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The Pi Chamber generates moist turbulent Rayleigh-Bénard flow in order to replicate
steady-state cloud conditions. We take inspiration from this setup and consider a particle-
laden, convectively driven turbulent flow using direct numerical simulation. The aim of our
paper is to develop a simple stochastic model that can accurately describe the residence
times of the particles in the flow, this time being determined by the complex competition
between the gravitational settling of the particles, and the interaction of the particles with
the turbulent structures in the flow. A simple conceptual picture underlies the stochastic
model, namely that the particles take repeated trips between the top and bottom boundaries,
driven by the convective cells that occur in Rayleigh-Bénard turbulence, and that their resi-
dence times are determined by the time it takes to complete one of these trips, which varies
from one trip to another, and the probability of falling out to the bottom boundary after
each trip. Despite the simplicity of the model, it yields quantitatively accurate predictions
of the distribution of the particle residence times in the flow. We independently vary the
Stokes numbers and settling velocities in order to shed light on the independent roles that
gravity and inertia play in governing these residence times.

DOI: 10.1103/PhysRevFluids.8.024307

I. INTRODUCTION

The settling of inertial particles in turbulent flows is relevant to a wide array of engineered and
natural systems, including the dispersion of pollutants [1], the settling of organic materials in the
ocean [2], and the cooling of Earth’s magma [3]. In this paper we are particularly motivated by
experiments conducted in the so-called Pi Chamber, a cloud chamber facility located at Michigan
Technological University which uses two temperature-controlled, saturated plates in order to repli-
cate cloud conditions via moist turbulent Rayleigh-Bénard (RB) flow. The chamber itself has been
described extensively elsewhere [4], including efforts to characterize unladen RB flow in moist
conditions [5], and for this paper it serves as a broad motivation for understanding the Lagrangian
dynamics of particles, especially their gravitational sedimentation. To this end, the Pi Chamber will
serve as the starting point, although our exploration will extend beyond the properties of the particles
seen in the experimental facility itself; i.e., our analysis spans ranges of nondimensional parameters
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that cannot be replicated experimentally in order to gain further insight into the separate roles of
gravity and inertia on the particle residence times in the flow.

Existing studies on particle laden RB turbulence have largely focused on how thermal and dy-
namic coupling affects turbulence and particle motion, primarily via two-way coupled simulations
that attempt to take into account all of the physics relevant to the onset of turbulence and the transfer
of heat and momentum [6—8]. In a somewhat similar setup to the Pi Chamber, Oresta and Prosperetti
[9] simulated RB flow and allowed solid, isothermal particles to settle from the top boundary.
Over a wide range of particle diameters, they found that mechanical and thermal coupling were
able to change the mean particle settling velocities. The results also suggested a tendency towards
“reverse one-way coupling” where varying fluid parameters had a small effect on the behavior of
the particles. In light of this, we are interested in particle residence times as a function of particle
properties and will only consider one set of flow parameters, with the understanding that for a
sufficiently turbulent environment, all of the relevant mechanisms will be present.

The study of isothermal, inertial particles was furthered in Yang et al. [10], which considered
particles with three different Stokes numbers (St). They found that both heat and momentum transfer
were significantly enhanced for the medium Stokes number due to strong coupling of the two phases,
while the coupling for the lowest and highest St was weak. This nonmonotonic relationship between
particle dispersion and St has been frequently observed in other particle-laden turbulent flows [11].
In an effort to isolate the effects of inertia from gravitational forces in turbulent, two-way coupled
RB flow, Park et al. [12] looked at nonisothermal particles and varied St and a scaled settling velocity
(V;) independently, allowing for a more detailed exploration of momentum coupling. Although this
study [12] was more focused on how thermal and mechanical coupling changed the turbulent kinetic
energy and Nusselt number of the flow, the approach of independently varying St and V; is an
essential component of the current paper.

