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We present an experimental study of a new kind of dual drop-wave entity existing on
a localized structure in a water Faraday-wave system. A nonpropagating hydrodynamic
soliton can juggle a single drop of ∼2–3.5 mm diameter for about 102–104 rebounds. By
analyzing the drop trajectories, several regimes are observed: periodic bouncing, period
doubling, period tripling, a sawtooth state, and chaotic/erratic trajectories. We present
evidence that the most stable cases result from detuning of the drop self-oscillations and
synchronization with the soliton’s sloshing motion. This synchronization ensures stability
and thus longer lifetimes. We analyzed the lifetime of the drop, concluding that the periodic
behavior, which appears for the lowest-amplitude solitons, is the most stable state. Further
analysis shows that lifetimes follow a Weibull distribution.
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I. INTRODUCTION

The noncoalescence of drops in a bath of the same liquid has aroused a large amount of attention,
in particular the stabilization of bouncing drops due to vertical vibrations of the liquid layer. Stable
bouncing drops were first reported by Walker [1], in experiments using vibrated soap films. The fact
that drops do not merge with the bath is quite counterintuitive, mainly because our daily experience,
as well as some basic physics, tells us that a drop that is approaching a bath of the same liquid will
tend to coalesce with it. Indeed, at short distances, van der Waals forces should tend to bring the
two approaching surfaces together.

More recently, using a classical Faraday instability setup [2,3], but forcing below the pattern
formation threshold, Couder et al. [4] demonstrated experimentally the crucial importance of a thin
air layer that remains between the drop and the liquid surface. They show that the stability of the
drop requires that the thin film of air, which provides the lift-off force and is trapped between
the drop and the liquid bath surface, must be squeezed during the upward motion; during the
downward motion, air must penetrate the film to allow for lift off; this idea was also presented
by Walker [1]. Additionally, it has been shown that the bouncing drop lifetime depends on the
driving acceleration and frequency [5]. The role of droplet deformations has also been analyzed to
understand its bouncing dynamics [6–8].

Later, using liquids with lower viscosities, bouncing drops became amazingly interesting when
the existence of a new kind of localized structure was experimentally demonstrated: the macroscopic
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FIG. 1. Typical images of the two kinds of parametric instabilities that can be observed in the experimental
setup: (a) Faraday waves and (b) NPHS. Both images were acquired using back-light illumination. For
visualization purposes, a few drops of black ink are added to the liquid mixture (distilled water plus surfactant).
The second instability has transverse movement, so a thinning of the liquid at the top of the soliton can be
observed. As a reference, the depth of the layer of fluid is 2 cm. Images obtained from Gordillo [42].

wave-drop dual entity [9,10]. A series of experiments has shown macroscopic realizations of this
wave-particle duality, reminiscent of quantum behaviors [11–18]. These results have motivated their
theoretical understanding in terms of path-memory effects [19,20] and a hydrodynamic pilot-wave
theory [21–23], inspired by the analogous quantum dynamics proposed by de Broglie. Thorough
reviews of the walking-droplet system are those of Bush [24] and Bush and Oza [25].

Recently, there has been interest in the extension of the drop-wave dynamics above the Faraday
instability, where the competition between the drop-generated waves and the wave field background
becomes relevant. Sungar et al. [26] achieved droplet trapping in a liquid bath with a row of equally
spaced immersed pillars: a hydrodynamic analog of the optical Talbot effect. Later, Tambasco et al.
[27] presented an experimental study of the bouncing dynamics of droplets on the surface of the
classical Faraday instability, also just above threshold. Several dynamical regimes are reported,
including meandering, zigzag motion, erratic, trapping, and coalescence. In the erratic regime, a
Brownian-like motion of the bouncing drop was characterized. Finally, Zhao et al. [28] studied
the noncoalescence of drops in a high-surface-tension liquid-metal solution both below and above
the Faraday instability. A single drop experiences several regimes as a function of its diameter and
vibration acceleration, going from simple bouncing to period doubling below the Faraday threshold,
and later to Faraday bouncing and chaotic bouncing as the acceleration is increased further. In
this case, submillimeter droplets of liquid metal bounce at the antinodes of the Faraday pattern,
the collisions with the bath occurring when the antinodes are wave troughs. They also studied the
self-assembly of bouncing drops on top of the Faraday pattern.

Here we present an experimental study of a new kind of wave-particle entity. It is the juggling
soliton: a localized sloshing wave that juggles a ≈2–3.5 millimeter-size drop. Both the drop and
the surface wave are made of the same liquid, regular distilled water. Thus, our drops are much
larger and both the drop and bath liquid are of much lower viscosity compared to most previous
drop-vibrating surface studies. More precisely, we study bouncing drops on top of a nonpropagating
hydrodynamic soliton (NPHS). This localized structure was first reported by Wu et al. [29] in
a classical Faraday instability setup, when a quasi-one-dimensional rectangular basin (length �
width) that contains water is vertically vibrated within a range of frequencies and amplitudes.
Figures 1(a) and 1(b) show, respectively, a pure longitudinal Faraday wave and a NPHS obtained in
our experimental setup. The latter is obtained by perturbing the liquid-air interface with a sloshing
movement using a one-inch-wide ruler.

Although these soliton waves keep the sloshing motion features of the first transverse surface
mode (with a node in the longest axis of the cell), their motion is highly localized in the longitudinal
direction instead of involving the whole surface [29]. For a single NPHS, its spatial envelope is
steady, very stable, and does not propagate, in contrast with classical hydrodynamic solitons. When
more NPHS are created, they can interact attractively or repulsively depending on their relative
phase [30,31], form bounded states [30], and follow a coalescence process when several solitons
are initially formed [32]. Remarkably, dissipative solitons can be found in several hydrodynamic
systems: oscillons in a Faraday configuration [33] and solitary waves in vibrated Hele-Shaw cells
[34] display spatial envelopes with similar spatiotemporal features.

