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Dynamics of asymmetric stratified shear instabilities

Jason Olsthoorn
Department of Civil Engineering, Queen’s University, Kingston, Ontario, Canada, K7L 3N6

Alexis K. Kaminski
Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA

Daniel M. Robb
Department of Civil Engineering, University of British Columbia, Vancouver,

British Columbia, Canada, V6T 1Z4

(Received 2 August 2022; accepted 18 January 2023; published 3 February 2023)

Most idealized studies of stratified shear instabilities assume that the shear interface and
the buoyancy interface are coincident. We discuss the role of asymmetry on the evolution of
shear instabilities. Using linear stability theory and direct numerical simulations, we show
that asymmetric shear instabilities exhibit features of both Holmboe and Kelvin-Helmholtz
(KH) instabilities, and develop a framework to determine whether the instabilities are more
Holmboe-like or more KH-like. Further, the asymmetric instabilities produce asymmetric
mixing that exhibits features of both overturning and scouring flows and that tends to
realign the shear and buoyancy interfaces. In all but the symmetric KH simulations, we
observe a collapse in the distribution of gradient Richardson number (Rig), suggesting that
asymmetry reduces the parameter dependence of KH-driven mixing events. The observed
dependence of the turbulent dynamics on small-scale details of the shear and stratification
has important implications for the interpretation of oceanographic data.
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I. INTRODUCTION

Stratified turbulent mixing is a key physical process driving vertical transport in oceanic flows,
setting the distribution of heat, salt, momentum, and other biogeochemical tracers. Because this
mixing occurs on the smallest scales of fluid motion, it needs to be parameterized in large-scale
circulation models. Furthermore, directly measuring the characteristics of oceanic turbulence is
challenging, both due to the scales of the relevant motion and the sparseness of observations;
parametrizations are thus also necessary for the interpretation of observational data.

Stratified mixing events are frequently modeled in terms of idealized shear instabilities. While
commonly discussed in the context of internal wave breaking in the stably stratified ocean interior
[1,2], such instabilities have been observed in a wide variety of ocean contexts, including nonlinear
internal waves near the continental shelf [3], shear at the base of the mixed layer [4], in the equatorial
undercurrent [5], and flow over sills [6], as well as in estuaries [7–9]. As a result, there is a need to
understand the dynamics of stratified shear instabilities in terms of resolved or measurable variables
to accurately parametrize their effects [10].

One of the simplest examples of a stratified shear flow is that of a single sheared buoyancy
interface. In this configuration, there are two limiting instabilities that may arise. When the shear
is sufficiently strong relative to the stratification (typical of cases in which the velocity and
buoyancy profile vary over a similar vertical scale), the flow is susceptible to Kelvin-Helmholtz
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(KH) instability. Conversely, where the stratification is sufficiently strong relative to the shear and
the buoyancy varies over a smaller scale than the velocity (i.e., the stratification is sharper than the
shear), an alternate instability known as the Holmboe wave instability may arise [11,12].

Mixing events driven by KH instability are typically characterized by the formation of large
overturns or billows, which themselves become susceptible to secondary instabilities, the precise
details of which depend on the flow parameters [13–17], the background flow [18,19], and the initial
conditions [20–22]. These secondary instabilities in turn trigger a transition to turbulence, leading
to a brief period of vigorous mixing, which acts to smear out the initial velocity and buoyancy
gradients (i.e., “overturning” turbulence as described by Woods et al. [23] and Caufield [24]). After
this period of intense mixing, the turbulent motions decay and the flow eventually relaminarizes.

In contrast, Holmboe-driven mixing events (associated with sharp buoyancy interfaces) follow a
different flow evolution. At finite amplitude, the initial linear instability leads to the formation of a
pair of counterpropagating vortices on either side of the buoyancy interface (unlike the single large
billow associated with KH). These vortices also support secondary instabilities [25–27], which trig-
ger a breakdown into turbulence. However, the turbulence is highest on either side of the interface,
rather than in the center of the shear layer. As a result, the turbulence scours the interface, preserving
a sharp buoyancy gradient. While the initial instability growth is typically much slower than KH
flows, the associated turbulence is longer-lived: this type of mixing event “burns” rather than “flares”
[24]. The evolution can depend on the underlying flow parameters, particularly the Reynolds number
[25]; however, Salehipour et al. [28] showed evidence of self-organized criticality for these flows, in
which Holmboe instabilities with different initial stratifications evolve toward turbulent states with a
common distribution of the gradient Richardson number (i.e., the ratio of stratification and squared
shear) featuring a peak near 1/4. Overall, Holmboe-driven (scouring) mixing events can differ from
the KH (overturning) paradigm, even for the same bulk flow parameters.

Complicating the picture further, most previous studies of shear instabilities have only considered
the configuration with symmetric shear and stratification about the buoyancy interface. However,
asymmetric profiles frequently arise in many geophysical flows, whether due to flow geometry, flow
history, or the forcing (e.g., Refs. [6,9]). For example, the freshwater outflow in some estuaries
is sufficiently strong to compete with the saltwater intrusion of the ocean waters. In these cases,
a stratified shear interface will form between the top freshwater outflow and the bottom saltwater
inflow. Both laboratory and field studies have shown that these stratified shear interfaces can have
asymmetry [8,29]. It is therefore natural to ask how asymmetry affects the resulting nonlinear
evolution and mixing in stratified shear flows.

One simple way to introduce asymmetry into the background flow profile is to consider a sheared
buoyancy interface where the shear and buoyancy profiles are vertically offset. Lawrence et al. [30],
and later Carpenter et al. [31] and Carpenter et al. [32], showed that for asymmetric Holmboe-like
profiles, the resulting linear normal-mode instability shares characteristics of both KH and Holmboe
instability. In contrast to the symmetric case, they found a smooth transition between the different
flow behaviors as characterized by the relative contributions of the kinematic and baroclinic fields.

Asymmetric shear instabilities of this form have been observed both experimentally and nu-
merically. In a series of laboratory experiments of shear layers offset from a thinner buoyancy
stratification, Lawrence et al. [30] showed that an offset shear layer led to the formation of a
one-sided flow characterized by cusped waves (with stronger stratification) and asymmetric billows
(with weaker stratification) that entrained wisps of fluid across the buoyancy interface. Similar
features have been observed in subsequent experimental studies in which shear is driven above a
buoyancy interface [33], in spatially accelerating shear layers [29,34] and in sheared multilayer
flows [35].

Similarly, in a direct numerical simulation study, Carpenter et al. [36] showed that the nonlinear
evolution of asymmetric Holmboe instabilities share characteristics of both KH- and Holmboe-like
flow evolution: billowlike structures are observed to form that scour the interface. That is, the
nonlinear evolution shows a mixture of behaviors, depending on the degree of asymmetry in the
background flow profiles. Similar to the laboratory studies described above, the flows exhibited
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one-sided overturning features and cusped structures, and the asymmetric flows, in general, kept the
initial interfaces intact. Further, Carpenter et al. [36] showed that more asymmetry led to instabilities
that were increasingly dominated by shear-layer vorticity (consistent with KH-like behavior). The
corresponding mixing depended nonmonotonically on the degree of asymmetry, influenced by
stronger three-dimensional motions as well as distance from the buoyancy interface.

While the study by Carpenter et al. [36] gave valuable insight into the impacts of asymmetry
on a given mixing event, the simulations were limited to a single set of Reynolds, Richardson, and
Prandtl numbers (defined in Sec. II), and the asymmetric cases were all Holmboe-like (with sharper
buoyancy interfaces). Perhaps most significantly, due to the relatively low Reynolds number used,
the resulting flow evolution was not necessarily turbulent; as the authors state, “the term turbulence
is being used loosely [...] to indicate a region of complex or chaotic flow structure, and the low
Re used may preclude this flow from fitting descriptions of turbulent mixing in other studies.”
Consequently, there remain many open questions about turbulent mixing events in asymmetric
stratified shear flows, motivating the present paper. We build upon the previous work on asymmetric
shear instabilities by considering additional values of the Reynolds and Richardson numbers (and,
crucially, a higher Reynolds number to explore turbulent effects) and by investigating symmetric
and asymmetric profiles corresponding to both KH- and Holmboe-like setups.