The discussion of settling rates and residence times of small heavy particles is a well-studied
aspect of turbulent flows in general. Historically, these efforts have been focused on isotropic,
homogeneous turbulence with zero mean velocity. It has been demonstrated that the settling of
these particles is dependent on the particle inertia and the free-fall terminal velocity. When there
is no inertia, the particles on average settle at the same rate as in still fluid. However, inertia can
create a bias for particles to move towards downwards-sweeping regions of the flow [13]. The
resulting mechanics have since been studied extensively [14—16], showing that inertial clustering
and gravitational settling lead to preferential sweeping and ultimately increased settling velocities
when compared to the velocity predicted by Stokes drag in a quiescent medium. In Rosa et al.
[17], where it was shown that preferential sweeping was the dominant means of increasing average
settling velocity, the inertial and gravitational settling parameters were separated by varying the
ratio of particle to fluid density and the energy dissipation rate. Furthermore, another mechanism
proposed in [17] is called loitering, which refers to falling particles spending more time in regions
with upward flow, ultimately reducing average settling velocities. In numerical simulations of homo-
geneous isotropic turbulence, this mechanism only plays a role when nonlinear drag is considered
[18], which is not used in the present simulations.

In the present setup, we also must account for the effects of boundary layers near the wall. The
settling velocities of inertial particles through wall-bounded turbulence were studied in Bragg et al.
[19,20], which explored theoretically the physical mechanisms governing the particle transport, and
used direct numerical simulation (DNS) to explore how the various mechanisms contribute as V;
and St are varied. While it was evident that the well-known effects of preferential sweeping were
present in the bulk of the flow, the contribution of this mechanism decreased near the wall. In the
near-wall region where the gradients in the turbulence statistics are strong, the turbophoretic drift
mechanism [21] takes over and becomes the dominant mechanism responsible for the enhanced
settling speed of the particles. This is in fact the same mechanism that is also responsible for
a buildup of the particle concentration near the wall even in the absence of settling [21]. These
additional considerations complicate the problem and have led to the implementation of stochastic
models of varying complexity [22-24].
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Understanding and modeling particle settling rates and residence times are relevant to under-
standing the formation of cloud droplets in the Pi Chamber. Works such as Chandrakar and Yang
[25] have studied the droplet size distributions (DSDs) in experimental clouds by deriving analytical
solutions to the Fokker-Planck equations given various turbulence and droplet removal assumptions.
Similarly, in Saito ef al. [23], the focus was on the development of a Fokker-Planck equation and
its prediction of the broadening of DSD. In order to facilitate the comparison with statistical
theory, they took the simplest approach by assuming that the removal process (and therefore droplet
lifetime) was independent of particle size. In a similar exploration of an evolving Pi Chamber DSD,
Krueger [22] assumed that when a droplet becomes sufficiently close to the lower boundary, the
probability of falling out per unit time is determined by the terminal velocity, which is assumed to
follow Stokes law and is therefore proportional to the square of the radius. In this paper, we show
that these assumptions [22,23] are valid, but only within certain regimes of St and V;. Our proposed
model accounts for the relevance of the Bénard cells and allows us to separate the effects of inertia
and gravitational forces. This is achieved through a small number of parameters relevant to RB
flow that are dependent on St and V. We will demonstrate how these parameters vary with particle
properties, and how these variations ultimately determine residence times.

II. METHODS

A. Numerical setup

To generate statistical data for the development of our stochastic model, we employ a DNS of
the turbulent Rayleigh-Bénard flow. The resulting flow is then one-way coupled with Lagrangian
particles, meaning that while the fluid is able to impart momentum to the particles, the particles do
not modify the background flow. As noted above, the setup is broadly motivated by the conditions
found in the Pi Chamber, and therefore is similar to the methods used by MacMillan et al.
[26], except that in the present case the particles are nonevaporating and one-way coupled to the
surrounding flow. While we will provide a brief overview of the DNS model as it pertains to
this paper, further details can be found in Richter et al. [27], Park et al. [12], and Helgans and
Richter [28].

The Navier-Stokes equations with the Boussinesq approximation are solved for mass, momen-
tum, and energy conservation of the carrier phase:

V-u=0, (1)
ou . g s
— 4u-Vu=-Vg + k=T +vV-uy, 2)
ot Ty
oT 2
§+U~VT=C{VT, 3)

where u is the fluid velocity, T is the temperature, and 7 is a pressure variable which enforces
the divergence-free condition of Eq. (1). In Eq. (2), the buoyancy term in the vertical direction is
dependent on the acceleration due to gravity g = gk, and the reference temperature Tp = 300 K.
The terms v and o refer to the kinematic viscosity and heat diffusivity of the fluid. Since we are
considering solid, one-way coupled particles, there is no need for the additional source terms from
particle coupling that are found in MacMillan et al. [26] and Park et al. [12]; this will allow us to
vary the gravity felt by each particle in later analysis without concern for the effects that the particles
may have on one another or the flow.

