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Stochastic model for predicting the shape of flexible fibers in suspensions
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We describe the shape of moderately flexible fibers settling under inertial conditions
in dilute and semidilute suspension and examine the hydrodynamic forces on the fibers
that create different fiber shapes. The analysis is based on numerical simulations, using
an immersed boundary method, to couple the motion of the fibers to the fluid dynamics.
The direct numerical simulation results show that while fiber curvature can have a non-
monotonic dependence on fiber concentration, fiber torsion monotonically increases with
increasing the concentration of fibers. Based on the concept of splitting the total forces
into a mean and a stochastic part, we propose a reduced-order, stochastic model that can,
with a reasonable accuracy, model the three-dimensional fiber shapes at different fiber
concentrations, flexibility, and inertia. This model also helps us understand how random
hydrodynamic fluctuations and fluid-mediated forces due to the presence of neighboring
fibers contribute to the total forces on the fibers and fiber shapes.
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I. INTRODUCTION

In a suspension of settling flexible fibers, the shape of the fibers varies depending on the
hydrodynamic interactions of each fiber with the flow, the fluid-mediated interactions with the
neighboring fibers, and fiber-fiber contacts. Understanding the shapes that flexible fibers adopt in a
suspension is important in many applications such as the pulp and paper industry [1], composite
materials [2], biomaterials [3], and biological flows [4]. The shapes of the fibers significantly
influence the properties of materials made from fiber networks [5], that often rely on the settling
process as part of their manufacturing [6]. The effects of long-range interactions on the shape
of flexible-body microorganisms, known for exploiting the advantages of collective swimming in
suspensions [7], are crucial for their ability to overcome the gravitational force in environmental
flows [8]. While the shape of a single flexible fiber settling in a viscous flow has been studied in
the past (e.g., see [9] for a review), this paper examines the shape of settling flexible fibers in a
suspension.

The shapes that fibers take in a suspension depend on different parameters, such as fiber
concentration, fiber flexibility, the density ratio between the fibers and the suspending fluid, the
fiber aspect ratio, and the viscosity of the fluid. Most studies of the shape of settling flexible fibers
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have focused on the settling of a single fiber in a viscous flow [10–16]. These studies have shown
that as the bending rigidity of the fibers decreases, the fiber bending increases and finally saturates,
while the fiber shape transitions from V shaped to U shaped and occasionally W shaped. Isolated
flexible fibers in a turbulent flow can, however, adopt more complex shapes with multiple inflection
points, or buckle, depending on the fiber length, flexibility, and turbulence intensity [17–22]. In shear
flows, a single fiber can curl to shapes with high local curvatures [23]. In compressional flows, a
single straight flexible fiber can even buckle into helical shapes [24]. Proximity to a rough wall can
also induce more bending of flexible fibers [25]. Simulations of two or three settling flexible fibers
in viscous flows have revealed that the fiber-fiber interaction modifies the shape and orientation of
settling fibers [15,26].

In suspensions with many flexible fibers, the shape and bending of flexible fibers influence the
shear viscosity of fiber suspensions [27], mechanical entanglement [28], flocculation [29], and the
diffusion coefficient [30] of fibers. The knowledge of shape of flexible fibers in suspensions is
however very limited. In the past, several studies have focused on the orientation of rigid fibers
in suspensions [31–35], or clustering patterns of settling rigid fibers [36–38] and settling weakly
flexible fibers [12,39,40]. For a suspension of settling fibers, in a previous study [29] we have
shown that flexible fibers bend more as the concentration of fibers in the suspension increases.
In a channel flow, Dotto and Marchioli [41] and Dotto et al. [42] showed that the fibers’ bending
depends on the location of the fibers with respect to the wall and the aspect ratio of the fibers. In
the laboratory experiments of fiber suspensions in a channel flow by Alipour et al. [43], the local
curvature of flexible fibers controlled the rotation rate and orientation of the fibers. For a suspension
of dilute fibers in a homogeneous, isotropic turbulence, Sulaiman et al. [44] demonstrated that the
fiber deformation can be characterized by the ratio of fiber length to a length scale that measure the
ratio of turbulence forcing to fiber flexibility.

