (d) x/θ0 = 350.

the model error seen at y/θ0 < 5, indicative of the wall-bounded mode, and in the secondary peak
in the streamwise model error in Fig. 4(d), indicative of the free-shear mode. As such, two model
error modes have been identified: the wall-bounded mode and the free-shear mode.

A. Wall-bounded mode

In the wall-bounded mode, the model error behaves as in a canonical wall-bounded flow. Figure 5
shows the model error budgets for the separation bubble at x/θ0 = 0 (Reτ = 830) compared with
those of turbulent channel flow at Reτ = 1000 (data from Lee and Moser [27]). The agreement
between these two flows illustrates what is here called the “wall-bounded mode” in the separation
bubble: far upstream of the separation point, the flow behaves like a zero pressure gradient boundary
layer, so the errors are dominated by the presence of a wall. The sources of these errors are then
the same as were found in the channel: production errors arise from misalignment between ai j

and Si j with contributions from inhomogeneity of the eddy viscosity near the wall to the shear
component; dissipation errors arise from the anisotropy of the flow in the near wall region; and the
dominant redistribution error found in the shear component arises from misalignment. Additionally,
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FIG. 5. Comparison of model error budgets in a turbulent channel (Reτ = 1000) and in the separation
bubble configuration (Reτ = 830) at x/θ0 = 0. (a) Production, (b) Dissipation, and (c) Redistribution.

the magnitude of the normal dissipation errors is found to be equivalent to that of the normal
production errors, highlighting the persistence of small-scale anisotropy near the wall.

B. Free-shear mode

In the free-shear mode, the model error has the qualitative behavior identified in the planar
jet (Sec. III). Figure 6 shows the model error budgets at two downstream locations: the first is
roughly at the mean separation point x/θ0 = 150 and the second is inside the separation bubble
at x/θ0 = 200. At these two locations, the effects of separation are clearly displayed, given the
departure from the behavior of the model error budgets at x/θ0 = 0 in Fig. 5. Primary among these
differences is the relative magnitude of the various components. Inside the separation bubble, the
components are all also roughly of the same order, highlighting the similarity to the jet flow. This

FIG. 6. Budgets of ei j roughly at (a)–(c) the mean separation point x/θ0 = 150 and (d)–(f) within the
separation bubble x/θ0 = 200.
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is in contrast to the channel, where the shear component is an order of magnitude larger than the
normal components in both the model error production and redistribution. Additionally, in the jet,
the model error dissipation is an order of magnitude smaller than the production and redistribution,
which is also the case away from the wall in the separated region of the separation bubble.

These differences can be further quantified by looking at the terms responsible for the model
error budgets at x/θ0 = 150 and x/θ0 = 200. The dominant terms in the model error production are
largely the same as those found in the turbulent jet in Eqs. (8)–(10), which is in keeping with the
sources of model error production in the jet. There are additional misalignment terms that arise from
the two-dimensionality of the flow. In the streamwise component, this additional term is minor and
is given by

−2e11
∂U1

∂x1
(14)

in the shear component; the additional term is also minor and is given by

−e11
∂U2

∂x1
(15)

and, in the wall-normal component, the additional misalignment terms are given by

−2e22
∂U2

∂x2
− 2e21

∂U2

∂x1
+ 2νT

(
∂U2

∂x1

∂U2

∂x1
+ ∂U2

∂x2

∂U2

∂x2

)
. (16)

These additional misalignment terms differ from the channel as ∂U1/∂x1, ∂U2/∂x1, and ∂U2/∂x2 are
zero in unidirectional flows. In the jet, these terms are quite small, so as to be negligible, but this is
clearly a feature of the two-dimensionality of the flow. This is exacerbated in the separation bubble
as, relative to the planar jet, the properties of the flow are not slowly varying in the streamwise
direction, since ∂U1/∂x1, ∂U2/∂x1, and ∂U2/∂x2 become large in this region.

An additional source of model error production is found in the wall-normal component. Towards
the outer edge of the separation bubble (y/θ0 > 20 at x/θ0 = 200), the vertical mean pressure
gradient becomes important and contributes to the model error production through

2

ρ

∂νT

∂x2

∂P

∂x2
. (17)

This arises due to the strong external pressure gradient, reaching a peak at x/θ0 = 200. This differs
from both the wall-bounded and free-shear mode errors in that it represents a misalignment error
due to rapid changes in the flow, in this case the pressure gradient, not just the strain. Further study
of this mode via a flow with a pressure gradient that is not aligned with the direction of the flow,
such as a curved channel or free shear flow with an imposed pressure gradient, is necessary in order
to isolate other features of its behavior.