Along the upper and lower boundaries, the fluid velocity is governed by a no slip condition. The
aspect ratio of the domain is Ly/L, = L,/L, = 2, and the number of grid points is [N, Ny, N;] =
[128, 128, 128]. The 2:1 aspect ratio is similar to that found in the Pi Chamber. However, unlike
the Pi Chamber, the domain is horizontally periodic owing to the pseudospectral discretization in
the x and y directions. Second order finite differences are employed for derivatives in the vertical
z direction. The temperatures of the upper and lower boundaries of the rectangular domain are set to
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Tiop = 280 K and Ty,or = 299 K, resulting in a temperature difference AT = 19 K. This corresponds
to a Rayleigh number of Ra = (gATLf)/(Tgva) = 107. This value is used for all simulations in this
paper, along with a Prandtl number Pr = v/o = 0.715.

The particles evolve in a Lagrangian frame of reference according to the following set of
equations:

>
i @
avi, 1 . .
P __ X i
7 = T—p(uf — Vp) — gpk, (5)

where the evolutions of the ith particle’s position xﬁ, and velocity V;, depends solely on 7,, g,
and the local fluid velocity u; interpolated to the droplet location using trilinear interpolation. All
particles begin their lifetime at the midplane with zero initial velocity and are taken out of the
flow when they reach the bottom boundary. It is worth noting that, for simplicity, Eq. (5) neglects
terms from the full Maxey-Riley equations [29]. As will be evident in later sections, the model uses
statistics taken directly from the DNS. Therefore, while these additional terms may result in some
quantitative changes to the probability density functions (PDFs), any additional physics captured in
the simulation could straightforwardly be accounted for without any changes to the model.

The timescale 7, = pad? /18vp; is the Stokes timescale, which governs the time taken by a
particle of diameter d to reach equilibrium with the local velocity of a fluid that has density ps
and kinematic viscosity v. The gravitational acceleration experienced by the particle, g,, is separate
from that experienced by the fluid g, thus allowing us to specify the particle settling rate independent
of the buoyancy forcing of the fluid. Using Kolmogorov microscales to nondimensionalize the
velocities in Eq. (5), we obtain the following:

dv! . A

Std—f: = (i, -¥,) - Vi k. (6)
As aresult, it is evident that particle motion is solely dependent on two nondimensional parameters:
St and V;. For the purposes of this paper, they will be defined as St = 7,,/7; and V; = 1,8, /v where
7, and vy, are the vertically averaged Kolmogorov time and velocity microscales, respectively. Note
that the nondimensional time 7, = ¢/t¢ is used in Eq. (6) to define St and V;. A separate time
scale that will be used extensively in this paper is a convective time scale defined as 7. =t /..
The parameter z, is the eddy turnover time given by 7, = 2L./,/(u?)y,, where ()y, indicates a
volumetric and temporal mean of the vertical velocity (u;) squared, a turnover time definition used
in multiple works by Sakievich [30,31]. For this simulation, 7, = 3.95 min; how this relates to
predicting particle residence times will be explored in a later section.

Unladen RB flow has been studied extensively in the literature [32], and therefore will not be a
focus of discussion in this paper. More details on the specific setup used to inspire and generate the
flow in this application can be found in Chang et al. [4] and MacMillan et al. [26]. The focus for
the remainder of this paper will be on understanding and modeling the lifetime behavior of solid,
one-way coupled particles as a function of St and V;.

B. Model description

The processes and mechanisms that govern particle transport in turbulent Rayleigh-Bénard flow
are very complicated. However, the conceptual framework behind our model assumes that a rela-
tively small number of flow quantities and simple processes determine the probability distribution
of the particle residence times. This conceptual framework is inspired by the observation that
particles are circulated globally by the convection cells in the flow, causing them to take a number
of “elevator trips” before eventually falling out; the number of these trips largely influences the total
residence time.
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FIG. 1. Sample distribution of the nondimensional residence times (7") as defined in Eq. (7), resulting from
the DNS (e). To emphasize the importance of elevator trips on the qualitative nature of the distribution, see the
trajectories from the first (a), second (b), and third (c) peaks, as well as the tail of the distribution (d).