In the present paper, our goal is to understand how the shapes of settling flexible fibers vary
in suspensions of different concentrations. To this end, we consider a suspension of moderately
flexible fibers, settling in an inertial regime, at different fiber concentrations that represent dilute
and semidilute regimes. We consider two different values of the Galileo number, measuring the
ratio of gravitational to viscous forces, and two different values of dimensionless fiber rigidity.
First, we use direct numerical simulation (DNS) of the fluid phase, combined with an immersed
boundary method for the coupling between the fluid and fiber phase, as detailed in previous studies
[22,45–47]. Second, we use the data from our numerical simulations to propose a physics-based,
reduced-order, stochastic model for predicting the shape of the fibers in different regimes. More
specifically, our goal is to answer two fundamental questions.

(i) How do the average and stochastic parts of the forces on the fibers change due to increased
fiber-fiber interactions at higher fiber concentration?

(ii) Can reduced-order models for fiber forces give an accurate account of the fiber shapes?
The decomposition of forces into an average and a stochastic part in the former question has been

discussed in the literature for suspensions of spherical particles [48–51]. However, this decomposi-
tion is more complicated in the case of fibers, as the forces vary along the fiber length. Regarding
our second question, analytical models have been used to find the shape of a weakly flexible fiber
settling in a Stokes flow [52], and a flexible fiber fixed in a two-dimensional (2D) free-streamline
flow [53]. Here, we are inspired by these studies to propose a model for finding the fiber shapes in
three dimensions, and in situations where inertia and fiber-fiber interactions are significant. In this
regard, we solve a simplified version of the Euler-Bernoulli equations, decomposed into the normal,
tangential, and binormal directions, with modeled forcing applied to them.

We use the local fiber curvature, local fiber torsion, fiber end-to-end distance, fiber height,
and fiber out-of-plane height as measures of fiber deformation. Deformation of flexible fiber is
commonly quantified by the fiber end-to-end distance, either in numerical simulations [41,42,44]
or experimental studies [18,21]. Local fiber curvature has also been used to measure the bending
deformation of fibers both numerically [19] and experimentally [19,43]. However, apart from the
microstructure studies of fiber assemblies for composite materials [54], the local torsion of the
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fibers and the corresponding out-of-plane height have received less attention in the context of fibers
suspended in a fluid.

The paper is organized as follows. We discuss the numerical results in Sec. II, discuss the
stochastic model for forces on the fibers and finding fiber shapes in Sec. III, and state the conclusions
in Sec. IV.

II. NUMERICAL EXPERIMENTS

A. Numerical formulation

The motion of a thin flexible and inextensible fiber is described by the Euler-Bernoulli beam
equation under the constraint of inextensibility

∂2X
∂t2

= ∂

∂s

(
T

∂X
∂s

)
− γ

∂4X
∂s4

+ 1

r

g
g

− Fh + Fc, (1a)

∂X
∂s

· ∂X
∂s

= 1, (1b)

and subject to zero torque, force, and tension boundary conditions at the free ends of the fiber:

∂2X
∂s2

= 0, (2a)

∂3X
∂s3

= 0, (2b)

T = 0, (2c)

where X is the fiber position, s is the curvilinear coordinate along the fibers, t is time, T is the
dimensionless tension, Fh is the fluid-fiber interaction force per unit length, and Fc is the repulsive
force used to model interactions between adjacent fibers. The parameter r ≡ �ρ/ρ0 = 0.1 is the
ratio of the density difference between fluid and the fibers, �ρ, to the density of the base flow,
ρ0, and g is the gravitational acceleration vector with the magnitude of g. For a fiber with length
L, surface area A f , flexural rigidity EI , settling due to its density difference �ρ with respect to
a suspending fluid density ρ0, and thus experiencing a gravitational force Fg = �ρA f Lg, the di-
mensionless bending rigidity is γ = EI/(FgL2�ρ/ρo), where fibers with lower γ are more flexible.
To nondimensionalize Eqs. (1), we have used the following characteristic scales: L for the initial
length of fibers for length scale, L/Us for time scale where Us = √

rgL is a characteristic velocity
scale, ρ0Us

2 for tension, and ρ0U 2
s /L for the gravitational, fluid-fiber interaction, and repulsive

forces.
The equations of motion of the fluid phase are described by the incompressible Navier-Stokes

equations, which in a Cartesian frame of reference, and in nondimensional form are expressed as