NPHSs are modeled in terms of the parametric dissipative nonlinear Schrödinger equa-
tion (pdNLSE), derived by Miles [35], which captures the minimum requirements for parametrically
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FIG. 2. (a) Illustration of the experimental setup, including the light-emitting diode arrangement (i), a white
acrylic diffusive screen (ii), the acrylic basin (iii), the electromagnetic shaker (iv), and a high-speed camera (v).
The driving acceleration is measured with a piezoelectric accelerometer. (b) NPHS characteristics as a function
of reduced detuning ν = ( f /2 − fo)/ fo, where fo = 5.43 Hz is the resonant frequency of the first transverse
mode. Its normalized amplitude As/H (width ws/H ) decreases (increases) as ν → 0.

sustained one-dimensional solitary structures. Hence, its scope goes far beyond hydrodynamics
[36,37]. In this regard, recent studies have been focused on providing an exhaustive analysis of
the pdNLSE using mathematical and numerical techniques. Experiments have also been used for
this purpose [32,38,39]. On the contrary, some fundamental issues such as the validity of the
approximations that yield the pdNLSE remain unaddressed, with rare systematic comparisons
between predictions and measurements [40,41].

As for other localized structures, a simple argument that explains the NPHS existence is that its
stability region corresponds to the parameter zone where both the flat interface and Faraday waves
are possible solutions of the underlying dynamics; this corresponds to the negative detuning region
of the first transverse mode, of frequency fo. In this case, the subharmonic response frequency obeys
f /2 � fo, where f is the forcing frequency. Thus, following this simple argument, the localized
NPHS arises as a connection between these two possible solutions, i.e., the first transverse mode and
the flat, quiescent surface. The complete, more precise argument is that these localized structures
are solutions of the pdNLS equation, that is, the amplitude equation that can be deduced from the
Navier-Stokes equation plus the appropriate boundary conditions [35,42].

In our experiment, the localized surface wave, which acts as a juggler, keeps the drop bouncing
centered at its maximum. The wave-drop motion is quite robust against lateral perturbations and
thus the juggler spatially confines the drop. This configuration is a hydrodynamic analog of the
optical tweezer using surface waves. Indeed, as in general for radiation pressure traps, the effective
confinement depends on both the incident and scattered waves.

In this paper, we present the experimental setup and procedures in Sec. II, including some basic
NPHS and drop characteristics. In Sec. III, we summarize the relevant dimensionless parameters
and their values, also comparing them with previous studies; our low viscous large drops are indeed
quite far from the usual parameter ranges. Then, in Sec. IV, we present our experimental results; we
end this paper presenting our conclusions in Sec. V.

II. EXPERIMENTAL SETUP, PROCEDURES, AND GENERAL REMARKS

In Fig. 2(a), we present a schematic illustration of the experimental setup. The container is
made out of acrylic and partially filled with a liquid mixture. The confining dimensions are width
Ly = 2.6 cm, height Lz = 5.5 cm, and length Lx = 20 cm in the largest dimension. The liquid
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mixture layer height is H = 2 cm. It is made from 200 cm3 of distilled water plus 2.7 cm3 of
surfactant Kodak Photoflo, which is used to ensure good wall wetting during the soliton’s sloshing
motion [29]. On some occasions, a few drops of black ink are added to the liquid in order to
obtain clear images of the soliton and the drop. Experiments are performed at room temperature,
T = 22–24 ◦C. The fluid’s relevant parameters are dynamic viscosity μ ≈ 0.93 mPa s, mass density
ρ = 998 kg/m3, and surface tension σ = 26.0 ± 0.1 mN/m. The latter was determined by the
pending drop technique [43] using a Drop Shape Analyzer (Kruess GmbH model DSA-25E). The
bouncing drops are composed of the same liquid mixture and they are made using a micropipette,
which can be fixed at different volumes for ∼2–2.7 mm diameter drop’s, or a plastic, disposable
pipette for larger drops, ∼3.5 mm.

The forcing voltage waveform is created with a digital function generator (Agilent 33220A).
A power amplifier (B&K model 2760) forces the electromechanical shaker (Dynamical Systems
model VTS80). The container’s vibration motion is measured using a piezoelectric accelerom-
eter (B&K model 33640) firmly attached to the basin. The acceleration is sinusoidal, a(t ) =
Aω2 sin(ωt ), where A is the vibration amplitude and ω = 2π f is the driving angular frequency.
The control parameter is the normalized acceleration � = Aω2/g, where g is the gravitational
acceleration. The drop trajectories are obtained by standard digital image analysis techniques,
using sequences recorded with a high-speed camera, typically at 200 or 400 fps (depending
on the particular experiment, we use one of these high-speed cameras: Ditect HAS-EF or
Phantom v641).

We performed experiments for forcing frequencies in the range f = 10.2–10.8 Hz. The first
transverse mode frequency was determined experimentally, f exp

o = 5.39 ± 0.07 Hz, by means of
measuring the surface response under a slowly varying frequency forcing, at low amplitude, using
a height resistive sensor composed of two parallel wires immersed in the liquid layer. Many
longitudinal modes as well as the first transverse one can be identified. The theoretical value is given
by the surface gravito-capillary wave dispersion relation using the appropriate boundary conditions,
f theo
o = 5.43 ± 0.06 Hz, with the error originating from the precision with which the experimental

geometrical and physical parameters are known. As expected, both values agree within experimental
errors. Details of the experimental method and theoretical analysis can be found in [42]. We define
the reduced detuning parameter ν = ( fs − fo)/ fo, where fs = f /2 is the soliton frequency, and we
choose to use the theoretical value fo ≡ f theo

o .
The soliton alone has a well-established stability region [29]. A negative detuning is a necessary

condition, which is the region for which the Faraday instability is subcritical. The NPHS shape
depends on the detuning parameter, as shown in Fig. 2(b). Its amplitude As and width ws decrease
and increase, respectively, as the subharmonic response fs approaches the first transverse mode
frequency fo. For the data shown in Fig. 2(b), both quantities are obtained by fitting the soliton
shape with the function Assech[(x − xo)/ws], where xo corresponds to the soliton’s central position
[31]. We notice that as expected, Asws is constant as a function of ν. Indeed, we obtain Asws =
110 ± 6 mm2.

Once a stable NPHS is formed in the vibrated basin, a drop made from the same fluid is placed
over its surface. If the size of the drop and the time of release are appropriate, the drop will bounce
periodically with period T = 2/ f , equal to the soliton’s period, which is twice the forcing one.
The periodic action of the soliton wave, relaunching the drop at every cycle, recalls the action of a
juggler. Stable juggling soliton structures have been obtained for drop diameters D = 1.8–3.8 mm
and lifetimes that last from a few minutes up to about 90 min, which implies about 103–104 stable
rebounds.