Concerning the dependence of the particle dynamics on St and V;, a couple of limiting cases have
straightforward interpretations. In the limit of zero inertia and terminal velocity, i.e., V; — 0 and
St — 0, the particles will act as fluid tracers. These are continuously circulated by the convection
with no chance of falling out in finite time because we do not consider diffusive processes. In
contrast, as V; — oo and St — oo the infinite inertia eliminates the effect of the flow and prevents
the particle from ever accelerating to its terminal velocity. Another frequently made simplifica-
tion assumes that V; ~ finite and St — 0. In this case, for particles that are initially distributed
homogeneously, the mean velocity of the particles would be the Stokes settling velocity because
their lack of inertia means that the particles sample the flow uniformly for all times. This is
the assumption behind the well-known Rouse profile of suspended particulate matter [33]. In the
majority of applications, however, including the droplets found in the Pi Chamber, the presence of
a finite nonzero St introduces the complicating role of inertia.

The elevator trips that inspire this model are highlighted in Fig. 1, which shows a sample prob-
ability distribution of particle residence times from the DNS nondimensionalized by t, [Fig. 1(e)],
and identifies with color shading representative trajectories that correspond to its most obvious
features. If the trajectories were approximated to be sinusoidal, we could consider one of these
elevator trips to be one period that begins and ends at the midplane. The first two peaks in the
distribution are a result of those that either had an initial downward velocity and only traversed
the distance from midplane to bottom boundary, or those that had an initial upward velocity and
completed one-half period before traversing the same final distance. The remaining particles then
complete an unspecified number of elevator trips before ultimately traversing the distance from the
midplane to the bottom boundary. It is then evident that, in order to approximate the residence time
of a particle, we need four pieces of information: (1) (A,) how likely the particle is to have an initial
downward velocity, (2) (po.) the amount of time it takes the particle to complete one elevator trip,
(3) (Ay) how likely the particle is to fall out of the flow after each trip, and (4) (o5) how much time
it takes the particle to traverse from the midplane to the bottom boundary before falling out.

These are the four parameters that the stochastic model takes into account to predict the full
distribution of residence times, and are expected to be a function of both St and V;. Our goal is to
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FIG. 2. Demonstration of the stochastic model for four trajectories given particles of the same size, where
{E=—1, N,=0}(a),{E=1, N,=0}(b), {£ =—1, N, =1} (c), and {£ = —1, N, = 6} (d). The residence
time predictions take into account the chance of falling out after each elevator trip, A; (e), the likelihood of
having an initial downward velocity, A, (f), the time required to complete an elevator trip (as defined in the
“Model description” section), p,, denoted by solid lines (g), and the time to traverse from the midplane to the
bottom boundary, p,, denoted by dashed lines (h).

demonstrate this dependence in the formulation of this model. For the remainder of this paper, the
reported values of p, and p, will be nondimensionalized by the eddy turnover time z,.

In order to construct a stochastic model based on this conceptual framework, two steps are
required to determine the residence time of the ith particle, T;.

(1) Determine whether the particle has an initial upward or downward velocity based on A,4.
While no additional considerations must be taken for an initial downward velocity, if it is upward,
add the time associated with half of an elevator trip (p./2).

(2) Determine if the particle will fall out of the flow based on A ;. If it does, add the time required
to pass from the midplane to bottom boundary p;, and consider the particle dead. If the particle does
not fall out, add the time required for an elevator trip p,, and repeat step 2 until the particle does fall
out of the flow.

How this simple process replicates the trajectories shown in Fig. 1 is demonstrated visually in
Fig. 2. In Figs. 2(a) and 2(b), we see particles that complete zero elevator trips and have initial
downward and upwards velocities respectively. Figure 2(c) shows a particle completing one elevator
trip before falling out, while Fig. 2(d) shows a particle completing multiple elevator trips.

The procedure described above may be summarized mathematically as follows. Let & denote a
random variable living in a discrete sample space that takes values —1 and +1, with probability
P(& =—1) = A4, and hence P(§ = +1) =1 — 1;. The configuration £ = —1 is used to denote
that the initial particle velocity is down, while £ = +1 denotes that it is up. The nondimensional
residence time for the ith particle, T;, is then specified by the model to be

N
Ti=Y BU.EWY +ps (7)
j=0
where B(j =0,£§=—-1)=0,8(=0,E =+1)=1/2,and B(j, &) = 1 Vj > 0, &, with N, being

the total number of elevator trips taken by the particle before it falls out. The quantity Pk simply
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denotes the value of p, at the jth step of the iteration. It is worth emphasizing that the values of
pe and p, are drawn from the full distribution obtained in the DNS. While the use of mean values
would be simpler, it would prevent us from replicating the full residence PDF, as there would only
be residence times at integer multiples of p,.