∂u
∂t

+ ∇ · (u ⊗ u) = −∇p + 1

Ga
∇2u + f , (3a)

∇ · u = 0, (3b)

where u is the velocity field, p is the pressure, f is a volume force from the action of fibers on the
fluid, and Ga =

√
gL3�ρ/ρ0/ν is the Galileo number, with ν being the fluid kinematic viscosity. We

solve Eqs. (1) and (3) numerically using a finite difference discretization on an Eulerian mesh x for
the fluid and a Lagrangian mesh X for the fibers, where the fluid and solid motions are coupled using
the immersed boundary method, as explained and validated in detail in our previous work [29,45].
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TABLE I. Summary of the DNS simulations performed. In all the simulations, the fiber aspect ratio is rp =
20, the domain size is (Lx, Ly, Lz ) = (2π, 2π, 4π ), and the number of Eulerian grid points is (Nx, Ny, Nz ) =
(128, 128, 256).

Simulation Ga γ nL3 Simulation Ga γ nL3 Simulation Ga γ nL3

1 160 0.1 0
2 160 0.1 3 8 160 0.05 3
3 160 0.1 7 9 160 0.05 7
4 160 0.1 10 10 160 0.05 10 14 40 0.1 10
5 160 0.1 15 11 160 0.05 15 15 40 0.1 15
6 160 0.1 25 12 160 0.05 25 16 40 0.1 25
7 160 0.1 35 13 160 0.05 35 17 40 0.1 35

Our numerical model includes a lubrication force, and a repulsive force to simulate the short-range
interactions and contacts between the fibers, respectively. The details of the hydrodynamic, contact,
and lubrication forces used in our model are explained in the Appendix.

A summary of the simulations performed for this paper is given in Table I. In simulations
1–7, we consider a suspension of moderately flexible fibers, with γ = 0.1, settling at a Galileo
number of Ga = 160, at different fiber concentrations. The simulations in this set (except for the
nL3 = 0 and 35 simulations) overlap with the results published in our previous work [29], where
we examined the effects of fiber concentration on settling velocity, fiber orientation, and end-to-end
distance. The nL3 = 0 simulation represents the settling of a single fiber. Simulations 8–13 cor-
respond to the settling of more flexible fibers, with γ = 0.05, at different fiber concentrations. In
addition, we have conducted simulations 14–17 at Ga = 40 to investigate the effects of inertia on
fiber shape. Simulations 7, 13, and 17, with the highest fiber concentration of nL3 = 35, will be
used to test the extrapolation of our stochastic model. The ratio of fiber length to diameter in all the
simulations is rp = 20, and each fiber is discretized using 21 Lagrangian nodes. The domain size
is (Lx, Ly, Lz ) = (2π, 2π, 4π ), and the Eulerian grid size is (Nx, Ny, Nz ) = (128, 128, 256), with
negative z being in the gravity direction. Triple periodic boundary conditions are applied, and the
dimensionless time step is �t = 0.0005. Initially, fibers are uniformly distributed in the domain
with random locations and orientations. The statistically steady state of the fiber suspensions is
independent of the initial state.

B. Fiber frames of reference, curvature, and torsion

To quantify the shape of the fibers better, we consider the curvilinear coordinates in which the
locations of the points on the fiber are given by a curve parametrized by the arc length s along the
fiber: X(s), where X′(s) satisfies the inextensibility condition, X′(s) · X′(s) = 1. Then the Frenet
frame on the fiber can be formed with the unit tangent vector, and the unit normal vector at s is
defined as s(s) = X′(s) and n(s) = X′′(s), respectively [see Fig. 1(a)]. The unit binormal vector is
found from t(s) = s(s) × n(s). The fiber curvature at any local point is defined as κ (s) = |X′′(s)|
and the fiber torsion at any local point is defined as τ (s) = n′(s) · t(s). The curvature and torsion
measure the fiber bending with respect to the normal and binormal directions, respectively. The
curvature always has a positive sign, while the torsion can take either positive or negative signs.
To facilitate comparisons of individual fibers, a new frame of reference (x′, y′, z′) can be defined
in the center of each fiber, where x′, y′, and z′ are the local tangent, binormal, and normal vectors,
respectively. Using the Tait-Bryan angles between (x, y, z) and (x′, y′, z′), a rotation matrix is built
that transforms the fiber location from the (x, y, z) frame to the (x′, y′, z′) frame.