Drops of about 2.5 mm diameter are generated using the micropipette with a volume fixed to
10 µl. Larger drops are made using a plastic, disposable pipette. In Sec. IV, we present a phase
diagram survey of drop stability with the smaller drops. We analyzed 459 realizations at different
driving frequency f and forcing acceleration �. In Fig. 3, we present the drop-diameter histogram
for all these realizations. For each drop, D was obtained from calibrated image analysis of all
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FIG. 3. Drop-diameter histogram. Drops are generated using a micropipette with a volume fixed to 10 µl.
Most drops (84%) are concentrated in the range D = 2.54 ± 0.10 mm.

those stable juggling soliton realizations that we got in the phase diagram survey. Most drops are
indeed concentrated around 2.5 mm, the average being 〈D〉 = 2.54 mm and its standard deviation
σ (D) = 0.10 mm.

III. DIMENSIONLESS NUMBERS

The bouncing drops of the juggling soliton are larger and less viscous than those previously
studied. In order to independently compare to previous studies, we summarize the relevant physical
variables and the dimensionless numbers of the drop impact on a NPHS for the case where the
drop and the liquid surface are both composed of distilled water with a small amount of surfactant
Photoflo. The physical parameters are the drop’s diameter D, the drop’s effective acceleration geff ,
impact velocity vo, and the liquid dynamic viscosity μ, density ρ, and surface tension σ . From these
six parameters, we can define three independent dimensionless numbers, plus a fourth dimensionless
parameter given by the forcing angular frequency ω = 2π f . Thus, we have the following:

(i) The Ohnesorge number Oh = μ
√

1/(ρσD), which compares viscous and capillary times. In
our system, Oh = 0.003–0.004. Thus, capillary waves are relevant both on the surface of the soliton
and the drop.

(ii) The Bond number, Bo = ρgeff D2/(4σ ), with geff the drop’s effective acceleration. This
number compares gravitational and capillary energies. During take off, we estimate geff = grel ≈
3–4 m/s2 as the relative acceleration between the NPHS wave acceleration and the gravitational
acceleration. The upper limit considers the meniscus correction. For drop sizes D = 2–3.5 mm,
Bo = 0.1–0.5. During free flight, geff = g, the gravitational acceleration. In this case, Bo = 0.4–1.2.

(iii) The Weber number, We = ρDv2
o/(2σ ), which compares the incoming drop kinetic and

surface energies. For D = 2.7 mm, we measured vo ≈ 0.1 m/s. Considering this a typical “catching”
velocity scale, we get We ≈ 0.4–0.7 for drops in the range D = 2–3.5 mm.

(iv) The vibration number � = ω/ωD, where ωD =
√

σ/ρR3 is the characteristic drop-oscillation
frequency and R = D/2 is the drop radius. In our experiments, � = 0.4–1.

In Table I, we summarize the values of the dimensionless numbers for the experiments reported
in this article, as well as those of the previous studies of bouncing drops on Faraday waves. We also
include the values reported by Moláček and Bush [6], as a representative example of the bouncing
drop below the Faraday instability.

Our Oh parameter is considerably lower than all those reported in previous bouncing drop
experiments, where the liquid viscosity is much larger. Terwagne et al. [7] summarize the studies
up to date in a Ohd versus Ohb diagram, where Oh is defined independently for the drop and the
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TABLE I. Dimensionless numbers for the present work and previous experiments of bouncing drops on
Faraday waves [26–28]. In the case of Zhao et al. [28], we report the Oh values of the NaOh solution, which is
much more viscous than the GaIn alloy; it is thus expected to dominate the interface wave dynamics. Also, Bo
and � are computed with the density difference 	ρ = ρGaIn − ρNaOh. We also include the values reported for
bouncing drops below the Faraday threshold by Moláček and Bush [6], as a representative example of those
systems. The asterisk ∗ stands for estimated values, as for these experiments they use the same silicone oils and
drop sizes as in [6].

Dimensionless number Oh Bo We �

Present study 0.003–0.004 0.1–1.2 0.4–0.7 0.4–1
Sungar et al. [26] 0.2 0.07 0.01–1∗ 0.6–0.9
Tambasco et al. [27] 0.1–0.8 0.005–0.1 0.01–1∗ 0.1–1.2
Zhao et al. [28] 1.5–3.0 0.002–0.04 0.02–0.8
Moláček and Bush [6] 0.1–0.8 0.005–0.2 0.01–1 0–1.4

bath. All studies obey Ohd > 0.01/
√

Ohb. Our experiment, for which Ohd = Ohb ∼ 0.001, remains
very far from this boundary; thus, the induced drop deformations and surface waves do not decay
quickly due to viscosity. However, the waves created on top of the NPHS do decay before the drop’s
next take off. Also, these waves are emitted far away from the drop-impact position. In addition, we
observe that both the drop and the NPHS interface deform strongly during their contact time and
for the drop’s free-flight period as well.

Because of our drop sizes, Bo is much larger in the present study than the values of the
experiments reported by Moláček and Bush [6], for the bouncing drop below the Faraday instability,
and also larger than the previous studies above this instability [26–28]. Our minimum Bo is in the
upper range of Moláček and Bush [6] and Tambasco et al. [27], and our maximum Bo is ∼10 times
larger than this minimum value. Finally, our We is rather in the high value range of previous studies.
These facts are a consequence of our larger drop sizes and also the larger energies involved; our
drops are launched by the NPHS to heights between 5 and 20 mm above the quiescent liquid-surface
level, which also implies much larger absolute velocities at impact. However, the relative velocity
between the drop and the NPHS is lower, as the surface wave rather gently catches the drop during
its descending motion.