In the shear component, the inhomogeneity terms found in Eq. (10) from gradients of the eddy
viscosity near the wall are present and behave as they do in the channel very near the wall. These
are only found to be significant in the very near wall region (y/θ0 < 2), and outside of this region
the behavior is more similar to that of the planar jet.

The model error redistribution in the separated region comes from a combination of pressure
redistribution and misalignment, as found in the planar jet. For the shear component redistribution,
this is the same as found in Eq. (13), where misalignment is dominant. For the normal components,
the relative contribution of each term changes moving downstream through the separation bubble. At
x/θ0 = 150, pressure redistribution and the misalignment term are of the same order of magnitude,
but pressure redistribution is larger in the streamwise component and misalignment is larger in the
wall-normal component. At x/θ0 = 200, pressure redistribution is larger in both components, and
downstream of this the misalignment is slightly larger in both components. In the separation bubble,
compared with the planar jet, the properties of the flow are not slowly varying in the streamwise
direction, which means that ∂U1/∂x1 and ∂U2/∂x2 become large in this region. Overall, however,
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FIG. 7. Budgets of ei j in the separation bubble configuration at (a)–(c) x/θ0 = 125 and (d)–(f) x/θ0 = 140.

the trend of these budgets points to a similarity with the shear flow budgets as opposed to the channel
flow budgets.

Interestingly, despite the presence of the wall, there is little influence of the wall on the model
error behavior within the separation bubble. This is likely due to the fact that the backflow near the
wall is relatively weak, such that the local friction Reynolds numbers (based on the height at which
the direction of the flow reverses) at the streamwise locations inside the separation bubble are all
less than 40. In a separated flow with a stronger backflow and larger friction Reynolds numbers
inside the separation region, it is possible that the model errors present in the wall-bounded mode
would be more prevalent within the separation region, at the very least near the wall.

C. Superposition of model error modes

At intermediate streamwise locations, in between the locations of the distinct wall-bounded mode
and free-shear mode, a superposition of the model error modes is observed. Specifically, upstream
of the separation point the model error transitions from the wall-bounded mode to the free shear
mode, and downstream of the reattachment point the model error transitions from the free-shear
mode to the wall-bounded mode. This transition manifests as a superposition of the two modes in
which one mode decays as the other grows.

Figure 7 shows the model error budgets at two locations upstream of the separation point in the
adverse pressure gradient region at x/θ0 = 125 and 140. Near the wall (y/θ0 < 2), particularly in
the shear component, the wall-bounded mode is clear at both locations. This can be seen in the peaks
near the wall, particularly in the shear component production and redistribution. It is also clear that
the wall-bounded mode decays as the free-shear mode grows moving downstream. The decay of the
wall-bounded mode is seen in the decay in the magnitude of the near wall peaks of production and
redistribution for all components. In the normal components, the growth of the free-shear mode is
evinced in the shift of the peaks of the model error production and redistribution further away from
the wall going from x/θ0 = 125 to x/θ0 = 140. The normal component model error dissipation
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FIG. 8. Budgets of ei j in the near wall region of the separation bubble configuration at (a)–(c) x/θ0 = 325
and at (d)–(f) x/θ0 = 350.

always peaks at the wall, although a secondary peak has formed away from the wall at x/θ0 = 140.
In the shear component, particularly in the model error production, the peak in the near wall region
decreases in magnitude moving downstream, until it eventually fully decays, as seen at x/θ0 = 150
in Fig. 6.

This superposition is also seen downstream of the reattachment point. Figures 8 and 9 show the
model error budgets downstream of the reattachment point in the favorable pressure gradient region.
Figure 8 shows the wall-bounded mode in the near wall region, and Fig. 9 shows the free-shear mode
away from the wall. At these two locations the largest errors are found near the wall and come from
the shear component as shown in Figs. 8(a), 8(c), 8(d), and 8(f). In the near wall region, the model
error budgets most closely resemble those found in the channel. The dominant terms in the near
wall separation bubble budgets are the same as those found at x/θ0 = 0. Note, that there is some
contribution from the 2Si jDνT /Dt terms seen in the model error redistribution in both the near wall
and far wall regions [Figs. 8(c), 8(f), 9(c), and 9(f)], which is likely due to a combination of lack of
statistical convergence and two-dimensionality effects.

Further away from the wall, the dominant terms are largely the same as those found within the
separation bubble. The exception to this is found in the wall-normal and shear components, where
inhomogeneity represented by the wall-normal derivative of the eddy viscosity has a dominant role
in the model error production and there is a lingering effect of the error mode linked to the mean
pressure gradient identified in Sec. IV B. Moving downstream, these two contributions to the model
error production decay faster than the contributions linked to the free shear mode, indicating that,
as the flow returns to a zero pressure gradient boundary layer, the dominant model error modes are
the wall-bounded and free-shear modes. Overall, the qualitative features of the model error budgets
away from the wall more closely resemble those of the free-shear mode, specifically the reduced
magnitude of the model error dissipation compared with the production and redistribution, as well
as the similarity in order of magnitude of each component.
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FIG. 9. Budgets of ei j in the far wall region of the separation bubble configuration at (a)–(c) x/θ0 = 325
and (d)–(f) x/θ0 = 350.