The remainder of the paper will proceed as follows. In Sec. II, we introduce the linear instability
problem and quantify the resulting normal-mode instabilities using the pseudomomentum approach
described recently by Eaves and Balmforth [37]. Then, in Sec. III, we present the results of a series of
direct numerical simulations corresponding to several symmetric and asymmetric cases. Consistent
with the linear predictions, we find that the nonlinear evolution of the asymmetric cases exhibits a
mixture of both KH and Holmboe behaviors, including both large billowlike overturning structures
and regions of scouring. This combination of behaviors is both qualitative and quantitative: not
only are the large-scale structures reminiscent of both pure KH and Holmboe instabilities, but
the energetics and turbulent mixing parameters also exhibit both behaviors. As a result, even
small amounts of asymmetry can lead to very different final velocity and buoyancy profiles when
compared with the symmetric cases. For the same large-scale buoyancy and velocity jumps, a given
mixing event can therefore smear out gradients, maintain sharp gradients, or some combination of
these behaviors. That is, the turbulent dynamics depend sensitively on the small-scale details of the
initial flow. Finally, in Sec. IV we conclude and put our results into context with recent work on
stratified shear instabilities.

II. LINEAR STABILITY ANALYSIS

We consider a vertically asymmetric hyperbolic tangent stratified shear layer,

U ∗(z∗) = U ∗
0 tanh

(
z∗ − a∗

0

h∗
0

)
and B∗(z∗) = B∗

0 tanh

(
z∗

δ∗
0

)
, (1)

which has the same form as Carpenter et al. [36] and are shown schematically in Fig. 1. The
quantities U ∗

0 and B∗
0 are half the horizontal velocity and buoyancy difference across the layers,

respectively, where buoyancy is defined as B∗ = −g∗(ρ∗ − ρ∗
0 )/ρ∗

0 , with ρ∗
0 a reference density

and g∗ the gravitational acceleration. The shear and buoyancy interfaces have initial half widths of
h∗

0 and δ∗
0 , respectively, and the centers of the two interfaces are vertically offset by a∗

0. Asterisks
denote dimensional quantities. Nondimensionalizing velocity by U ∗

0 , buoyancy by B∗
0, and depth by

h∗
0 gives

U (z) = tanh (z − a0) and B(z) = tanh (R0z), (2)

where R0 ≡ h∗
0/δ

∗
0 is the ratio of the initial interface thicknesses, and a0 ≡ a∗

0/h∗
0 is the initial profile

offset.
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FIG. 1. Representative profiles of the background horizontal velocity and buoyancy fields. The associated
gradient Richardson number Rig (22) for these profiles is also included. These profiles are similar to the
asymmetric Holmboe case.

The behavior of two-dimensional linear perturbations to the background state U (z), B(z) is
governed by the linearized Navier-Stokes equations under the Boussinesq approximation, written
as

∂u
∂t

+ u · ∇U + U · ∇u = −∇p + Ribbk̂ + 1

Re
∇2u, (3)

∂b

∂t
+ u · ∇B + U · ∇b = 1

Re Pr
∇2b, (4)

∇ · u = 0. (5)

Here, boldfaced variables denote vector quantities and lowercase u, b, and p denote perturbations to
the velocity, buoyancy, and pressure, respectively. In the above, time has been nondimensionalized
by the advective timescale h∗

0/U ∗
0 . In addition to R0 and a0, the perturbation dynamics are governed

by the Reynolds, Prandtl, and bulk Richardson numbers

Re = U ∗
0 h∗

0

ν∗ , Pr = ν∗

κ∗ , Rib = B∗
0h∗

0

U ∗2
0

, (6)

where ν∗ is the kinematic viscosity and κ∗ is the diffusivity of the buoyancy field. We note here
that Re is defined based on the shear layer half-width and half-velocity difference, rather than the
full shear layer thickness and velocity jump as in some parts of the literature, including
Carpenter et al. [36].

To assess the linear stability of the shear layer Eqs. (2), we take the standard approach of
assuming a normal-mode structure for the perturbations,

[ψ (x, z, t ), b(x, z, t ), p(x, z, t )] = [ψ̂ (z), b̂(z), p̂(z)]eikx (x−ct ), (7)

where ψ is the velocity stream function, kx the horizontal wave number and c = cr + ici the
complex phase speed of the perturbations. Substituting the normal-mode expressions into the

024501-4



DYNAMICS OF ASYMMETRIC STRATIFIED SHEAR …

governing equations (3)–(5) and rearranging gives the Taylor-Goldstein equation including vis-
cous and diffusive effects (implemented by Smyth et al. [38]). Prescribing kx, we solve for the
corresponding eigenvalue c and the associated eigenfunctions [ψ̂ (z), b̂(z), p̂(z)]; regions of linear
instability correspond to modes with ci � 0, indicated by the contours in Fig. 2.

Solutions of the Taylor-Goldstein equation predict which modes are unstable, their associated
growth rate and phase speed, and the vertical structure of the eigenmodes. For the background flow
Eqs. (2), we also want to predict the nature of the linear instability: Are the growing modes more
like a KH instability or a Holmboe instability?

To answer this question, we recall that stratified shear instabilities can be described in terms of
interacting waves. Stratified parallel shear flows can support two different types of waves (namely,
vorticity waves, associated with changes in the shear, and internal gravity waves, associated with
the stratification). The different linear growth mechanisms can be described in terms of interactions
between different combinations of these waves [32]. Within this framework, the KH instability
arises from a resonant interaction between two vorticity waves, while the Holmboe instability
arises from the interaction between a vorticity wave and an internal gravity wave. In this sense,
the Holmboe instability is an inherently stratified instability [24,32,39]. (A third named linear
instability, the Taylor-Caulfield instability, can be thought of as the result of two internal waves
interacting [32,35,37]. As the stratification considered here has only a single buoyancy interface
and therefore only supports a single internal gravity wave, it does not support the Taylor-Caulfield
instability.)

Using the wave-interaction description of the different instability mechanisms, the qualitative na-
ture of a given unstable mode can be predicted using the vertical structure of the eigenfunction. For
example, Carpenter et al. [31] used a method of “partial growth rates” to quantify the contribution
to the overall growth rate from buoyancy and vorticity interfaces, allowing for the description of
modes in terms of KH- and Holmboe-like behavior. More recently, Eaves and Balmforth [37] used
a pseudomomentum-based approach to classify linear modes, again in terms of contributions from
the vorticity and the stratification, allowing for a description of modes as being more or less like
KH, Holmboe, or Taylor-Caulfield instabilities.

Here, we apply the pseudomomentum-based approach of Eaves and Balmforth [37] to classify
the linear modes arising in the asymmetric stratified shear layer (2). In our notation, Eaves and
Balmforth defined

Mv = 1

2

U ′′ψ̂2

|U − c|2 and Mb = −Rib(U − cr )B′ψ̂2

|U − c|4 (8)

as the contributions to the pseudomomentum from the background vorticity and stratification, re-
spectively, where the primes denote derivatives with respect to z. It can be shown that a requirement
for exponentially growing modes is that M = 〈Mv + Mb〉 = 0, where angle brackets denote the
integral over the spatial domain [37].