To quantify the shape of the fibers, we define three parameters, as illustrated in Fig. 1. Fiber
end-to-end distance, d , is a measure of the bending of the fiber due to its curvature or torsion. The
fiber height, h, measures the height of the fiber on the osculating plane and is defined as the largest
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FIG. 1. (a) Different frames of reference for the fibers. (b) Schematic of the definition of the geometrical
properties of a fiber in an (x′, y′, z′) frame of reference.

absolute value of y′ attained by all the points on the fiber. The out-of-plane fiber height, l , is the
height of the fiber on the normal plane and is defined as the absolute value of the difference between
the maximum and minimum z′ for all the fiber points. The value of l will be zero if the fiber is
planar.

C. Direct numerical simulations results

In Fig. 2 we show the snapshots of the settling fibers at different fiber concentrations at two
different values of fiber flexibility γ = 0.05 and 0.1 at Ga = 160. In all the cases, the fibers
adopt random orientation and different bending values (e.g., see our previous work [29] for more
quantitative analysis of fiber orientation and bending at different fiber concentrations). However,
as the fibers are moderately flexible, they mostly demonstrate nearly straight, V, or U shapes.
Obviously, there are variations in the shape of the fibers and it can qualitatively be conjectured
that the shape variations increase with increasing the fiber concentrations and fiber flexibility. In
our previous work [29], we have shown that the concentration nL3 = 3 corresponds to a dilute
regime, where the fiber-fiber interactions are important but the fiber clumping is insignificant, and
the concentrations nL3 = 10 and 25 fall in a semidilute regime, where fibers significantly clump
together and interact with each other. In the latter regime, the fiber-fiber interaction forces can play
an important role in changing the shape of the fibers.

Shapes of all the fibers in the (x′, y′, z′) frame, projected on the osculating and normal planes,
in suspensions with different fiber concentrations are shown in Fig. 3 for γ = 0.1 and in Fig. 4
for γ = 0.05. As the fiber concentration in the suspension increases, the fiber bending both
in the osculating plane and in the normal plane increases. Decreasing the fiber rigidity from
γ = 0.1 to 0.05 also makes the fiber bending increase significantly. In the osculating plane, the
vast majority of fibers are bent in the opposite direction of gravity (positive z′), while as nL3

increases or as γ decreases, more fibers are bent in the direction of gravity. In the normal plane,
however, the fiber bending does not demonstrate a preferred direction, which is expected due to
symmetry.

In Fig. 5, we show the trends of variations of fiber curvature, fiber torsion, fiber height, fiber
out-of-plane height, and fiber end-to-end distance with fiber concentration, nL3, for three different
data sets. In this figure, fiber curvature and torsions have been averaged over the fiber length
(denoted by 〈·〉 in the rest of the paper), and also averaged over all the fibers in the domain (denoted
by ·̄ in the rest of the paper), and the fiber heights and the end-to-end distances are averaged over
all the fibers. The averaged fiber curvature has a nonmonotonic dependence on nL3. The averaged
curvature of a single fiber is considerably higher compared to suspensions. As nL3 increases, the
averaged curvature decreases in the dilute regime, nL3 < 10, as the settling velocity is hindered
[29] and the hydrodynamic forces on the fiber are reduced. In the semidilute regime, nL3 > 10,
the rate of hindering of settling velocity slows down and the fiber-fiber interaction become more
significant. In this regime, the averaged curvature slightly increases with increasing nL3, except for
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FIG. 2. Settling fiber suspensions at different fiber flexibility and concentrations at Ga = 160. The color
map is a label for the individual fibers.