The differences between these two locations can be found in the magnitudes of the model
error budgets found in the different modes. Looking first at the wall-bounded mode in Fig. 8,
an increase in magnitude from x/θ0 = 325 to x/θ0 = 350 can be clearly seen, particularly in the
shear production, streamwise and spanwise dissipation, and the shear redistribution. Similarly, in
Fig. 9, a decrease in magnitude from x/θ0 = 325 to x/θ0 = 350 is observed, especially in the
normal components of production, shear and streamwise dissipation, and normal and streamwise
redistribution. This perceived exchange of error between the two model error modes illustrates
further that these modes are a superposition of canonical flow model errors and that transition from a
free-shear flow to a wall-bounded flow can be clearly observed through analysis of the model error.

V. DISCUSSION

While separated flows pose difficulties for standard RANS models, analysis of the model error
for the separation bubble shows that the behavior of the model error is not completely different from
canonical flows. In fact, what is perhaps surprising, is the way in which the model error from the
two canonical flows (planar jet and channel) can actually be used as building blocks to understand
the model error present in the more complex separated flow. These distinct error modes highlight
the ways in which certain assumptions contribute more or less to the overall model form error.
One particularly notable example of this is the error due to small-scale anisotropy found in the
wall-bounded mode, which is not nearly as significant in the free-shear mode. Additionally, these
modes provide a useful framework for understanding the error in more complex flows, as evinced
by the separation bubble. Even in the region downstream of the reattachment point where both
modes are present, the model error can still be understood simply through the superposition of these
canonical flow error modes as opposed to a more complicated amalgamation of complex model
error modes. Therefore, these simpler flows can be used to understand, locally, the model error in
more complex flows.
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From a modeling perspective, these model error results further motivate the idea of zonal
modeling, which combines models developed for different identifiable zones in the flow associated
with different canonical flows [28,29]. While the idea of zonal modeling is not new, the results
presented here illustrate that the model errors are largely the result of those associated with simpler
canonical flows and that model errors persist as they would in these flows. One of the issues
identified with zonal modeling is in the transition regions between different zones in which extra
rates of strain are introduced [29]. These extra rates of strain have been identified in the model error
budgets presented here, particularly in the error mode identified with the vertical mean pressure
gradient, but in this particular case this mode does not seem to overly disrupt the structure of the
model error viewed as the superposition of a wall-bounded and free-shear mode. Further study of
this effect can be performed through the analysis of a flow with strong pressure gradient effects,
such as a curved channel or free-shear flow with an imposed pressure gradient.

With the idea of zonal modeling, models that blend the contributions from the k-ε (better suited
to free-shear flows) and the k-ω (better suited to wall-bounded flows) models, such as the Menter
SST model [30], are indicated to be the best approach for handling the error mode switching. The
Menter SST model, however, still has the model error associated with the Boussinesq hypothesis
(misalignment and small-scale isotropy). One possible avenue to deal with these errors is to use
higher-order models that mitigate misalignment and anisotropy errors, such as the SSG/LRR-ω
model [31] that uses the same zonal blending idea from Menter for second-order closure models.
The performance of these two models in separated flows, as analyzed in Bai et al. [32], illustrates the
improvement in the results of the SSG/LRR-ω model over the Menter SST model due to the increase
in physical information. However, an interesting point is revealed in the inability of the higher
fidelity model to accurately capture the pressure redistribution term. This indicates the importance
of this term, as outlined in the analysis presented here, and also the difficulty presented in trying to
accurately model it.

VI. CONCLUSIONS

In this work, an implied models approach was applied to a turbulent planar jet flow and a
turbulent boundary layer over a flat plate with a statistically stationary separation bubble in order
to ascertain the sources of model error in the prediction of the anisotropic Reynolds stresses using
the k-ε and k-ω linear eddy viscosity models in these flows and compare them with a previously
studied turbulent channel flow. A priori analysis was conducted using high fidelity data and the
exact transport equations for k, ε, and ω, resulting in a single analysis as the exact formulations of
the k-ε and k-ω models (or other similar models) are equivalent. As stated in Sec. II, this analysis
was undertaken in order to study and determine the sources of error in the Boussinesq eddy viscosity
model without the obfuscating influence of errors that arise in the a priori or a posteriori analysis
with the model transport equations for k, ε, and ω, which rely on fortuitous error cancellation to be
correct [2]. In the turbulent jet flow, the model assumptions contributing to the error were found to
be the misalignment of the mean strain rate tensor and the anisotropic Reynolds stress tensor, which
gave rise to the production and redistribution errors, and small-scale anisotropy was responsible
for the model error dissipation. In comparing the turbulent jet to the turbulent channel, important
differences were identified. In the turbulent jet, all four nonzero components of the model error
budgets were of roughly the same order of magnitude, while in the channel the shear component
errors were an order of magnitude or more larger than the normal component errors. Additionally,
in the jet, small-scale anisotropy was found to be far less important given that the dissipation errors
were an order of magnitude smaller than the production and redistribution errors, which was not the
case in the channel where anisotropy plays a crucial role in the model error dissipation in the near
wall region. These differences depict a more complete picture of how the model error behaves in
two important canonical flows.