IV. EXPERIMENTAL RESULTS

A. Drop dynamics and phase diagram

In this section, we focus on experiments for the drop diameter D ≈ 2.5 mm, and some results
are also given for larger drops in the following sections, with D = 3–3.5 mm. Once a drop is
placed on top of the sloshing soliton, its trajectory is studied analyzing front, side, and top views
of the basin that holds the NPHS, although for most of the results, we focus on the front-view
characterization. Representative images are shown in Fig. 4 and some videos are available in the
Supplemental Material [44]. The front view reveals that during free flight, the drop’s trajectory is
parabolic, which can be fitted to obtain the effective vertical acceleration geff ; this is presented and
discussed below. As stated in the previous section, the Oh number is very low, which is reflected in
the drop oscillations and the surface waves induced on top of the NPHS. The former occurs during
the complete soliton period, but is particularly stronger during the drop’s free flight. This analysis
will also be presented in detail. This fact, combined with the relatively high Bo number, implies that
these oscillations last longer in time and are larger in amplitude. This is shown in Figs. 4(b) and
4(c), where the deep drop penetration into the surface, its strong deformations during free flight,
and the surface waves that are emitted can be observed (the latter are clearly observed in the video
presented in the Supplemental Material [44]).

024401-6



JUGGLING SOLITON: A NEW KIND OF WAVE-PARTICLE …

FIG. 4. (a) Front-view image of a ∼3.5 mm diameter drop that bounces over a NPHS, with forcing
frequency f = 10.4 Hz and acceleration � = 0.085 (the same for all panels). (b) Sequence of images of a
2.7-mm-diameter drop bouncing over a NPHS, showing an almost complete cycle of the drop motion (total
time 0.2 s, soliton period 1/5.2 ≈ 0.192 s; time lapse between frames is 25 ms). The drop strongly deforms
during the rebound, as well as the soliton’s surface. The drop oscillates in its fundamental mode all the time,
although more strongly during the free-flight period. (c) Side view of the same drop shown in (b). Here, half a
period is shown, with the same time lapse between frames. Surface waves generated at the collision are visible.

The drop’s transverse motion is more complex. An example of a (y, z) trajectory, obtained by
a lateral view, is shown in Fig. 5(a). The blue dots connected by lines show the drop’s center of
mass; the solid red line is a guide to the eye of the parabolic motion during free flight; and the black
arrows indicate the drop motion direction. The lateral coordinate origin (y = 0) is arbitrary, but we
notice that during the drop’s ascending motion and particularly at take off, it is almost in contact
with the wall. The vertical origin (z = 0) is fixed at the liquid-surface quiescent level (horizontal
black dashed line). We observe that the drop is released from the surface of the soliton almost at the
peak of the wave’s trajectory, and that the free flight lasts about 1/3 of the complete soliton period.
The drop is literally catched by the NPHS when they are both descending, at a distance about 1.1D
from the lateral wall. This occurs very close to z = 0, so the soliton interface at the catching time is
almost flat. This can also be observed in the third image of Fig. 4(b), which shows the drop shortly
after it has been catched by the NPHS. The lateral and vertical drop center of mass position versus
time is presented in Figs. 5(b) and 5(c). These are nonlinear periodic functions of time. The drop
transverse motion is fast during the descending and ascending wave periods of time, and slows down
at the reversals. As the drop is on its way to reach the soliton maximum height, the wave throws the
drop upward. The drop detachment is due to the wave’s slowing down. Finally, from these image
sequences and trajectory analysis, we determined that the relative impact velocity is vo ≈ 0.1 m/s
and that the relative acceleration at take off is grel ≈ 3–4 m/s2, with the same direction as the
gravitational acceleration. These numbers were used for the estimation of both We and Bo.

Examples of the drop’s center-of-mass height-time trajectories, obtained from front-view images,
are shown in Fig. 6. Only during free flight can its position be precisely detected, leading to gaps
between data points. Three regimes are identified, by simply observing the height maxima, and
examples are shown in this figure: periodic bouncing at frequency fs [Fig. 6(a)], period doubling,
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FIG. 5. (a) Trajectory of a 2.7-mm-diameter drop in the (y, z) plane obtained by a lateral view, with forcing
frequency f = 10.4 Hz and acceleration � = 0.085 [same drop shown in Fig. 4(c)]. Arrows indicate the drop
motion direction. The solid red line shows a parabola as a guide to the eye for the drop’s free-flight period
and the horizontal black dashed line shows the liquid-surface quiescent position (z = 0). The transverse and
vertical positions vs time are presented in (b) and (c).

bouncing at frequency 2 fs [Fig. 6(b)], and an apparent chaotic/erratic motion [Fig. 6(c)], with
irregular heights. These dynamical regimes are similar to those found by Zhao et al. [28] in
experiments of bouncing drops on top of a Faraday wave in a liquid gallium-indium alloy below
a NaOH solution. In Fig. 6(d), we present the height fluctuations versus the time difference between
successive maximum heights of the free-fall drop. The regular, period doubling, and erratic cases
are clearly distinguishable. The first case concentrates around (1,0), and the second shows two
distinctive maxima, with the lower (higher) one that has a shorter (larger) period, but still remains

FIG. 6. Examples of possible drop’s height-time trajectories, obtained from front-view images. (a) Regular
periodic rebounds, f = 10.2 Hz, � = 0.1122, and D = 2.43 mm. (b) Double period rebounds, f = 10.3 Hz,
� = 0.097, and D = 2.52 mm. (c) Chaotic/erratic rebounds, f = 10.3 Hz, � = 0.1122 and D = 2.49 mm.
The solid (red) lines show the parabolic fits. The averages for all the adjusted effective accelerations are
(a) geff = 9.1 ± 0.1 ms−2, (b) geff = 9.1 ± 0.2 ms−2, and (c) geff = 9.4 ± 0.2 ms−2. The horizontal dashed lines
show (a) the regular height average and (b) two distinctive heights for the doubling period case. (d) Height
fluctuations 	Hmax = Hi

max − 〈Hmax〉 vs the normalized time difference between successive maxima, with
	τ = t i

max − t i−1
max the time difference between successive maxima, and Ts = f −1

s the soliton period, for regular
periodic rebounds (◦), double period rebounds (�), and erratic bouncing (�).

024401-8



JUGGLING SOLITON: A NEW KIND OF WAVE-PARTICLE …

FIG. 7. (a) Histogram of adjusted effective gravitational acceleration geff for all measured drop parabolic
trajectories. Most cases are indeed close to the gravitational acceleration g = −9.81 ms−2. (b) geff vs maximum
drop height Hmax. The horizontal dashed line corresponds to the gravitational acceleration g. Lower trajectories
have a smaller effective acceleration, probably due to a stronger viscous drag by the air layer between the drop
and the NPHS surface.

close to (1,0). The erratic case expands the values further away from (1,0), randomly filling a
somewhat linear behavior between the quantities.