This requirement that M = 0 can be used to characterize different modes in terms of the different
canonical instabilities. To do so, we define the ratio

RM = 〈MvH (Mv )〉
〈−MvH (−Mv )〉 = M+

v

M−
v

, (9)

where H is the Heaviside function and M+
v and M−

v are defined as the magnitudes of the contribu-
tions of positive and negative Mv , respectively, to M (i.e., 〈Mv〉 = M+

v − M−
v ). This ratio can be

used to describe the character of the asymmetric instabilities considered here. In particular, we find
two limiting cases of interest for flows described by Eqs. (2). In the first case, if a given unstable
mode is associated purely with interactions from vorticity with no buoyancy contribution (Mb = 0
as is expected for a pure KH mode), then the requirement that M = 0 for a growing mode implies
〈Mv〉 = 0, and so RM = 1 in the KH limit. In the second case, if the positive contributions from
vorticity are balanced entirely by negative contributions from the stratification, then M−

v = 〈Mb〉
and M+

v = 0, giving RM = 0 (as expected for a pure Holmboe mode). We note that the definition
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FIG. 2. Top row: Example profiles of Mv and Mb for the fastest-growing modes of (a) a KH-type
instability far from from the interface (R0 = 3, a0 = 3), (b) an asymmetric KH instability (R0 = 1, a0 = 0.5),
and (c) a near-symmetric Holmboe instability (R0 = 3, a0 = 0.001). The horizontal dotted lines indicate the
height of maximum shear and stratification, and the yellow and purple shaded regions represent contributions
to M−

v and M+
v , respectively. Rib = 0.15 for all three cases. Middle and bottom rows: Growth rates (contours)

and pseudomomentum ratios (colors) for the base flow Eqs. (2) for the symmetric and asymmetric KH
and Holmboe configurations with Re = 1200 and Pr = 9. (d) R0 = 1, Rib = 0.15. (e) R0 = 3, Rib = 0.15.
(f) R0 = 1, Rib = 0.20. (g) R0 = 3, Rib = 0.20. The contour interval is 0.01 and the stars denote parameters
for the nonlinear simulations described in Table I.

of RM in Eq. (9) reflects our choice to introduce asymmetry in the mean profiles by shifting the
shear interface above the buoyancy interface. As a result, the leftward-propagating Holmboe wave
above the buoyancy interface is amplified relative to the rightward-propagating wave below the
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interface, i.e., the upper Holmboe wave is the fastest-growing mode for these asymmetric profiles.
For a flow in which the shear interface is offset below the buoyancy interface, or one in which
the lower Holmboe wave is isolated, 1/RM would give the same classification results as described
below. For the profiles considered in Eqs. (2) with a0 > 0, 0 � RM � 1.

We illustrate these limiting cases in the top row of Fig. 2. For a case in which the shear layer
is significantly offset from the stratified layer [Fig. 2(a)], for which the most unstable mode is
very similar to an unstratified KH mode, the positive (purple) and negative (yellow) vorticity
contributions cancel almost perfectly, with only a small buoyancy contribution. On the other hand,
for a near-symmetric Holmboe mode [Fig. 2(c)], the negative contributions from vorticity are almost
entirely canceled out by the net positive buoyancy contribution, with only a very small positive
vorticity contribution. Finally, for some modes the negative contribution from vorticity is balanced
by both a positive vorticity contribution and a buoyancy contribution [Fig. 2(b)], suggesting that the
instability shares characteristics of both a KH and Holmboe mode.

We then use the pseudomomentum ratio RM to classify the predicted unstable modes of Eqs. (2)
across a range of wave numbers kx and vertical offsets a0 for different Rib and R0, as shown
in Figs. 2(d)–2(g). For R0 = 3, we find consistent results to those described in Carpenter et al.
[36]: Increasing asymmetry shifts the linear instability from a Holmboe-like behavior at small a0

to a KH-like behavior at large a0, and a mixture of the two instabilities at intermediate a0. For
R0 = 1, as expected we find KH-like modes for a0 = 0 and for large a0 (when the shear layer is far
enough removed from the initial stratification to behave essentially like an unstratified shear layer).
However, between these limits asymmetry in the background flow leads to modes with both KH-like
and Holmboe-like behaviors, with RM < 1 and nonzero phase speed (not shown); this effect is
stronger for higher Rib [Fig. 2(f)]. That is, mixed modes are possible even when the background
shear and stratification vary over similar vertical scales.

III. NONLINEAR SIMULATIONS

A. Implementation

Linear theory predicts that the shear instabilities associated with an asymmetric shear layer
exhibit behaviors similar to both KH and Holmboe instabilities. What is the associated nonlinear
behavior of these instabilities? To answer this question, we perform a series of direct numerical
simulations of the fully nonlinear Navier-Stokes equations under the Boussinesq approximation:

∂u
∂t

+ u · ∇u = −∇p + Ribbk̂ + 1

Re
∇2u, (10)

∂b

∂t
+ u · ∇b = 1

Re Pr
∇2b, (11)

∇ · u = 0. (12)

The Reynolds number (Re), Prandtl number (Pr) and Richardson number (Rib) are identical to those
defined above. Unlike Eqs. (3)–(5) in the previous section, u and b are the total (nonlinear) velocity
and buoyancy fields.

The simulations were performed using the spectral parallel incompressible Navier-Stokes solver
(SPINS) [40]. SPINS implements pseudospectral spatial derivatives in all three directions and
an explicit third-order time stepping scheme. The horizontal domain is periodic, and the verti-
cal gradient-free boundaries are imposed using a cosine-transformation. The streamwise extent
(Lx) of the computational domain is selected to fit one wavelength of the fastest growing linear
instability (see Sec. II), and the vertical and spanwise extents are chosen to match those from
Carpenter et al. [36].

The initial conditions consist of the velocity and buoyancy profiles Eqs. (2) perturbed with
the eigenfunction of the fastest growing linear mode predicted from the Taylor-Goldstein equa-
tion (ue, be) and a random velocity perturbation in the form of normally distributed random
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TABLE I. Summary of parameters for the suite of direct numerical simulations. We use the following nam-
ing conventions: (i) SKH: symmetric Kelvin-Helmholtz instability; (ii) AKH: asymmetric Kelvin-Helmholtz
instability; (iii) AHI: asymmetric Holmboe instability, and (iv) SHI: symmetric Holmboe instability, corre-
sponding to the definitions in the main text.

Domain size Resolution
Case instability (Lx × Ly × Lz) (Nx × Ny × Nz) Re Rib Pr R0 a0

�x
LB

RM

1 SKH 14.02 × 9 × 18 256 × 192 × 384 300 0.15 9 1 0.0 2.8 1.00
2 AKH 13.45 × 9 × 18 256 × 192 × 384 300 0.15 9 1 0.5 2.7 0.66
3 AHI 11.47 × 9 × 18 256 × 192 × 384 300 0.15 9 3 0.5 2.4 0.37
4 SHI 16.52 × 9 × 18 384 × 192 × 384 300 0.15 9 3 0.0 2.4 0.09
5 SKH 13.94 × 9 × 18 768 × 512 × 1024 1200 0.15 9 1 0.0 2.5 1.00
6 AKH 13.30 × 9 × 18 768 × 512 × 1024 1200 0.15 9 1 0.5 2.4 0.68
7 AHI 11.32 × 9 × 18 768 × 512 × 1024 1200 0.15 9 3 0.5 2.8 0.39
8 SHI 15.50 × 9 × 18 768 × 512 × 1024 1200 0.15 9 3 0.0 2.9 0.11
9 SKH 13.35 × 9 × 18 512 × 384 × 768 1200 0.20 9 1 0.0 2.9 1.00
10 AKH 12.96 × 9 × 18 768 × 512 × 1024 1200 0.20 9 1 0.5 2.4 0.56
11 AHI 10.58 × 9 × 18 768 × 512 × 1024 1200 0.20 9 3 0.5 2.5 0.30
12 SHI 13.42 × 9 × 18 768 × 512 × 1024 1200 0.20 9 3 0.0 2.5 0.07

noise. The amplitude of the eigenfunctions and the random noise are εe = 0.01 and εN = 0.001,
respectively. These initial amplitudes are comparable to several previous shear instability studies
(e.g., Refs. [19,21,25]).