In the separation bubble configuration, the model error was found to have two modes: the
wall-bounded mode where sufficiently upstream of the separation bubble the model error budgets
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closely resembled those of the turbulent channel and the free-shear mode near and within the
separation region where the model error budgets more closely resembled those of the turbulent jet.
At intermediate streamwise locations between the two distinct model error modes, such as upstream
of the separation point in the adverse pressure gradient region and downstream of the reattachment
point in the favorable pressure gradient region, both model error modes were observed. Upstream
of the separation point, the wall-bounded mode was found to decay as the free-shear mode grows,
and the opposite is found downstream of the reattachment point. These results indicate a complex
picture of model error that changes through the flow, but also that calibration of turbulence models
against simpler canonical flows may capture the main modes of model failure in more complex
flows, such as the separation bubble configuration considered here.

Stated differently, these results suggest that turbulence models applied to more complex flow
configurations fail in the same way as in their canonical building blocks, so a model that performs
well in all the canonical flows that describe a given complex flow should perform well in the more
complex flow. In the absence of such generalizable models, zonal based approaches should similarly
be able to perform well in more complex flows with appropriately calibrated blending functions and
zonal building blocks.
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APPENDIX: IMPLIED MODELS APPROACH FOR NONCONSTANT VISCOSITY

For the separation bubble test case, the viscosity ν is taken to be the sum of the subfilter viscosity
νSFS and the kinematic viscosity ν0. This modified viscosity is now an instantaneous, spatially
varying quantity and is decomposed in the Reynolds-averaging operation, such that ν = V + ν ′,
where V is the mean total viscosity and ν ′ is the fluctuating total viscosity. The derivation outlined
in Klemmer and Mueller [2] is thus altered to include spatial and temporal derivatives of the subfilter
viscosity. The modified derivation is shown below.

In this formulation, the anisotropic Reynolds stress transport equation is given by
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where the terms correspond to shear production (I), turbulent transport (II), mean viscous transport
(III), fluctuating viscous transport (IV), mixed mean and fluctuating viscous transport terms (V–VII),
pressure redistribution (VIII), viscous redistribution (IX), fluctuating dissipation (X), cross dissipa-

tion (VI), and dissipation (XII), where εi j = 2V ∂u′
i

∂xk

∂u′
j

∂xk
and ε = 1

2εii. The transport equation for the
mean strain rate Si j is given by
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where (I) can be rewritten as the sum of the inner products of the strain rate tensor with itself and
the rotation rate tensor with itself, (II) is the Hessian of the pressure, (III) is viscous transport of the
mean strain rate, (IV) and (V) are additional mean viscous transport terms, and (VI) are fluctuating
viscous and turbulent transport terms.

For the transport of νT the exact equations for k, ε, and ω are also modified. The exact transport
equation of the turbulent kinetic energy for the case of variable viscosity is given by
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where the terms correspond to shear production (I), turbulent transport (II), pressure transport (III),
mean viscous transport (IV), fluctuating viscous transport (V), mixed mean and fluctuating viscous
transport (VI)–(VIII), viscous redistribution (IX), fluctuating dissipation (X), cross dissipation (XI),
and dissipation (XII). The modified dissipation transport equation, where dissipation is defined
using the mean viscosity, is given by
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where (I) and (II) are additional mean viscous transport terms, (III) is production, (IV) is transport
of dissipation, (V) is an additional mean viscous velocity-pressure gradient term, (VI) are additional
mean and fluctuating viscous terms, (VII) is related to the mean viscous dissipation of dissipation,
and (VIII) is mean viscous dissipation of dissipation.

Substituting Eqs. (A1)–(A4) into Eq. (2) yields the modified model error transport equation for
variable viscosity, incompressible flows:
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where the terms can be classified as follows: (A5a)–(A5d) are production terms, (A5e)–(A5j) are
transport terms, (A5k)–(A5u) are redistribution terms, and (A5v)–(A5w) are dissipation terms.
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