The effective acceleration geff varies from −11.0 ms−2 to −6 ms−2 among realizations, with most
cases close to the gravitational acceleration g = −9.81 ms−2. Figure 7 displays the histogram of the
measured geff and its dependence on the maximum drop height Hmax. Drops with lower maximum
heights are subject to smaller effective accelerations and remain very close to the soliton wave
throughout its motion. In fact, the soliton amplitude varies from a few mm to ∼1 cm, exactly within
the range where geff changes from an approximate constant value (with dispersion) to a quantity that
increases for decreasing Hmax. For such small-amplitude NPHS, the drop can be detected by image
analysis only because the very thin water layer at the wall can be seen through. We have checked
indeed that it remains in contact with the wave surface most of the time. Thus, we conclude that
during the apparent free-flight period, the drop is experiencing some additional aerodynamic force
originated from its closeness to the NPHS surface, probably due to air entrainment. This would
explain its lower effective acceleration.

The trajectories shown in Fig. 6 correspond to three realizations of a large survey in the frequency
and acceleration phase space. We stress that at a given frequency and acceleration ( f , �), in some
occasions more than one of the possible regimes can occur; they coexist in the parameter space.
Thus, for each frequency in the range 10.2–10.8 Hz, with a step of 0.1 Hz, we did acceleration ramps
between � ≈ 0.1 and � ≈ 0.2, with steps 	� ≈ 0.01. For each pair ( f , �), about 20 realizations
were done and, in each case, a new drop was created and placed above the NPHS. When it was
found to bounce in a stable position, it was recorded at 400 fps, for 2 s, which is the equivalent
of about 8–10 rebounds, as the examples show in Fig. 6. Stable bouncing drops were found in the
range 10.2–10.7 Hz (	 f = 0.1 Hz), with the detuning parameters indicated in Table II.

A summary of this survey is shown in Fig. 8, where the phase diagram (ν, �) is presented. At
a fixed forcing frequency f , but with the subharmonic response fs below the first transverse mode
fo, we slightly increase the driving vibration amplitude A. At each fixed A, we manually perturb
the flat, quiescent surface using a paddle. The perturbation is done locally and with a transverse
sloshing motion that emulates the NPHS motion. When done correctly, the soliton appears and

TABLE II. Detuning parameter for each forcing frequency.

Frequency f (Hz) 10.2 10.3 10.4 10.5 10.6 10.7

Detuning parameter ν −0.061 ± 0.011 −0.052 ± 0.011 −0.042 ± 0.011 −0.033 ± 0.011 −0.024 ± 0.011 −0.015 ± 0.011
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FIG. 8. Experimental phase diagram (ν, �). The single drop juggling soliton is stable in a subregion of the
stability region of the NPHS alone. Most of the drops are in the range D = 2.44–2.64 mm. The data points
show the (ν, �) values that have been studied where single drop stable juggling solitons are found, with the
conditions explained in the text (stable realizations recorded for 2 s, equivalent to 8–10 rebounds).

becomes stable. The system can sustain a single NPHS in the region shown in Fig. 8. Its lower
and upper � limits are close to the theoretical expectation: an almost flat, constant lower-� limit
and a paraboliclike shape for the upper-� limit, which is the negative part of the first transverse
mode’s Arnold tongue [31]. The single drop juggling soliton is stable in a subregion of the NPHS
existence region, shown in blue with data points in Fig. 8. Recall that at least 20 stable juggling
solitons were done for each (ν, �), and that for each case, more than one regime can be observed.
This multistability is probably due to different drop release initial conditions and small variations in
size.

In order to better characterize the different dynamical regimes, for each realization we compute
the series of drop maximum heights Hn. In Fig. 9, we present the return maps, Hn vs Hn+1, for
all the realizations obtained in the previously stated phase-space region (ν, �). Periodic trajectories
correspond to those data point sets that fall in the identity line Hn = Hn+1, period doubling to those
symmetrically opposed to this line, and the other, apparently chaotic trajectories are all those data
points that do not fall in these categories. More quantitatively, for each set Hn, we compute its
average 〈Hn〉 and standard deviation σ (Hn). If

σ (Hn)

〈Hn〉 < 0.02, (1)

then the trajectory is classified as periodic. If this is not satisfied, then the subsets H2n and H2n+1 are
compared. If

|〈H2n〉 − 〈H2n+1〉| > 3
√

σ (H2n)2 + σ (H2n+1)2, (2)

then Hn is considered to be alternating between two distinct heights. Everything else is considered
to be other/erratic behavior. The three regimes are classified in color code in Fig. 9, with red for
periodic, green for doubling period, and blue for the other/erratic trajectories. The most interesting
cases are observed for frequencies 10.2 Hz, 10.3 Hz, and 10.4 Hz, for which the three possible
dynamical regimes compete. In Fig. 10, we show histograms of the height deviations, with respect to
their means, for these cases. The three possible dynamical regimes are plotted separately, showing
their relative occurrence. The 1-period case is indeed concentrated at the origin, the 2-period case
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FIG. 9. Examples of possible drop dynamics, visualized through return maps (Hn, Hn+1), for all � and
(a) f = 10.2 Hz, (b) f = 10.3 Hz, (c) f = 10.4 Hz, (d) f = 10.5 Hz, (e) f = 10.6 Hz, and (f) f = 10.7 Hz.
The periodic, doubling period, and erratic cases are shown in red, green, and blue, respectively.

distributes symmetrically around the origin, and the chaotic/other cases are more widely spread.
Figure 11 shows the relative occurrence of each state at different � for these same frequencies. The
simple periodic state is more likely to occur for f = 10.2 Hz and f = 10.3 Hz in limited ranges of
�, and also for f � 10.4 Hz for almost all � in the stability region of the juggling soliton at these
frequencies [see, also, Figs. 9(d)–9(f)].