Our simulations have four flow configurations, determined by the relative width R0 and offset a0

of the initial velocity and buoyancy profiles:
(1) SKH: symmetric Kelvin-Helmholtz flow with R0 = 1 and a0 = 0
(2) SHI: symmetric Holmboe with R0 = 3 and a0 = 0
(3) AKH: asymmetric Kelvin-Helmholtz flow with R0 = 1 and a0 = 0.5
(4) AHI: asymmetric Holmboe flow with R0 = 3 and a0 = 0.5.
For each configuration, we consider three sets of Reynolds and Richardson numbers, for a total

of 12 simulations as summarized in Table I. These cases span values of RM from 0 to 1, i.e.,
Holmboe-like to KH-like linear instabilities. We note that the SKH, SHI, and AHI simulations
with Re = 300 and Rib = 0.15 use the same parameters considered by Carpenter et al. [36]. All
simulations were continued until the flow relaminarized and there was no significant overturning of
the buoyancy field. Consistent with previous DNS studies of shear instability (e.g., Refs. [22,25,41]),
the grid spacing (�x) was selected to be less than three times the minimum Batchelor scale (LB,min),
defined by the maximum horizontally averaged dissipation rate ε,

LB,min =
(

1

Re3 max ε

) 1
4
(

1

Pr

) 1
2

, (13)

where the overbar · denotes the horizontal mean.
Our computational setup and flow parameters have been chosen to prioritize setting Pr = 9 (a

realistic value for heat in water). To do so has required some compromise in both the streamwise
extent of the domain and the choice of Reynolds number. We revisit this point in the conclusions.

B. Flow evolution

We have highlighted in Sec. II that the linear instabilities of the offset profiles Eqs. (2) exhibit a
continuum in structure between the pure KH and the pure Holmboe instabilities. Here, we will show
that the mixed features of the linear instabilities result in nonlinear flow features that are reminiscent
of both KH and Holmboe mixing events.
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FIG. 3. Snapshots of buoyancy field at representative times throughout the flow evolution. Vertical (x −
z) slices are provided for (a)–(d), case 4: R0 = 1, a0 = 0, t = {55, 85, 115, 145}; (e)–(h), case 5: R0 = 1,
a0 = 0, t = {55, 85, 115, 145}; (i)–(l), case 6 – R0 = 1

3 , a0 = 0, t = {70, 105, 140, 175}; and (m)–(p), case 6:
R0 = 1

3 , a0 = 0, t = {120, 170, 220, 270}. In all included cases, Re = 1200, Rib = 0.15, Pr = 9.

Illustrating the flow evolution for each of the four cases (SKH, AKH, AHI, and SHI), Fig. 3 shows
vertical (x − z) slices of the buoyancy field at representative times. We focus on the simulations
with Re = 1200 and Rib = 0.15 and will note significant differences for the other Re and Rib cases.
We complement these two-dimensional slices with plots of the three-dimensional structures of the
buoyancy field (Fig. 4) at the same times as in Figs. 3(b), 3(f) 3(j), and 3(n), illustrating the onset of
secondary instabilities in each case. We discuss the key features of each case below:

(i) SKH: The nonlinear evolution of the symmetric Kelvin-Helmholtz instability (SKH) is
illustrated in Figs. 3(a)–3(d). The flow follows the typical evolution of a KH-driven mixing event
[42]. The initial linear instability leads to the formation of the classic billow structure at finite
amplitude, overturning the entire stratified interface [Fig. 3(a)]. This billow is stationary with
respect to the mean flow and approximately vertically symmetric. The billow then becomes unstable
to three-dimensional secondary instabilities [Figs. 3(b) and 4(a)], which trigger a transition to
turbulence that fills the entire shear layer [Figs. 3(c) and 3(d)]. The buoyancy profile is more
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FIG. 4. Three-dimensional visualizations of the buoyancy field as the secondary instabilities develop. The
output times are t = 85 (SKH), t = 85 (AKH), t = 105 (AHI), and t = 170 (SHI), i.e., the same times as
in Figs. 3(b), 3(f) 3(j), and 3(n). These plots were constructed using VisIt’s [43] volume plot, which sets the
opacity of the buoyancy field based on its value.

diffuse at the end of the simulation, with nearly equal mixing of the top and bottom fluid layers.
While the same sequence is observed in our SKH simulations at Re = 300 and Rib = 0.20, the
turbulent mixing in those cases is significantly weaker due to the stronger effects of viscosity and
stratification, respectively. That is, the turbulent SKH dynamics are sensitive to the flow parameters
for the simulations presented here.

(ii) SHI: The evolution of the symmetric Holmboe instability (SHI) is shown in Figs. 3(m)–3(p).
SHI is characterized by waves propagating along the buoyancy interface, leading to the formation
of counterpropagating vortices at finite amplitude [Fig. 3(m)]. For the background flow considered
here, these vortices are symmetric about the buoyancy interface. Like the SKH billow, the vortices
are themselves susceptible to three-dimensional secondary instabilities [Figs. 3(n) and 4(c)], which
trigger a transition to a fully turbulent flow [Fig. 3(o)]. Unlike SKH, however, the resulting mixing
is longer-lived and acts to scour the initial stratification, maintaining a sharp interface [Fig. 3(p)].
We will return to this point in Sec. III D. In addition, the SHI is more consistent across Re and Rib,
suggesting that the overall turbulent dynamics may be less sensitive to the initial flow parameters.

(iii) AHI: When the buoyancy profile is thinner than the shear profile, and a vertical offset
is introduced (i.e., R0 = 3 and a0 = 0.5), the asymmetric Holmboe instability (AHI) may arise
[Figs. 3(i)–3(l)]. As seen previously by Carpenter et al. [36], at finite amplitude the AHI leads
to the formation of a large propagating vortex above the buoyancy interface that entrains part of
the buoyancy interface to form a billowlike structure. At Re = 300, this primary vortex produces
a series of ejection events before decaying. However, at larger Re = 1200, these ejections are
interrupted by the rapid formation of secondary instabilities [Fig. 4(d)]. In either case, the resultant
mixing is primarily above the buoyancy interface, leading to an asymmetric final buoyancy profile.
Consequently, the turbulent flow only overturns part of the initial interface, maintaining a strong
buoyancy gradient on the lower side.

(iv) AKH: Finally, we consider the situation where the shear and stratification have the same
initial thickness but are vertically offset (i.e., R0 = 1 and a0 = 0.5), giving rise to the asymmetric
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Kelvin-Helmholtz (AKH), depicted in Figs. 3(e)–3(h). This instability results in the formation of
a large billow, similar to that of the SKH. However, there are two key differences: the billow is
centered above the buoyancy interface and is no longer stationary with respect to the mean flow
(as demonstrated by the different horizontal locations between panels in Fig. 3). The billow is then
susceptible to secondary instabilities which are qualitatively similar to those observed for the SKH
[Fig. 4(b)] and likewise trigger a transition to turbulence. However, similar to the AHI flow, the
mixing in the AKH case is vertically asymmetric: while the turbulent mixing acts to smear out
the buoyancy gradient above the initial stratified interface, the lower part of the interface remains
relatively sharp [Fig. 3(h)].

Consistent with the linear predictions in Sec. II, the nonlinear evolution and mixing associated
with the asymmetric cases (AKH and AHI) share qualitative features of both KH- and Holmboe-
driven mixing events. For example, they exhibit both a billow structure and a nonzero phase speed.
This trend is consistent across the different parameter (Re, Rib) scenarios presented in Table I, with
the most notable difference being that at lower Re and higher Rib, the SKH is much less energetic.
We explore this comparison more quantitatively in the following sections.

C. TKE budget

As we have seen, shear instabilities mix the stratification such that the final mean buoyancy
and shear profiles are more diffuse than they were initially. The evolution of the mean flow can be
distinguished from that of the shear instabilities through a Reynolds decomposition. That is,

u = u + u′, b = b + b′, (14)

where · denotes the horizontal average. We will use the fact that u ≈ (u1(z, t ), 0, 0)T below. Under
this decomposition, the volume-integrated turbulent kinetic energy (TKE = 〈 1

2 |u′
i|2〉) evolves as

d

dt
TKE =

〈
−u′

iu
′
j

∂ui

∂x j

〉
︸ ︷︷ ︸
production

+ Rib 〈u′
3b〉︸ ︷︷ ︸

buoyancy flux

− 〈ε′〉︸︷︷︸
dissipation

, (15)

where ui is the ith component of u, and the turbulent dissipation ε′ = 1
2 Re (

∂u′
j

∂xi
+ ∂u′

i
∂x j

)(
∂u′

j

∂xi
+ ∂u′

i
∂x j

).
We are implicitly summing over repeated indices.