nL3 > 15 at Ga = 160 and γ = 0.1 that shows a decreasing trend of 〈κ〉 with nL3. Fiber heights are
correlated with the fiber curvature, and both fiber height and curvature increase as fiber flexibility or
the Galileo number increases. Averaged fiber torsion that is generated by the binormal forces is less
dependent on the gravitational forces and more dependent on the fiber-fiber interaction forces. So
as shown in Fig. 5(b), the averaged torsion increases monotonically with the fiber concentration
and increases as the fiber flexibility rises, but does not reveal a significant dependence on the
Galileo number. Fiber torsion and out-of-plane height exhibit the same trends. At Ga = 40, the
fiber out-of-plane height values are lower compared to those at Ga = 160, although their averaged
torsion values are the same. This is because the averaged fiber curvatures are higher at Ga = 160
and this contributes to the fibers gaining larger out-of-plane heights with similar averaged torsion
values. The variation of the averaged fiber end-to-end distance, a measure of the total deformation
of fibers, with nL3 exhibits a closer correlation with the fiber heights rather than fiber out-of plane
heights since the former in general attains higher values and contributes more to the total fiber
deformation.
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FIG. 3. The DNS fiber shapes (from 15 000 fibers in each case) projected on the osculating plane (top row)
and projected on the normal plane (bottom row) for different fiber concentrations and γ = 0.1 and Ga = 160.
The color map is a label for the individual fibers.

Different fiber shapes at varying fiber concentrations and flexibility are due to the changing nature
of hydrodynamic and fiber-fiber interaction forces. To investigate the force effects on fiber shapes,
in the following section we propose a stochastic model that can predict the fiber shapes closely
compared to DNS and help us understand how fiber forces change at different concentrations and
fiber flexibility.

FIG. 4. The DNS fiber shapes (from 15 000 fibers in each case) projected on the osculating plane (top row)
and projected on the normal plane (bottom row) for different fiber concentrations and γ = 0.05 and Ga = 160.
The color map is a label for the individual fibers.
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FIG. 5. Variation of averaged fiber curvature (a), torsion (b), height (c), out-of-plane height (d), and end-
to-end distance (e) with nL3 for different data sets. The stars show the predictions of the stochastic model
discussed in Sec. III, where the stars at nL3 = 35 delineate the predictions of the model with extrapolated
empirical values.

III. STOCHASTIC MODEL FOR FIBER SHAPES

To understand the shape of the flexible fibers better, we focus on answering the first question:
how do the average and stochastic parts of the forces on the fibers change by increasing the fiber
concentration? First, let us demonstrate how the forces on fibers determine their shapes. Assuming
that the fibers on average have reached a statistically steady state, which is true when the bulk
properties of fiber suspension are of interest, and using the normal vector relations, the first part of
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FIG. 6. (a) Distribution of forces on a fiber in the original frame of reference. (b), (c) Decomposition of
forces into normal and tangential forces (b) and binormal forces (c). Scales are different between different
panels.

Eqs. (1) can be simplified to

∂

∂s
(T s) − γ

∂2

∂s2
(κn) = F, (4)

where F is the sum of hydrodynamic, fiber contact, and gravitational forces. After expanding
Eq. (4), the force balance equations in the tangential, normal, and binormal directions are respec-
tively derived as

T = −3

2
γ κ2 +

∫ 0.5

−0.5
Fsds, (5)

∂2κ

∂s2
+ 1

2
κ3 − κτ 2 − κ

γ

∫ 0.5

−0.5
Fsds = −Fn

γ
, (6)

2
∂κ

∂s
τ + κ

∂τ

∂s
= −Ft

γ
, (7)

where Fs, Fn, and Ft are the sum of the forces in the tangential, normal, and binormal directions,
respectively. A 2D version of these force balances has been derived by Alben et al. [53], where
tangential and binormal forces were absent in their isolated fixed fibers. Equations (6) and (7)
describe a system of coupled nonlinear ordinary differential equations, the solution to which will
give the fiber curvature and torsion. To solve Eqs. (6) and (7) we still need closures for the forces Fs,
Fn, and Ft . While several studies have been dedicated to finding analytical solutions for the forces
exerted by the fluid on either isolated flexible fibers, weakly flexible fibers, or fibers in a Stokes
flow regime [39,52,53,55], analytical forms for the forces on moderately flexible fibers, settling
inertially, in a suspension are not available. Therefore, we resort to our DNS for finding models for
the tangential, normal, and binormal forces on fibers.