B. Drop oscillations, self-detuning, and drop-wave synchronization

The role of drop oscillations has been studied in order to get a better insight into the bouncing
droplet dynamics. The drop has been modeled as two masses linked by a linear spring with
dissipation [6–8], which is vibrated by a liquid interface that in turn is modeled as a more “rigid”
surface (Ohb � Ohd ). A mass asymmetry has also been considered to account for the asymmetric
deformations of the larger drops [8]. A logarithmic spring model has also been considered for
We > 1, where the contact time and effective restitution coefficient have been measured to depend
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FIG. 10. Histograms of height deviations Hn − 〈Hn〉, for (a) f = 10.2 Hz, (b) f = 10.3 Hz, and (c) f =
10.4 Hz. The periodic, doubling period, and erratic cases are shown in red, green, and blue, respectively.

logarithmically on We [6]. These studies show that the different bouncing drop dynamical regimes
can be understood in terms of their surface-mode resonance, or antiresonance in some cases, and
how they couple with the vibrated liquid surface.

As briefly mentioned earlier, our bouncing drops also oscillate during their free flight above the
NPHS, with an amplitude of about 10% of their radius. So, some natural questions arise: At which
frequency do they oscillate? How does this affect the stability of the juggling soliton as a whole,
considering that the drop is oscillating at the collision, and catch-up by the NPHS?

To answer these questions, we performed experiments at specific forcing frequencies and dif-
ferent drop sizes. During its free flight, the drop diameter is measured through image analysis, by
detecting its center of mass and the drop’s horizontal width at this vertical position. This is obtained
with a subpixel resolution by fitting an appropriate hyperbolic tangent function to the image intensity
profile at the center-of-mass vertical position.

In Fig. 12, we present a first example of drop-oscillation analysis, for f = 10.4 Hz and � =
0.112, and drop average diameter D ≈ 2.7 mm. The NPHS subharmonic nature is evident when
one compares the soliton amplitude As time evolution with the cell’s base oscillation. When As is
compared to the drop’s center-of-mass motion, we deduce that the drop is released by the NPHS
when it is about to arrive at its maximum, and is catched-up later when the soliton is almost flat.
During its free flight, the drop oscillates at what seems to be its first resonant mode, with alternating
elongations and contractions in the vertical and horizontal directions. Figure 12(c) presents the
drop-diameter oscillations for these two free-flight events. The adjustment of the complete data
set, corresponding to four rebounds, to a single sinusoidal function works quite well, with an
average drop diameter D = 2.670 ± 0.004 mm and oscillation frequency fd = 52.04 ± 0.07 Hz,
which is very close to 10 times the NPHS frequency fs = 5.2 Hz. The same analysis was done
for 20 consecutive rebounds, fitting again the same sinusoidal function, for which we obtained
fd = 52.002 ± 0.002 Hz. Thus, the drop synchronizes to the wave sloshing motion, fd = 10 fs. We
speculate that this insures stability and, probably, a longer lifetime.

FIG. 11. Occupation fraction of each dynamical regime as function of �, for (a) f = 10.2 Hz, (b) f =
10.3 Hz, and (c) f = 10.4 Hz. The symbols correspond to regular periodic (◦), periodic doubling (�), and
erratic (�).
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FIG. 12. Drop oscillations during two rebounds at f = 10.4 Hz and � = 0.112. (a) Drop center of mass vs
time; the parabolic flights are fitted with geff = 9.82 ± 0.10 ms−2 and geff = 9.81 ± 0.08 ms−2, respectively.
(b) Drop diameter D vs time. The complete data set is fitted with a single sinusoidal function, D(t ) =
D + ad sin(2π fdt + φ), with D = 2.670 ± 0.004 mm, ad = 0.143 ± 0.007 mm, and fd = 52.04 ± 0.07 Hz.
(c) Soliton amplitude As as a function of time. (d) The cell’s base oscillation.

The drop resonant frequencies are given by [45]

ω2
o = σ�(� − 1)(� + 2)

ρR3
, (3)

and the fundamental frequency is obtained for � = 2. For the drop of Fig. 12, with D = 2.67 mm and
σ = 26 mN m−1, fo = ωo/(2π ) = 47.1 Hz. Thus, the drop not only synchronizes with the NPHS,
but, in order to do so, its oscillation is detuned with respect to its fundamental resonant mode, in
about 10% in this case.

To confirm our findings, we did some experiments with larger drops, at the same experimental
conditions. Using a plastic, disposable pipette, we can generate larger drops, of about 3.5 mm
diameter, which can also bounce over the NPHS, forming a juggling soliton. Three realizations
with larger drops were analyzed. A typical result is shown in Fig. 13, for which we analyzed nine re-
bounds. Here, the drop is in the period doubling regime, showing slightly different maximum heights
and diameter oscillations every two periods. The ∼0.05 mm larger oscillations of the drop have
maximum heights (not shown) that are ∼1 mm greater than the smaller ones. We fitted sinusoidal
functions separately for each subset of data and, in both cases, we obtain fd = 31.20 ± 0.02 Hz.
Thus, the oscillation frequency is fd = 6 fs. The natural frequency for this drop size is fo = 30.7 Hz,
so the drop is detuned about 1.8%. For the other two large drop cases that we analyzed, one was also

FIG. 13. Example of drop oscillations for a larger drop, f = 10.4 Hz and � = 0.115; in this case, for nine
rebounds in the period doubling regime. Each subset is fitted with a single sinusoidal function, D(t ) = D +
ad sin(2π fdt + φ), with D = 3.56 ± 0.01 mm, ad = 0.23 ± 0.01 mm for the larger oscillations of the drop
(dashed line) and D = 3.50 ± 0.01 mm, ad = 0.17 ± 0.09 mm for the smaller oscillations of the drop (solid
line). In both cases, the adjusted drop frequency is fd = 31.20 ± 0.02 Hz. The mean diameters are different
by ≈1.7%. We believe this is due to nonlinear deformations of the drop (very elongated states), which are
probably different between two consecutive rebounds in the period doubling state.
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FIG. 14. Normalized oscillation frequency fd/ fs vs drop diameter D, for f = 10.2 Hz (◦), 10.3 Hz (�),
10.4 Hz (�), and 10.5 Hz (). The solid lines correspond to the theoretical normalized fundamental frequency
fo/ fs, given by Eq. (3). The measured possible drop’s oscillation frequencies are fd = 9 fs, 10 fs, 11 fs, 12 fs,
13 fs, and 14 fs for the smaller drops, and fd = 6 fs for the larger ones. Synchronization and detuning are evident
from the levels and frequency variations with respect to fo/ fs. For each large drop in the period doubling
regime, their diameters and oscillation frequencies were averaged.

in the period doubling regime, with 19 analyzed rebounds in total, and the other one in an erratic
state, with 20 analyzed rebounds. For the latter, we fitted the complete set of data with a single
sinusoidal function. In these two cases, we also measured fd = 6 fs.