In order for this new model to be fully closed and predictive, the statistical quantities summarized
above would have to be modeled. However, as a first step we simply specify them using the
DNS data. The advantage of doing this is that it allows the simple conceptual idea underlying the
stochastic model to be tested. We intend to show that, given full knowledge of these few essential
parameters, the framework is sufficient to replicate the DNS results. Given the complexity of particle
motion in turbulent Rayleigh-Bénard flow, it is not at all obvious a priori that our simple conceptual
framework is sufficiently detailed to quantitatively capture the particle residence times in the flow.
Once the accuracy of this conceptual modeling framework has been established, it will then make
sense to try to model the input statistics and so derive a fully closed, fully predictive model. While
there is some discussion of potential simplifying assumptions in the conclusion, the development of
a fully closed model is left to future work.

III. RESULTS

Here we discuss the particle residence time behavior observed in the DNS, as well as the
performance of the model as St and V are varied. The varying of St and V; follows two different
strategies. In the first, V; and St are inherently coupled, as they would be in a physical experiment
where the acceleration of gravity felt by the particles g, would equal that responsible for the
buoyancy forcing g. While this is consistent with physical experiments, it does not allow for the
effects of gravity and inertia to be untangled, which can hinder an understanding of the problem.
To explore this, we therefore also consider cases where V; is held constant (by varying g,) while
varying St, allowing us to distinguish the effects of gravitational settling from particle inertia on the
particle residence times.

A. Coupled St and V;

For the coupled case, we consider particles with a range of Stokes numbers St = [107°, 10717,
which, since the flow and particles experience the same gravitational acceleration, implies the range
V, = [1073, 10?]. For reference, a 0.5 micron salt acrosol in the Pi Chamber has St ~ O(107°) and
V, ~ O(107%), and a 20 micron cloud water droplet has St ~ O(1073) and V; ~ O(10°). While our
range encompasses realistic values, we are also intentionally considering a wider range in order to
more comprehensively understand the problem and test the model.

The four statistical quantities required for the model are shown in Fig. 3, as measured by the DNS
and used in the model results of Figs. 4 and 5. For both distributions, a discrete PDF is generated
directly from the DNS data and then fit with cubic splines in order to create a continuous cumulative
distribution function (CDF). The model then uses inverse transform sampling by pulling from this
CDF to generate pseudorandom numbers that adhere to the probability distribution of our choice.
The PDF of period residence times, P(p,), seen in Fig. 3(a), clearly shows that for this range of
properties, the majority of particles complete an elevator trip in accordance with the convective time
(t.). Note that there are no data for the largest St, as at this size no particles completed an elevator
trip. The distribution of times for a particle to traverse from the midplane to the bottom boundary,
P(pp), seen in Fig. 3(b), however, is strongly correlated with St, with smaller times being associated
with larger particles. This is because the increased settling velocity and inertia of the particles lead
to a larger terminal velocity and increasingly negligible effects of the flow. The chance of having
an initial downward velocity, A4, is approximately 50% for the smaller St, but rises to 100% for the
largest. Since there is no mean vertical fluid velocity at the midplane, we would expect minimally
inertial particles initialized there (with no initial velocity) to have an equal chance of being carried
up or down. Similarly, the percent chance of falling out during an elevator trip, A, starts below 10%
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FIG. 3. The four input parameters from the coupled St and V, case: the distribution of elevator trips as
defined in the model description, p, (a), the distribution of the time to pass from the midplane to bottom
boundary, p, (b), as well as the chance of an initial downward velocity, A4, and the chance of falling out after
an elevator trip, A s (c), expressed as probabilities.
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FIG. 4. For each order of magnitude considered in the coupled St and V; case [(a)—(e)], the model has been
tested by comparing the full distributions of nondimensional residence times (7') to the DNS results.
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FIG. 5. The results of the coupled St and V; case as shown by the comparison of mean nondimensional
residence times (7;), with a reference slope included for comparison to the power law relationship predicted by
Stokes drag (a). The same results are also plotted where the mean residence time is instead nondimensionalized
by the settling time of a given particle in quiescent flow (7, ;) (b).
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but rises to 100% for the larger St, meaning all particles of that size are unable to complete a full
elevator trip due to their inertia and gravitational settling..