Figure 6 shows a typical distribution of forces on a fiber from DNS. The interaction of the fiber
with other fibers, as well as the fluctuations in the flow field, cause a nonuniform distribution of
the forces on the fiber. The tangential forces exhibit a singular behavior at the fiber ends. The
normal forces and binormal forces vary rather smoothly along the fiber and exhibit local peaks.
We also note that the forces on fibers have an average and a stochastic part, the latter arising from
the fluctuations caused by the settling process in an inertial flow as well as by the interactions
with other fibers. The stochastic part of the forces can be characterized by the standard deviation
of the probability distribution functions (PDFs) of forces on all individual fibers. In the following
section we first examine the average and standard deviation of forces from DNS and propose a model
for them.
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FIG. 7. Averages (top row) and standard deviations (bottom row) of the normal force, Fn, and the binormal
force, Ft , along the fiber at γ = 0.1 and Ga = 160. Dashed black lines show the original analytical solution of
Xu and Nadim [52] and solid black lines show the modified analytical solutions, as explained in the text, for
nL3 = 25.

A. Average and stochastic parts of fiber forces

The normal, tangential, and binormal forces on fibers can be split into an average and a stochastic
part

Fn(s) = F̄n(s) + F ′
n (s), Fs(s) = F̄s(s) + F ′

s (s), Ft (s) = F̄t (s) + F ′
t (s), (8)

which also leads to a decomposition of fs as fs(s) = f̄s(s) + f ′
s (s). The constraints F ′

t (−0.5) =
F ′

t (0.5) = 0 and f ′
s (−0.5) = f ′

s (0.5) = 0, which are requirements of Eqs. (5) and (7), are placed on
the stochastic parts of the forces. In this decomposition, the average parts of the forces are found
from averaging over all the fibers in the domain and over several time steps (here we used a fixed
number of fibers for averaging for all the simulations) and the stochastic part of the forces are
the difference between the averaged and total forces on each individual fiber. In Fig. 7 we show the
averages and standard deviations of the normal and binormal forces along the fiber length from DNS
for different fiber concentrations at Ga = 160, and in Fig. 8 we show the averages and standard
deviations of the tangential forces and the integral of the tangential force: fs(s) = ∫ s

−0.5 Fs(ζ )dζ

for the same cases. The averages of the binormal forces are close to zero for all the cases. The
magnitude of the averages of the normal and tangential forces and the standard deviations of the
normal, tangential, and binormal forces increase monotonically with increasing nL3.

Here, our goal is to find empirical models for estimating the averages and standard deviations of
Fn, Fs, and Ft by matching them with our DNS data. These models will be used in the stochastic
reduced-order model that will be discussed in Sec. III C. Analytical solutions of Fn and Fs, for a
single weakly flexible fiber settling in a Stokes flow, were derived by Xu and Nadim [52]. We
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FIG. 8. Averages (top row) and standard deviations (bottom row) of the tangential force, Fs, and the integral
of the tangential force, fs, along the fiber at γ = 0.1 and Ga = 160. Dashed black lines show the original
analytical solution of Xu and Nadim [52] and solid black lines show the modified analytical solutions, as
explained in the text, for nL3 = 25.

compare these solutions to the averages of the forces from our DNS data in Figs. 7(a) and 8(a).
In their original form, these solutions overestimate the magnitude of the forces on our inertial and
moderately flexible fibers settling in suspensions. In addition, these analytical solutions are singular
at the fiber ends. To obtain a good fit to our DNS forces and remove the singularities at the ends,
we modify these analytical solutions by introducing compressed curvilinear coordinates and also
by dividing the analytical forces by constants. The compressed curvilinear coordinate is defined as
sc = s/C(s), where C(s) = 1.1 at fiber ends, and C(s) = 1.5 otherwise. By using these coordinates
in the solutions of Xu and Nadim [52], the forces become more uniform along the fibers, which is a
consequence of inertial effects and fiber-fiber interactions. We also divide the normal and tangential
forces computed in these compressed coordinates by a constant that is 6 at Ga = 160 and 24 at
Ga = 40. The modified forces for estimating the averages of Fn, Fs, and fs (found from integrating
the modified Fs) are presented in Figs. 7(a), 8(a), and 8(b), and show functional forms that are close
to the DNS data.