Analyzing all the data of the phase diagram survey of the previous section, that is, for D ≈
2.5 mm, we found that other cases are also possible. Between 10.2 and 10.5 Hz, and for all the
� explored, we found that all these cases occur: fd = 9 fs, 10 fs, 11 fs, 12 fs, 13 fs, and 14 fs. The
different synchronizations and detunings are due to variations in drop diameter, which actually vary
between ≈1.9 mm and ≈2.7 mm, but with most cases around 2.5 mm. The summary of the collected
data, including the larger drop cases, is presented in Fig. 14. The total number of analyzed drops is
462 (459 small drops generated with the micropipette plus the 3 larger ones). The drop’s frequency
synchronization and detuning is clearly demonstrated. The solid lines correspond to the theoretical
predictions fo/ fs, with fo given by Eq. (3), using the measured surface tension, σ = 26 mN m−1.
Figure 14 also shows that drops of the same size can bounce by undergoing a different number
of oscillations within a single forcing cycle. Thus, the dynamic system does require an additional
number for a complete description compared to other bouncing drop systems (e.g., [24]), i.e., the
number of drop-oscillation cycles per forcing or wave/liquid bath period. This feature enriches the
landscape of resonances and antiresonances documented by Hubert et al. [8] by adding contiguous
higher-order harmonics drop modes because of the enlarged size of the drop. Further meticulous
experimental analysis is required to better understand the allowed bands of drop sizes that the soliton
wave can juggle.

C. Drop lifetimes

The exploration of drop dynamics presented in Sec. IV A was done for many points of the (ν, �)
phase diagram, as shown in Fig. 8. During this exploration, once the drop was positioned on top
of the NPHS and it was observed to be stable, the recordings were limited to 2 s at 400 fps. The
three cases that were observed—regular periodic bouncing, period doubling, and chaotic/erratic
dynamics—should then be considered as stable cases over lifetimes of at least a few seconds, as
some time is required after the drop positioning and the camera recording initiation. During these
experiments, we also observed that when the drop was not removed manually, in most cases it can
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FIG. 15. (a) Measured lifetimes τ as a function �. Symbols represent the individual τ measurements (◦)
and their averages 〈τ 〉 (�) for different accelerations. (b) Cumulative distribution function for � = 0.103 (◦) and
� = 0.164 (�). The solid lines are fits to the Weibull function F (τ ) = 1 − e−(τ/τo)α , with τo = 385.1 ± 16.7 s,
α = 1.34 ± 0.10, and R2 = 0.985 for � = 0.103, and τo = 14.7 ± 1.1 s, α = 0.78 ± 0.07, and R2 = 0.923 for
� = 0.164, where R2 is the regression coefficient. (c) Double plot of the scale and shape factors, τo () and α

(�), as a function of �. (d) Lifetime cumulative distribution function for all of the 117 realizations. The solid
line is the fit to the Weibull function, with τo = 120.7 ± 9.6 s, α = 0.47 ± 0.02, and R2 = 0.980.

bounce for some minutes and, on some occasions, with lifetimes as long as 90 min, implying that
the juggling soliton has lifetimes between 102 and 2.7 × 104 rebounds.

In order to further characterize the drop dynamics and the possible dynamical states, we did
a series of longer measurements, at fixed frequency, with drops of diameter D ≈ 2.5 mm and for
several accelerations in the range � = 0.103–0.183. In total, 117 stable bouncing drop realizations
where recorded and analyzed. We selected the forcing frequency f = 10.3 Hz because it has
the richest dynamical behavior over a larger acceleration range during the previous phase-space
exploration. The procedure is similar to before, but now we left the drops to bounce until their
death, i.e., until they coalesce with the liquid bath. Images were recorded for 10 s at 500 fps every
few minutes. The longest realization of all these 117 stable juggling solitons had a lifetime of about
5410 s ≈ 90 min, consistent with previous observations.

In Fig. 15, we present the summary of the lifetime survey. Measurements of lifetimes τ and
their averages 〈τ 〉 as functions of � are presented in Fig. 15(a). There is a large variability in
measurements, with τ varying by about two orders of magnitude for each acceleration. In the
lower-� range, from 0.1 to ≈0.13, the juggling solitons are more stable with longer lifetimes, which
could be a consequence of the dominance of the regular periodic bouncing state [see Fig. 11(b)].
Terwagne et al. [5] did experiments below the Faraday threshold with a more viscous liquid, with
kinematic viscosity 50 times the one of water, and also showed that longer lifetimes occur at lower
accelerations. Additionally, they observed that lifetimes also decrease when the driving frequency
increases. By analyzing the air-film thickness, the drop center-of-mass motion, and its deformation
during the drop liquid-bath contact time, they demonstrated that short lifetimes are correlated to a
small air-film thickness and to a large phase offset between the maximum of drop deformation and
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FIG. 16. Example of a sawtooth state, f = 10.3 Hz and � = 0.118. Small symbols (◦) joined by thin lines
correspond to the drop’s center-of-mass vertical position vs time. Just the values around the local maxima are
shown. Each parabola corresponds to a drop free flight above the NPHS. Larger symbols (�) joined by thick
lines are the local maxima. About 50 rebounds are observed in a 10 s time lapse.

the minimum of the vertical position of its center of mass. For fixed forcing parameters, they also
demonstrated that the lifetimes follow a Weibull distribution, which obeys the following cumulative
distribution function:

F (τ ) = 1 − e−(τ/τo)α , (4)

where τo and α are the scale and shape factors, respectively. The cumulative Poisson distribution is
obtained for α = 1.