A physical interpretation of Eq. (15) is that TKE is produced by extracting energy from the mean
flow, and will decay via viscous dissipation and mixing (a negative buoyancy flux). Equation (15)
enables us to make a quantitative comparison between the cases listed in Table I (see Fig. 5 as well
as the time-integrated flux, production, and dissipation values in Table II), and provides another
measure of how asymmetry frustrates the traditional distinction between the SKH and the SHI.

We first focus on case 5 from Table I, i.e., SKH with Re = 1200 and Rib = 0.15 [Fig. 5(e)]. The
growth of the initial billow is associated with a large shear production and negative buoyancy flux,
as dense fluid is transported upward. The billow quickly becomes unstable to secondary instabilities
and the flow becomes turbulent, enhancing viscous dissipation. Eventually, the dissipation dampens
the TKE and the flow relaminarizes. The duration of the turbulent event is relatively short, with few
oscillations between the TKE production and the buoyancy flux. We note that the SKH flows with
lower Re [Fig. 5(a)] and higher Rib [Fig. 5(i)] are much less energetic, owing to the stronger effects
of viscosity and stratification, respectively.

On the other hand, for case 8 [SHI at the same parameter values; Fig. 5(h)], the buoyancy flux,
shear production, and the rate of change of the TKE exhibit a sequence of oscillations associated
with periodic conversions between kinetic and potential energy in the propagating Holmboe waves.
These oscillations continue until the onset of secondary instabilities and the subsequent transition
to turbulence with increased ε. Finally, the flow relaminarizes with all terms decaying. In contrast
to the SKH case, the SHI event is long-lived, lasting many wave periods. A similar behavior is
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FIG. 5. TKE budgets for the cases listed in Table I. Note that the time axes were trimmed [e.g., (d)] to have
all the TKE budgets on a consistent and legible horizontal scale.

observed for the other parameter values [Figs. 5(d) and 5(l)], though we note that the oscillations
persist for a longer time at lower Re as the flow remains laminar for a longer time.

Consistent with the linear predictions in Sec. II and the qualitative descriptions in Sec. III B,
asymmetry in the base flow results in a hybrid of the pure KH (SKH) and pure Holmboe (SHI)
behaviors. Figures 5(f) and 5(g) demonstrate that as the instability mechanism transitions from
KH-like to Holmboe-like, the duration of the turbulent mixing event increases. Both an initial period
of positive shear production and negative buoyancy flux as well as regularly spaced oscillations in
the budget terms are observed, similar to the initial billow development in the SKH flow and the
periodic waves in the SHI flow. While viscosity and stratification still impact the resulting flow
evolution for the asymmetric cases (particularly for the AKH flows), we note that in contrast to
the SKH flows, the asymmetric cases remain more energetic at lower Re [Figs. 5(b) and 5(c)] and
higher Rib [Figs. 5(j) and 5(k)].

Once again, asymmetry in the base flow results in a hybrid flow between the pure KH (SKH) and
the pure Holmboe-wave instability (SHI). Figure 5 demonstrates that as the instability mechanism
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TABLE II. Table of case parameters for the twelve numerical simulations. Time of maximum 2D and 3D
TKE are given as t2D,max and t3D,max. The initial and final interface ratios [R0, R(t = t f )] and interface offsets
[a0, a(t = t f )] are also included. The time integral of production (P), buoyancy flux (B), and dissipation (D)
are included. The median mixing efficiency (ηM ), mean mixing efficiency (η), and mean mixing efficiency
within the turbulent region (η3D, as described in Sec. III F) are given for each case.

Case instability t2D,max t3D,max R0 R(t = t f ) a0 a(t = t f ) P B D ηM η η3D

1 SKH 223.4 309.3 1.0 1.8 0.0 0.0 0.11 –0.03 –0.09 0.13 0.22 0.13
2 AKH 175.4 235.6 1.0 1.6 0.5 0.2 0.28 –0.07 –0.21 0.16 0.60 0.20
3 AHI 198.5 239.2 3.0 2.2 0.5 0.0 0.39 –0.08 –0.31 0.17 0.48 0.28
4 SHI 324.4 379.5 3.0 2.2 0.0 0.0 0.36 –0.08 –0.27 0.17 0.62 0.23
5 SKH 92.4 131.3 1.0 1.3 0.0 0.0 0.50 –0.10 –0.40 0.21 0.36 0.23
6 AKH 60.0 134.4 1.0 1.3 0.5 0.0 0.45 –0.10 –0.35 0.19 0.21 0.21
7 AHI 89.6 147.9 3.0 2.0 0.5 0.0 0.42 –0.07 –0.35 0.17 0.23 0.22
8 SHI 183.0 232.2 3.0 2.3 0.0 0.0 0.25 –0.04 –0.21 0.20 0.23 0.20
9 SKH 159.3 191.6 1.0 1.2 0.0 0.0 0.04 –0.01 –0.03 0.13 0.14 0.11
10 AKH 69.0 134.4 1.0 1.4 0.5 0.1 0.25 –0.05 –0.20 0.19 0.30 0.29
11 AHI 128.4 160.1 3.0 2.4 0.5 –0.1 0.29 –0.05 –0.23 0.17 0.37 0.15
12 SHI 208.0 247.4 3.0 2.5 0.0 0.0 0.17 –0.03 –0.14 0.20 0.31 0.20

transitions from KH-like to Holmboe-like, the duration of the turbulent event increases [e.g.,
Fig. 5(f)] and regularly-spaced oscillations appear between the rate of change of TKE and buoyancy
flux [e.g., Fig. 5(g)]. Thus, as discussed in Sec. II, asymmetry introduces an apparent transition
between the SKH and the SHI.

The volume-averaged quantities provide an overview of the energetics of these symmetric
and asymmetric flows. Further insight can be gleaned from considering where buoyancy flux or
dissipation is occurring within the flow, which we consider in the next section.

D. Horizontally averaged quantities

The TKE budgets above show that the turbulent flow field extracts energy from the mean flow,
which is subsequently dissipated. We now discuss how that energy transfer changes the vertical
structure of the horizontally averaged mean flow. In particular, we characterize the structure of the
mean velocity and buoyancy profiles through the buoyancy frequency (N2) and shear rate (S2),
defined

N2 = ∂b

∂z
, S2 =

(
∂u1

∂z

)2

. (16)

Similarly, we will present the mean viscous dissipation (ε) and scalar variance dissipation (χ ),
computed as

ε = 1

2Re

(
∂u j

∂xi
+ ∂ui

∂x j

)(
∂u j

∂xi
+ ∂ui

∂x j

)
≈ 1

Re
S2 + ε′, (17)

χ = 1

N2

1

Re Pr

∂b

∂xi

∂b

∂xi
≈ N2

Re Pr
+ χ ′. (18)

High ε and χ indicate regions of strong turbulent motions acting on the velocity and buoyancy
fields, respectively.

The time series of horizontally averaged buoyancy (b̄), buoyancy frequency (N2), shear rate
(S2), viscous dissipation (ε), and scalar variance dissipation (χ ) for Re = 1200 and Rib = 0.15
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FIG. 6. Contour plots of the horizontally averaged (a)–(d) buoyancy, (e)–(h) N2, (i)–(l) S2, (m)–(p) log ε,
(q)–(t) log χ , and (u)–(x) ReB as a function of time. The base of the logarithms is e (natural logarithm). Data
is plotted for case 4 (left), case 5 (middle left), and case 6 (middle right), and case 7 (right): Re = 1200, Rib =
0.15. Superimposed on each plot are the (−0.9, 0, 0.9) contours of u (green) and b (yellow). Anomalous values
of large χ and ReB associated with N2 → 0 have been masked our as described in Sec. III F.

are presented in Fig. 6. Superimposed on each plot are the (−0.9, 0, 0.9) contours of u1 (green) and
b (yellow) to approximate the bottom, middle, and top of the buoyancy and velocity interfaces.

As described above, the SKH is characterized by an initial billow structure that breaks down
into turbulence, which subsequently decays. There is a corresponding burst of intense turbulence,
which produces an associated increase in viscous and scalar dissipation [Figs. 6(m) and 6(q)]. This
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turbulence rapidly mixes (thickens) the initial buoyancy and velocity interfaces, decreasing the
overall stratification and shear [Figs. 6(a), 6(e) and 6(i). Consistent with previous studies of KH
instability, the overall thicknesses of the buoyancy and velocity interfaces (as shown by the green
and yellow contours) evolve similarly to one another throughout the flow evolution [41].