With these four inputs, Fig. 4 compares the PDFs of residence times as measured in the DNS to
those generated by the model. Figure 5 compares the mean residence times predicted by DNS and
the model as a function of St. We see that the model captures nearly all relevant features of the DN'S
PDF, including the peaks at low ., and is quantitatively accurate for all ranges of St. Unsurprisingly,
we see that the larger particles, those with both high St and V; values, on average fall out faster
than their smaller counterparts. Recalling that the residence times in Figs. 4 and 5(a) have been
normalized by the convective time scale of the flow, we see the two expected peaks around 1/4
and 3/4 periods. Beyond those peaks, the linear nature of the log-scale PDFs suggests qualitative
agreement with the results of Patocka et al. [3], who demonstrated that the number of suspended
particles in a system could be robustly modeled with an exponential decay relationship dependent
on the settling velocity and flow properties. In Fig. 5, we see that for St < 10~4, the particles all take
an average of ten elevator trips before falling out. In this regime, the assumption made in Saito et al.
[23] that lifetime is independent of particle properties may be sufficient. It appears that the trajectory
is dominated by convection, and the slight nonzero slope is only caused by the different distributions
of pp (as p., A, and Ay remain largely unchanged). These results are qualitatively similar to what
was seen by Patocka et al. [3], which also identified a regime of slow sedimentation dominated by
large-scale circulation. The number of trips continues to decrease, until beyond St = 10~ we see
that the residence time is on average less than one convective time scale. This decrease in residence
times is a result of the higher chance of falling out after each elevator trip, and the decreased time to
pass from the midplane to the bottom boundary. It is also in this regime that we see agreement with
the simplification made in Krueger [22], which assumed that settling rate follows Stokes law and that
the mean lifetime is therefore proportional to 1/St [shown by the reference slope in Fig. 5(a)]. This
trend is perhaps more obvious in Fig. 5(b). It shows the mean residence time nondimensionalized
by t,, which is the amount of time a given particle will take to settle in quiescent flow, defined
as 7, = 0.5L;/(7,gp). In this context, it is evident that particles with St > 1072 fall out at the rate
predicted by Stokes law. Considering these results, it is evident that the transition that occurs around
St = 10~* in Fig. 5 is a result of the relative importance of the convective and settling time scales.
For particles with St < 107#, the vast majority of the residence time is a result of the elevator trips,
which are a function of flow properties, and not their settling through the viscous boundary layer.
When St > 1074, the elevator trips make up an increasingly smaller percentage of the residence
time, as reflected in the sharp increase in A ¢ that also occurs around St = 10~* [see Fig. 3(c)]. Once
St > 1072, particle residence times are almost entirely determined by the particle’s Stokes drag
[see Fig. 5(b)]. However, since St and V; are still linked, it is still unclear whether this transition
is associated with inertia (via St) or gravity (via V;). In the next section, we will attempt to clarify
those effects.

B. Fixed V,, varying St

For this portion of the analysis, we choose three constant values of V; = [0.1, 1.0, 10]. In the
previous case, we were limited in how high of an St value we could consider because a correspond-
ing Vj greater than 10? results in the particle falling out almost immediately. Here, however, we
shift the range of values to St = [1073, 10%] to encompass the transition between low to substantial
inertial effects. Figure 6 shows the resulting residence PDFs for the full range of St along with some
representative trajectories measured in the DNS.

As expected, it can be seen that for the same range of Stokes numbers, increasing the settling
velocity decreases the residence time on average. Also of note is that by V; = 10, none of the
particles are able to complete an elevator trip as the flow is unable to carry them above the midplane
due to their large settling velocity. It seems that in this regime, residence time is better parametrized
by the particle’s inertia and terminal speed as opposed to a convective scale. Of more interest,
however, is how the residence times vary as a function of St given a constant V;. These results are
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FIG. 6. DNS results from the constant V; cases, for all particles over the range St = [1073, 10?]: residence
PDFs (a) and representative trajectories [(b)—(d)].

presented in Fig. 7, which shows that for low Stokes numbers (<10~!), the residence time remains
solely a function of V. As St increases, particle residence times initially decrease, but past St & 10
they begin to increase again.