Our data are also consistent with the Weibull distribution, as shown in Fig. 15(b) for � = 0.103
and � = 0.164. The data binning is done over 100 segments equally spaced in a logarithmic scale,
from the minimum to the maximum τ . Figure 15(c) presents the fitted parameters τo and α as
functions of �. For all �, we obtain α < 1, except at � = 0.103, for which α = 1.34 ± 0.10. A
shape factor α < 1 implies a death process that is very sensitive to initial conditions, whereas α >

1 means that the death process is by aging [5]. It seems interesting that at least for the lowest
acceleration presented in this study, at its most stable, the drop’s death process could be determined
by air-film thickness aging of some sort, which remains to be studied in more detail. The fact that
for higher � the death process depends on the initial conditions is confirmed by our experience at
creating either stable or not so stable bouncing drops; the outcome does strongly depend on the
correct timing between the drop release, its height, and the NPHS sloshing motion. On the other
hand, the maximum average lifetime 〈τ 〉 occurs at � = 0.116, consistent with the maximum of
τo at this acceleration, which quickly decreases from about 500 s to 10–30 s in a relatively small
acceleration range, namely, after a 16% increase of � from 0.116 to 0.135. Finally, in Fig. 15(d),
we present the cumulative distribution function for all of the 117 lifetime measurements (thus, for
all �). It also obeys the Weibull distribution, as shown by the fitted curve, over three orders of
magnitude in time. There is a clear mismatch at low lifetimes that could be due to a selection bias,
since we only recorded once the drop already survived for some seconds.

D. Sawtooth and period tripling states

We now turn to the characterization of some new states that we observed during the long-time
measurements campaign. First, we introduce a new longtime living state that we have named
sawtooth state, an example of which is presented in Fig. 16. Besides its long time stability, its
main dynamical feature is its sustained maximum soliton height growth, for a few cycles, followed
by a more abrupt decrease in this maximum height; the drop’s maximum height follows a sawtooth
shape, with some added noise. This is emphasized in Fig. 16 by the red diamonds joined by red
solid lines in the drop’s maximum height. This sawtooth state can be quite stable, with a lifetime of
about 3000 s in this case.

In Fig. 17(a), we present the maximum height variations as a function of the phase difference with
respect to the one of the maximum height for each video of the sawtooth state. The procedure is the
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FIG. 17. (a) Plot of height variations 	Hmax, with respect to the sawtooth maximum value, vs the phase
difference 	φ, for each video acquisition obtained every few minutes during the whole juggling soliton
lifetime. Each symbol color represents a different video acquisition. The solid line shows the jumps from
one branch to another for one of the video acquisitions. (b) Same as in (a), but additional to the sawtooth state
(◦), we present two period doubling realizations (∗,�) and two tripling period states (). All these short living
states collapse on either of the two branches of the sawtooth state or on extensions of them.

following: the three largest heights in a sawtooth state time series, as the one shown in Fig. 16, are
averaged. Then, to each maximum drop height Hn, we subtract this average, obtaining 	Hmax, which
by definition is, in general, negative. The π -unwrapped phase for each of these three maxima is also
averaged. Then, to the π -unwrapped phase of each Hn, we subtract this average phase, obtaining 	φ.
This locates the maxima of each sawtooth state time series around (0,0) in this phase representation.
For example, a regular periodic state shows up as a cloud of points closely around (0,0), with a
predominance of negative values due to their definitions. The sawtooth state clearly shows a defined
structure with this representation, with two branches that meet at (0,0). The sawtooth state drop
heights are observed to jump alternating from one branch to another as the dynamic evolves, as
shown for one of the time series (thus, for one of the videos taken every few minutes), with solid
lines between the symbols.

During this long-time measurement campaign, we also observed period doubling and period
tripling states, with typical lifetimes in the range of 10–300 s. Interestingly, when these states are
plotted in the 	Hmax versus 	φ representation, the data seem to collapse on the two branches of the
sawtooth state or even on extensions of them. This is shown in Fig. 17(b). Here, the small circles
◦ (in gray) correspond to the previous sawtooth state. Additionally, two period doubling states are
shown. The asterisks correspond to one that was stable over the 10-s measurement done shortly
after the juggling soliton was created. The data split in two regions, one around (0,0) and the other
at a certain distance on the top branch. The other period doubling state, shown with symbols �,
corresponds to a realization of a transition from a regular periodic state to a period doubling one.
The initial state is located around (−0.03,−0.3), and then the data separate into a group around
the origin and another further away in the same branch, alternating every period between these two
regions. Two period tripling states are also shown, with symbols . These define each of the three
regions, with one around (0,0) and the other two at the end of each branch. An explanation for the
collapse of this data in this representation requires further research.

V. CONCLUSIONS

We have proven that a nonpropagating hydrodynamic soliton can interact with droplets artificially
placed on top of them. The soliton relaunches a drop into the air in every cycle of its motion in a
juggling fashion and for long periods of time, with no coalescence of the drop with the liquid
bath. We have provided a state phase space for the juggling soliton that includes three different
dynamical regimes for the drop’s trajectory: periodic, periodic doubling, and erratic. We have
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studied and characterized these dynamics using histograms and return maps, and have presented
the occupation fraction for the points of highest interest of these three dynamics. To understand the
stability of this new structure, we have demonstrated that there is a synchronization and detuning of
the drop’s oscillation frequency with the soliton frequency. We speculate that this synchronization
and detuning ensures stability and longer lifetimes. Then, we have analyzed the lifetime of the drop,
concluding that the periodic behavior, which appears for the lowest-amplitude solitons, is the most
stable bouncing state. Further analysis shows that lifetimes follow a Weibull distribution. Finally,
during the long-time measurements, we discovered two new dynamic states, the sawtooth and the
period tripling states. These show exciting and richer features, require new ways of characterization,
and make even more interesting the juggling soliton’s phase space.

The juggling soliton has another outstanding feature: it confines the motion of the bouncing
drops. Drops gently blown away from their equilibrium position at the wave maximum are quickly
pulled back to their original location. The dynamic bond state between the drop and the localized
wave is reminiscent of optical tweezers. Indeed, the significant perturbation that the drop produces
on the surface wave after every impact recalls how scattered waves affect the radiation pressure
around confined particles by light beams. The juggling soliton can also trap two drops with their
equilibrium position symmetrically shifted away from the soliton center, with drops visibly interact-
ing via a long-range field sustained on the surface wave. The described behaviors are systematically
observed; hence, there is compelling evidence that the juggling soliton is a one-dimensional (1D)
hydrodynamic analog of optical tweezers. Further experimental characterization of lateral droplet
dynamics and a theoretical understanding of drop bouncing on large amplitude wave fields are the
next key steps to determining the strength of the field that confines bouncing drops.
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