In contrast, the wavelike nature of the SHI results in oscillations in the horizontally averaged
fields at the buoyancy interface [Fig. 6(d)]. The maximum gradient of the buoyancy and velocity
interfaces remains relatively large after the mixing event [Figs. 6(h) and 6(l)], and the buoyancy
interface remains thinner than the velocity interface. We also observe that the viscous and scalar
dissipation rates remain high for an extended period throughout the mixing event, consistent with
the “burning” behavior described in Caulfield [24].

To recap, KH-driven mixing is associated with overturning turbulence, acting to smear out the
initial interface. In contrast, Holmboe-driven mixing is associated with scouring turbulence, keeping
interfaces sharp [23,24]; these behaviors are well demonstrated by the evolution of N2 and S2 for
the SKH and SHI simulations [Figs. 6(e), 6(h) 6(i), and 6(l)]. However, asymmetry breaks this
dichotomy. We find that the asymmetric instabilities both mix the buoyancy interface (identified
by the yellow contours), while preserving a sharp buoyancy gradient that is offset from its initial
position. This hybrid behavior is a result of the asymmetric mixing of the AKH and AHI.

The locations of the viscous dissipation and mixing are identified through ε and χ . For both
the SKH [Figs. 6(m) and 6(q)] and SHI [Figs. 6(q) and 6(t)], ε and χ are roughly symmetric with
respect to the buoyancy interface. Conversely, AKH [Figs. 6(n) and 6(r)] and AHI [Figs. 6(o) and
6(s)] show more mixing above the buoyancy interface, associated with the breakdown of the initial
billow structure. We find that the u1 = [−0.9,0.9] contours provide reasonable vertical bounds for
the location of the mixing and dissipation. Thus, the initial asymmetry of both AHI and AKH
results in asymmetric mixing of the buoyancy and velocity fields, while preserving the buoyancy
and velocity interfaces. As such, asymmetric shear instabilities combine the intense mixing of a KH
instability with the interface-preserving property of a Holmboe instability.

We have argued that, in contrast to SKH, the AKH, AHI, and SHI exhibit scouring behavior,
which preserves the buoyancy interface. To illustrate this, we define the buoyancy Reynolds number
[ReB = ε/(νN2)] as a measure of the regions where the turbulence is most intense relative to the
background stratification. As we describe qualitatively above, while the SKH has elevated values of
ReB throughout the buoyancy interface [Fig. 6(u)], we find high values of ReB ≈ 100 for the AKH,
AHI, and SHI away from the buoyancy interface [Figs. 6(v)–6(x)]. That is, the SKH overturns and
diffuses the buoyancy interface, while the other cases scour but do not eliminate a strong buoyancy
gradient.

E. Interface position and width

The initial velocity and buoyancy profiles of the SKH, AKH, AHI, and SHI differ in the value
of the initial interface thickness ratio R0 and the initial interface offset a0. Throughout the mixing
event, the mean value of the relative interface thickness and offset evolve in time. To demonstrate
this evolution, we have included a comparison of the initial and final − ∂b

∂z and ∂u1
∂z profiles (taken

at the end of each simulation t = t f ) in Figs. 7(a)–7(d). The initially symmetric profiles (SKH,
SHI) retain their symmetry. Conversely, initially asymmetric profiles (AKH, AHI) preferentially
mix one side of the buoyancy interface more than the other. This asymmetric mixing will displace
the position of the buoyancy (z0,b) and velocity (z0,u) interface over the course of the simulation. This
is evident by looking at the interface heights at the final time (that is, the heights of the peak gradients
in buoyancy and velocity), marked with a ∇ in the corresponding panels of Figs. 7(a)–7(d). Note
that the asymmetric mixing results in final profiles in which the peak gradients are approximately
aligned, nearly eliminating the initial offset.

In addition to the interface position, we quantify the evolving interface widths as the standard
deviation of b or u1 about the peak gradient. That is, we define the buoyancy (σb) and velocity (σu)
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FIG. 7. Plot of the initial and final profiles of − ∂b
∂z and ∂u1

∂z of the (a) SKH, (b) AKH, (c) AHI, and (d) SHI
for Re = 1200, Rib = 0.15. The evolution of the (e) interface thicknesses R and (f) offset a are included as a
function of time.
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interface thicknesses as

σb =
√∫

(z − z0,b)2∂zb dz∫
∂zb dz

, (19)

σu =
√∫

(z − z0,u)2∂zu1 dz∫
∂zu1 dz

. (20)

Having estimated the interface position and width with time, the evolving interface thickness ratio
(R) and interface offset (a) are

R(t ) = σu

σb
, a(t ) = z0,u − z0,b. (21)

Note that R(t = 0) ≈ R0, a(t = 0) ≈ a0.
We plot the evolution of R in time in Fig. 7(e) for all Re = 1200 cases, and include the initial

and final values of R and a for all cases in Table II. We do not include the data from the Re = 300
cases in Fig. 7, as the low Reynolds number results in significant interface diffusion that obfuscates
the present results. However, even at Re = 300, we find similar conclusions to those presented here
(see Table II).

Several features can be seen in the plot of R [Fig. 7(e)]. First, the formation of the large billow
in the SKH, AKH, and AHI cases is associated with a transient decrease in R. On the other hand, a
clear oscillatory behavior is apparent in the SHI flows, consistent with the wavelike character of the
flow described above. As the billow or vortices break down into turbulence and the flow mixes, R
increases and then nearly plateaus.

The SKH and AKH cases (R(t = 0) = 1) tend toward increased thickness ratios of R ≈ 1.3 by
the end of the simulation, consistent with the velocity diffusing faster than the buoyancy for Pr = 9.
For the instabilities with initially thin buoyancy interfaces [R(t = 0) = 3, i.e., SHI and AHI], the
flows tend toward reduced values of R ≈ 2 by the end of the simulations, indicating that the turbulent
event has thickened the buoyancy gradient more than the velocity gradient. However, the buoyancy
interface remains thinner than the velocity interface, even with the signature of the initial billow for
the AHI case.

Recall that the initial offset between the shear and buoyancy interfaces for the AKH and AHI
is nearly eliminated by the end of the mixing events [see Fig. 7(f)]. The flow asymmetry for these
cases results in preferential mixing above the buoyancy interface, leading to a downward shift of
both interfaces. As the shear interface is located above the buoyancy interface, it is mixed at a faster
rate, such that the final position of the two interfaces are co-located. The asymmetric mixing reduces
the interface offset in the final state.

F. Self-organized criticality

The gradient Richardson number,

Rig = N2

S2
, (22)

is an important parameter in studies of stratified shear flows, relating the stabilizing effect of
stratification with the destabilizing effect of shear. In particular, the critical value Rig ∼ 1/4 is
commonly associated with stratified turbulent mixing: Rig < 1/4 is a necessary condition for
instability in steady parallel inviscid stratified shear flows [44,45], and oceanic observations suggest
that a critical Richardson number close to 1/4 is a useful criterion in practice for the onset of
turbulent mixing (e.g., Ref. [46]). Oceanic and estuarine observations suggest that stratified shear
flows often exhibit a peak in the distribution of Rig around this critical value (e.g., Refs. [47–49]).

Motivated by these observations, recent studies have focused on the idea of self-organized
criticality in stratified turbulent flows, that is, the tendency of flows to evolve to a state with Rig near
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the critical value. One commonly invoked argument suggests that this is associated with a balance
between external energy input to the background flow (forcing) driving the flow toward a state with
Rig < 1/4, allowing for the possibility of shear instability, and overturning turbulent mixing acting
to increase Rig to values above 1/4; the balance between these two processes is thought to result in
a state of marginal stability [50,51].