Figure 8 compares the PDFs for both the DNS and the model given the sample case of V,; =
1.0. We see that the model is again able to quantitatively replicate the PDF for the entire range of
St, especially for the lower orders of magnitude. We believe that the discrepancy for the highest
orders is a result of obtaining fewer data points for p, due to the differences in the elevator trips
that will be highlighted momentarily. In contrast to the case where St and V; are linked, Fig. 9
shows that at a fixed settling velocity, St can change the distributions of p, and p,. For the largest
particles (St > 10), we see an increase in the mean residence time in Fig. 7. The two main causes
for this can be found in Fig. 9. First, we see that the time to complete an elevator trip (p,) increases
substantially, due to their delayed response to turbulence combined with the tendency to filter out
small-scale motions. Secondly, the higher inertia also implies that they take longer to approach their
terminal velocity, as evidenced by the increased time to travel from the midplane to the bottom
boundary (pp).

The other two model input parameters can be found in Fig. 10 for all three constant V; values
over the entire considered range of St. We can clearly see that A; is solely a function of V. We
also notice that A ; begins to increase once St is greater than 10~!. This happens when particles are
beginning to depart from streamlines, and are therefore flung towards the bottom boundary where

051
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FIG. 7. Summary of the mean nondimensional residence times (7') over the range St = [10~3, 10?] for each
constant V.
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FIG. 8. The results of the fixed V,, varying St cases as shown by the comparison of residence time
distributions for the DNS and the model. For clarity, each order of magnitude of St is compared indivi-
dually [(a)—(e)].
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FIG. 9. For the sample case of V; = 1.0, distributions for the time to complete and elevator trip, p, (a), and
the time to travel from the midplane to the bottom boundary, p; (b).
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FIG. 10. For all three constant V; cases, the percent chance of the particle initially having a downward
velocity, A, (a), and the percent chance of falling out after each elevator trip, A, (b).
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FIG. 11. Validation of the model results, shown by the mean nondimensional residence times (7°) across
the entire range of St for each constant V; value.

they fall out. This would account for the initial dip in residence times that is seen in Fig. 7. At even
higher St, the chance of falling out continues to approach 100% as St increases. This is because,
as St continues to increase, the drag force on the particle becomes negligible compared with that
produced by gravity, which pulls it towards the bottom boundary.

Figures 9 and 10 can be summarized in the following way. For small St (<10~"), all particles
are subject to the same turbulence-based convective time scale during their elevator trips, and the
percent chance of falling out remains constant, leading to little change in their overall residence
times. As St begins to increase (107! < St < 10'), elevator trips are still governed by the flow
convective time scale, but the percent chance of falling out begins to increase due to the particles
departing from streamlines, leading to a decrease in residence times. Once St becomes very large
(>10"), the particles have enough inertia to strongly resist the effects of the flow, and the elevator
trips themselves become longer since they are experiencing a low-pass-filtered version of the
surrounding turbulence. Even in the V; = 10 case where particles rarely complete elevator trips,
their high inertia prevents them from reaching their Stokes terminal velocity. This results in an
increase in residence times, and we would expect the residence times to continue to increase along
with St. Figure 11 shows how the model is able to match this behavior that was already demonstrated
in the DNS results.

IV. DISCUSSION AND CONCLUSION

In this paper, we have proposed a stochastic model that reduces the complexities of particle-
laden turbulent Rayleigh-Bénard flow to a simple conceptual picture. Motivated by the Pi Chamber
experimental facility [4], we used one-way coupled DNS with Lagrangian particles to model their
behavior and record statistics associated with their residence times. We focused in particular on the
independent roles of St and V; in dictating particle residence times in the flow.

In order to simplify the complex motion of the particles in the flow, we introduced the idea of
an elevator trip which is the approximately sinusoidal motion generated by the convective Bénard
cells. The four important statistics to describe this motion are the chance of a particle having an
initial downward velocity, the time it takes to complete an elevator trip, the chance of falling out
after an elevator trip, and the time it took to fall from the midplane to the bottom boundary. We have
demonstrated that when these input statistics for the model are prescribed using DNS data, then the
model predictions for the residence times accurately replicate the DNS results. That it should do so
is not at all trivial given the complexity of particle motion in turbulent Rayleigh-Bénard flow, and
the simplicity of the approximations underlying the model. This test accomplishes two things. First,
it demonstrates that with perfect knowledge of the inputs, the stochastic model provides a very good
approximation of both the mean and full distribution of residence times. Secondly, it shows that this
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FIG. 12. Summary of the potential simplifying assumptions in various regimes of St and V; for both the
coupled (a) and uncoupled (b) case.

simple conceptual framework provides insight into the physical phenomena governing the particle
residence times in this system.