The above explanation relies on the presence of external forcing to drive the system back to an
unstable state. Salehipour et al. [28] discovered an alternative mechanism for this self-organizing
behavior, namely, that symmetric Holmboe instabilities evolve to a state where the average gradient
Richardson number is approximately 1/4, regardless of initial flow parameters. Furthermore, they
argue self-organized criticality is not present for KH instability, which can exhibit average gradient
Richardson numbers above or below 0.25, depending on the initial parameters. It should be empha-
sized that this description is for freely evolving shear layers like those we consider here, rather than
the forced system of Smyth et al. [51].

To what extent do asymmetric shear instabilities share this tendency to self-organize? We have
shown that the initial offset in the location of peak buoyancy and shear is essentially removed by
the end of the simulation, and that the ratio of interface thicknesses converges to approximately the
same values regardless of initial asymmetry. Thus, we may wonder whether there is some attractive
state to which the system is evolving, depending on how Holmboe- or KH-like the initial instability
is. To explore this question, we investigate the statistics of the gradient Richardson number (Rig)
and the mixing efficiency (η), defined by Eq. (23), for both the symmetric and asymmetric initial
conditions.

We first consider Rig in the region where the flow is sufficiently turbulent. As in Salehipour et al.

[28], we focus on regions where ε′ > 2
Lz

Rib

Re , as this avoids regions where both N2, S2 → 0 (see
Fig. 6). Similarly, we restrict t > t3D, where t3D is the time of maximum kinetic energy, removing
the initial laminar period. We note that the results in this paper are relatively robust to variations in
the precise values of these two filtering criteria.

As shown in Figs. 8(a) and 8(b), the SKH and AKH cases start from an initial state in which Rig
has a minimum at the center of the shear layer. After the instability grows and triggers a transition
to turbulence, the flow rapidly mixes to a state in which Rig � 1/4, though slightly lower values of
Rig persist for longer in the AKH case than its symmetric counterpart. On the other hand, the AHI
and SHI cases start with a local maximum in Rig at the center of the shear layer [Figs. 8(c) and
8(d)]. The onset of turbulence in both cases does not lead to the same rapid increase of Rig. Instead,
as a consequence of the turbulence being strongest in the weakly stratified regions away from the
buoyancy interface, the turbulent shear layer shows a range of gradient Richardson numbers for
these two cases.

To quantify these distributions further, within the turbulent region after t3D, we compute the
probability density function (PDF) of Rig [Figs. 9(a), 9(c) 9(e), and 9(g)]. Consistent with Salehipour
et al. [28], the different SKH cases [Fig. 9(a)] have different peaks in Rig, and the PDFs of the SHI
cases [Fig. 9(g)] appear to show a consistent peak near Rig = 0.25.

Of more interest is the behavior of the AKH and AHI cases [Figs. 9(c) and 9(e)]. In contrast to
the SKH cases, both asymmetric configurations show a collapse of the PDFs across the parameter
values considered here. That is, these PDFs of Rig are not very sensitive to the particular values of
Re and Rib. However, the value of the peaks in Rig differs between the AKH and AHI flows: For
AHI, the peak is close to the value of 1/4 seen in the SHI cases, while AKH show a consistent
peak around Rig ≈ 0.4 (similar to the larger Rig values seen for some of the SKH flows). Again, the
stark dependence on Re and Rib associated with SKH appears to be reduced for AKH. However, the
details of the turbulent flows still depend on the specific case in question (and the degree to which
it is more or less KH-like versus Holmboe-like).

We next turn to the corresponding distributions of the mixing efficiency, η, for the different
symmetric and asymmetric cases considered here. The mixing efficiency is the fraction of the total
energy loss that increases the potential energy of the system (as opposed to the energy lost to viscous
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FIG. 8. (a)–(d) Time-series plots of the gradient Richardson number of the horizontally averaged flow,
N2/S2. (e)–(h) Local mixing efficiency, η, as defined in Eq. (23). The opaque regions in (a)–(h) indicate the
portions of the flow for which ε′ < 2Rib/(Re Lz ). (i)–(l) Profiles of Rig and η of the horizontally averaged flow
at t = t3D,max (dark) and averaged from t3D,max (light) to the end of the simulation. The thin dashed lines indicate
Rig = 1/4 and η = 1/6. All cases shown have Re = 1200 and Rib = 0.15.

dissipation). Following the approach of Smith et al. [52], we define the local mixing efficiency as

η = Ribχ ′

Ribχ ′ + ε′ , (23)

which indicates the height where the mixing is most efficient. To avoid regions in which N2 → 0,
we apply the same filter as with Rig.

We show the spatial distribution of η in Figs. 8(e)–8(h). There is an early peak in η in all cases,
associated with the initially laminar formation of the billows or counterpropagating vortices. As
the flow breaks down into turbulence, the efficiency drops off. For the SKH case, the efficiency is
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FIG. 9. PDFs of Rig and η where the flow is turbulent for (a), (b) SKH; (c), (d) AKH; (e), (f) AHI; and (g),
(h) SHI. Vertical dashed lines are included at Rig = 1

4 and η = 1
6 , respectively.
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approximately uniform across the turbulent region. Conversely, the AKH, AHI, and SHI cases show
a range of values of η, with lower efficiencies near the interface and larger values away (particularly
in the AHI and SHI cases), as a consequence of the larger values of χ ′ in those regions.

The predicted value of η for a given flow has been a matter of some debate, as reviewed by
Gregg et al. [10]. In particular, Osborn [53] suggested an upper bound of 1/6 for the average
mixing efficiency of steady homogeneous stratified shear flows. This value, corresponding to a flux
coefficient of 
 = η/(1 − η) = 0.2, has been applied in a wide variety of numerical, experimental,
and oceanic contexts.

Even for stratified shear layers such as those considered here, the peak value of η has been shown
to be case specific. For KH instability, η has been shown to depend on the flow parameters, the route
by which the flow transitions to turbulence, and the details of the initial conditions [22,42,54]. On
the other hand, studies of scouring-type flows, including Holmboe-driven turbulent mixing [28]
and forced stratified shear layers [52] have shown peaks in the PDF of mixing efficiency near the
canonical 1/6 value, consistent with the flows experiencing a period of steady homogeneous mixing
(as assumed by Osborn [53]). For the simulations presented here, we observe a similar behavior
for the AKH, AHI, and SHI cases, as shown in Figs. 9(d), 9(f) and 9(h): the PDFs of η, defined
over the same spatial and temporal region as in the PDFs of Rig, show peaks around 1/6 across
different flow parameters. On the other hand, the PDFs of η for the SKH simulations [Fig. 9(b)]
show peaks at different values depending on the flow parameters, consistent with the results of
Salehipour et al. [28].

These typical values of Rig and η can also be seen in the profiles at t3D,max and time-averaged
from t3D,max to the end of the simulation in Figs. 8(i)–8(l). The SKH and AKH profiles show gradient
Richardson numbers above the marginal value of 1/4, while the AHI and SHI flows show Rig ∼ 1/4
over the region surrounding the shear layer. Similarly, local values of η are close to 1/6 during the
turbulent phases of the mixing events.

Taken together, the distributions of Rig and η, along with the evolution of the mean quantities
described in Sec. III D, suggest that as the underlying instabilities shift from being more KH-like to
more Holmboe-like, the corresponding turbulence and mixing likewise transition from one limiting
behavior to the other.

IV. DISCUSSION AND CONCLUSIONS

A substantial fraction of the literature on stratified shear instabilities has focused on the idealized
case of a vertically symmetric background flow, with the center of the background shear layer
coincident with the corresponding buoyancy interface. However, in many geophysical contexts,
the shear and stratification are asymmetric. Even in idealized laboratory experiments, the interfaces
may be offset [29,30,55]. We have shown that this asymmetry modifies both the linear stability of
the underlying shear instability and its subsequent nonlinear evolution.

By considering the linear stability of asymmetric flows given by Eqs. (2), we have observed
that the eigenfunctions of the unstable modes share characteristics of both pure KH and Holmboe
instabilities. Moreover, using an appropriately defined pseudomomentum [37], we have quantified
how KH-like or Holmboe-like these asymmetric instabilities are for background flows with different
Rib, Re, R0, and a0.

Then, we selected several representative cases ranging from pure KH to pure Holmboe behavior
to demonstrate the effect of asymmetry on the nonlinear evolution of the system. We performed a set
of 12 direct numerical simulations with different Re, Rib, a0 and R0. These cases included symmetric
KH (SKH), asymmetric KH (AKH), asymmetric Holmboe (AHI), and symmetric Holmboe (SHI)
configurations. These simulations build on the work of Carpenter et al. [36], with a higher Reynolds
number and the inclusion of the asymmetric KH setup which was not previously considered. From
these simulations, and consistent with the linear predictions, we showed that the asymmetric shear
instabilities resulted in a flow that had both the propagating wave feature of Holmboe instabilities
and the finite-amplitude billow structure of KH instabilities. These hybrid features can be seen
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in both the TKE budget and the horizontally averaged quantities. As predicted by the pseudomo-
mentum, the nonlinear simulations suggest that there exists a continuous spectrum of KH-like and
Holmboe-like behavior.

As mentioned in the Introduction, turbulence caused by stratified shear instabilities is frequently
categorized as overturning, in which KH-driven mixing smears out the buoyancy profile, or scour-
ing, where Holmboe-driven mixing preserves the sharp buoyancy interface [24,25,27]. The mixing
driven by the asymmetric shear instabilities described here differs from most previous numerical
studies in two important ways. First, the asymmetric shear instabilities lead to asymmetric mixing
of the background buoyancy and momentum—both the velocity and buoyancy profiles preferentially
diffuse on one side of the buoyancy interface. This mixing roughly preserves the relative thickness of
the buoyancy and velocity interfaces. Interestingly, in the cases considered, the asymmetric mixing
nearly eliminated the initial offset in peak gradients by the end of the simulations. In this sense,
the asymmetric mixing produces a more symmetric final state than was present initially. This may
have important implications in contexts where the degree of asymmetry changes with time [29].
Similarly, in a continuously forced system [52], it is unclear how the offset would evolve. Second,
the mixing appears to share characteristics of both overturning and scouring flows, with part of the
initial interface maintained throughout the flow evolution. That is, not only is the mixing vertically
asymmetric but the character of the mixing itself can change depending on the initial offset of the
background flow.

We note that while the simulations presented in this paper consider multiple values of Re
and Rib, further exploration of the parameter space would be of great value in understanding
the role of asymmetry in stratified shear flows. In particular, we have kept the Prandtl number
fixed at a value of Pr = 9 in this paper, characteristic of heat in water. The Prandtl number has
been shown to play an important role in other studies of shear-driven mixing (e.g., Ref. [17]) and
layer formation (e.g., Ref. [56]); understanding how the Prandtl number may impact the interplay
between scouring and overturning discussed in this paper may be important to consider for other
environmental and geophysical flows. In addition to the Prandtl number, future studies should
consider how this spectrum of behaviors changes at higher Re more characteristic of environmental
flows. Simulations in domains with longer streamwise extent would also be of interest in order to
ascertain the importance of upscale cascades of energy in such asymmetric shear flows (see, e.g.,
Refs. [15,21,26]).

In addition to extending the parameter space for flows described by Eqs. (2), other forms of
asymmetric stratified shear layers could be considered. For example, Pham et al. [57] and Pham
and Sarkar [58] studied asymmetric flows where shear and stratification varied between the upper
and lower layers, and found similar transitions between KH- and Holmboe-like behaviors. For
example, the DNS of Pham et al. [57], which modeled an idealized stratified shear flow inspired
by observations of the upper equatorial undercurrent, resulted in a “Holmboe-like shear instability
near the base of the mixed layer” that later developed into a KH-like billow with strong associated
turbulence, similar to the asymmetric results presented here. We note that their choice of shear and
stratification led to a Rig profile with a local minimum, more akin to our AKH case rather than
a local maximum as seen in our AHI and SHI configurations (Fig. 1). However, the overall flow
evolution is more similar to our AHI flow, suggesting that the background profiles alone do not
necessarily tell the whole story in terms of characterizing the flow, and so the pseudomomentum-
based approach employed here may help in such comparisons between studies. In general, future
work could consider a variety of different types of asymmetry, analyzing both the linear modes using
the pseudomomentum framework described here as well as the nonlinear evolution and turbulent
mixing.

It has been suggested that the longer-lived scouring behavior associated with scouring events
could lead to larger overall mixing of the background flow during the turbulent phase compared to
the intense burst of mixing associated with KH instability [24,27,59]. It is unclear how this may
extend to asymmetric flows: While asymmetry may lead to longer-lived turbulence, the strongest
mixing is also offset from the strongest stratification. While it is difficult to draw conclusions at
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the parameter values studied here, future work with a broader parameter space could explore this
question in more detail.

Histograms of oceanographic observations of Rig frequently show a peak value of approximately
0.25 (e.g., Refs. [7,49]). (This value should not be thought of as a result of the Miles-Howard
theorem, the underlying assumptions of which do not apply to fully turbulent flows.) One possible
explanation for these observations is that forcing and turbulent diffusion act together to drive the
mean flow to a state of marginal stability [51]. An alternate scenario is that stratified turbulence
driven by Holmboe instability may self-organize into a state with Rig ∼ 1/4 and a flux coefficient
∼0.2, behavior which is not seen for KH-driven mixing [28]. Our results are consistent with that
conclusion: the SHI cases demonstrate a consistent peak in the PDF of Rig near 0.25 that is absent in
the SKH cases. Indeed, our SKH simulations include the subcritical, critical, and supercritical cases
illustrated in Fig. 13 of Salehipour et al. [28]. Of greater interest are the asymmetric cases, which
also demonstrate a collapse in the distributions of Rig, consistent with our interpretation that asym-
metry results in mixing events with characteristics of both KH and Holmboe instabilities. The AHI
has a peak in Rig ≈ 0.3, roughly at the same location as that of the SHI. There is a similar collapse
of the AKH curves around Rig ≈ 0.4. As the SKH cases appear to be highly dependant on the initial
flow parameters, this work suggests that even small amounts of asymmetry reduce the dependence
of the PDF of Rig on the external parameters. Future work aimed at clarifying the role of asymmetry
on the resulting distribution of Rig, particularly at even higher Re more typical of geophysical flows
and considering a broader range of RM to include more instability behaviors, will help to clarify
the degree to which the turbulence may self-organize in AKH- and AHI-driven flows. Forced sim-
ulations, in which the mechanism described by Smyth et al. [51] may also be active, would further
allow for the exploration of these self-organizing behaviors in asymmetric stratified shear flows.

We emphasize that the SKH/AKH/AHI/SHI simulations shown in Fig. 3 all have the same Re,
Pr, and Rib; the qualitatively different flow evolution arises from small-scale details in the initial
shear and stratification profiles. We found a similar range of behaviors in each of the three sets
of SKH/AKH/AHI/SHI simulations with fixed Re, Pr, and Rib. That is, significantly different
behaviors can arise for the same bulk parameters. Because of this small-scale dependence, methods
to identify the type of instability are of great interest, especially in the analysis of observational
data. Given the success of the pseudomomentum approach in classifying the linear dynamics, it is
natural to ask whether a similar metric could be found for fully nonlinear flows, either by extending
the nonlinear metrics described by Eaves and Balmforth [37] to less idealized flows or by exploiting
newer data-driven analyses for flow classification.

Stratified turbulent flows may be quantified in terms of a variety of key length scales describing,
for example, the size of individual overturns or the scales at which stratification becomes impor-
tant. Understanding the relationships between such length scales can be essential for interpreting
field measurements in which certain variables are not easily measured. However, most of these
relationships for stratified shear instabilities have typically focused on symmetric KH instabilities
(e.g., Refs. [41,60]). Future work will consider how these relationships are modified by asymmetry
and how they can be related to the specifics of the irreversible mixing [61], thereby allowing for
improved interpretation of field measurements.

Geophysical flows are rarely perfectly aligned. Our results have highlighted that even a relatively
small amount of asymmetry may produce a different flow evolution than classic shear instability
theory would suggest. This asymmetry is below the resolvable scales of large-scale circulation
models, and as such must be parameterized. In the future, we hope to compare our work with field
studies, quantify the importance of asymmetry, and find a practicable solution to incorporate this
effect into regional models.
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