When St and V; are coupled, as they would in experimental conditions, we saw that the amount
of time to complete an elevator trip remained constant, but as St increased more particles had an
initial downward velocity, and they were more likely to fall out after a given elevator trip. This
unsurprisingly results in larger particles having shorter residence times. To clarify the independent
roles of St and V;, we chose three constant, representative values of V; and varied St for each to
isolate the effects of inertia. In these runs, we saw that for small St, residence times are solely a
function of V since the lifetime is ultimately dictated by the particles settling through the boundary
layer, which is not aided by particle inertia when St is small. However, as St begins to increase,
so does the chance of falling out after each elevator trip, leading to an initial decrease in residence
times. This corresponds to particles departing from streamlines and being flung out of the turbulent
core of the domain. For the largest St, the increased inertia leads to longer elevator trips and slow
relaxation to their Stokes terminal velocity, resulting in a reversion towards longer residence times.
Using this knowledge, we can look at our coupled St and V; results in a new light. For particles with
St < 10~*, motion is dominated by the flow properties that determine the number of elevator trips.
In contrast, the residence time of particles with St < 10™* is increasingly more dependent on the
particle’s settling rate in quiescent flow.

In the end, we demonstrated that the simple conceptual framework underlying the stochastic
model provides a helpful way to understand the behavior of the particles in the flow, and if the input
statistics are perfectly described, then it also provides accurate approximations for both the mean
residence times and their complete probability distributions. At the moment, the model relies on
DNS data to prescribe the input statistics. In future work, a key point will be to develop models for
the four statistical inputs themselves, so that the stochastic model for the particle residence times
is fully closed. From the results we can already see that the convective time scale (z.) is helpful in
predicting the average time it takes to complete an elevator trip. While it is beyond the scope of this
paper, there is promise in finding similar relationships for the other inputs.

To support this effort, Fig. 12 provides a summary of the simplifying assumptions that can be
made in various regimes. Figure 12(a) summarizes the coupled results, in which the limit cases are
apparent. For very small particles (St < 107°) that nearly behave like fluid tracers, the average
elevator trip is approximately the eddy turnover time (p, =~ t.), the particles are carried to the
bottom boundary by the flow (o, & 7./4), there is an equal chance of an initial upward or downward
velocity when initialized at the midplane (A, & 0.5), and the chance of falling out after each elevator
trip tends towards zero (A; — 0). For the largest particles (St 2 10~1), the particles are driven to
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the bottom boundary by their settling velocity (p, ~ 1,), and particles nearly always have an initial
downward velocity (A4 ~ 1.0) and fall out of the flow at the first opportunity (As ~ 1.0).

Figure 12(b) shows the simplifying assumptions that can be made in light of the uncoupled case.
Over the entire range of St, when V; < 0.1 the mean vertical fluid velocity determines the chance
of an initial downward velocity (A4 ~ 0.5), and when V; > 10, the particles nearly always have an
initial downward velocity (A; ~ 1.0) and fall out of the flow at the first opportunity (A7 ~ 1.0).
We also observed that the chance of falling out after each elevator trip was solely a function of
the settling velocity [A; = f(V;)] until St 2> 10!, at which point inertia begins to play a role. The
assumption that the mean time to complete an elevator trip is approximately equal to the eddy
turnover time (7,) holds as long as St < 1 and V, < 1, beyond which the inertia and gravitational
settling become a contributing factor.

This demonstrates that, in certain regimes, many of the components of the model proposed here
can be simplified, reducing the dependence on the DNS. For instance, the salt aerosols often injected
into the Pi Chamber are on the order of St ~ O(10~%), which allows us to make assumptions about
all four input parameters. It is also worth noting that since the length of each elevator trip is decided
independently of the others, we are free to vary particle properties after each trip. If the particle
size were to be updated based on the relative humidity encountered, this model could potentially
be extended to evaporating particles. In conjunction with a number of the potential simplifying
assumptions, this could provide a model with even more direct applications to the Pi Chamber.
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