Next, inspired by the DNS results, we assume functional forms for the estimations of the standard
deviation of Fn, Fs, and Ft as follows. We observe that the standard deviation of the normal forces at
any point on the fiber can be closely modeled as σ (Fn) = an|Fn| + Cn, where an and Cn are constants.
The modeled σ (Fn) using this formulation that matches the DNS data at nL3 = 25 is shown in
Fig. 7(c). Similarly, we observe that the standard deviations of Fs and Ft can be modeled as σ (Fs) =
anFn + Cs and σ (Ft ) = Ct , with Cs and Ct being constants. The modeled standard deviations of
Fs and Ft at nL3 = 25 are presented in Figs. 8(c) and 7(d), respectively. As will be discussed in
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FIG. 9. (a) Schematic of the Gaussian kernels used to model forces due to fiber-fiber interactions and
hydrodynamic fluctuations. (b), (c) An example of the distribution of the total forces along the fiber for the
suspension with nL3 = 25 and γ = 0.1 and Ga = 160 generated by the stochastic model (b) and from DNS (c).

Secs. III B and III C, the constants an, Cn, and Cs can be combined with other empirical constants in
the total force to simplify the model.

It should also be noted that the trends of variations of the averages and the standard deviations
along the fibers and their modeled forms at the data sets with Ga = 160, γ = 0.05 and Ga = 40,
γ = 0.1 were very similar to those shown in Figs. 7 and 8. So, while not presenting the results here,
we use the same models for estimating the averages and standard deviations of the forces as the
ones discussed above in those data sets as well.

B. Total force model

The total forces on each fiber can be modeled as the sum of a mean and a stochastic part, as
stated in Eq. (8). As discussed in Sec. III A, we model the mean part of the forces using the modified
analytical solutions. The stochastic part of the forces arises from the interactions with other fibers,
similar to the particle-particle interactions in suspensions [56–59], and hydrodynamic fluctuations
due to the inertial effects, similar to the fluctuations in hydrodynamic forces observed in the inertial
settling of nonspherical particles [60–62]. To model these effects, we assume Gaussian kernel
functions [see Fig. 9(a)]. The Gaussian kernel function has the property of smoothly distributing
the effects of a local disturbance in forces on different numerical nodes on the fiber. In Fig. 9(a),
the function with width Wc and height Ac represents a force due to the fiber-fiber interactions,
including contacts and fluid-mediated interactions, and the function with width Wn and height An

delineates a force due to hydrodynamic fluctuations. To choose proper length scales for Wc and
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Wn, we performed a fast Fourier transform (FFT) on the stochastic past of the normal component
of the forces on the fibers from DNS. The averaged FFTs over all the fibers in each simulation
exhibited two peaks at lengths 5/21 and 1/21, with the latter being absent in the case of single fiber
simulation. Therefore, we assigned these two values to the widths of Gaussian kernel functions as
Wc = 5/21 and Wn = 1/21. The amplitudes of the Gaussian kernel functions will be determined by
minimizing the difference between the DNS and stochastic model results as will be explained in the
following.

We assume that the stochastic part of the forces can be modeled as the sum of nc Gaussian kernel
functions that represent the disturbances to the forces due to fiber-fiber interactions and N (N = 21
being the number of mesh points on each fiber) Gaussian kernel functions that represent the noise
perturbations due to hydrodynamic fluctuations. For each fiber concentration, the probable number
of fiber contacts or significant fluid-mediated hydrodynamic interactions, nc, can be estimated from
the average number of fibers that can be found in a sphere with a diameter of L, one fiber length.
This number can be computed to be nc = 1, 3, 5, 7, 12, and 17 for nL3 = 3, 7, 10, 15, 25, and 35,
respectively. For a single fiber nc = 0. The sum of the fiber-fiber interaction forcing and the noise
forcing gives the stochastic part of the forces, expressed as

F ′
n (s) = A∗

c

nc∑
i=1

ariσ
[
Fn

(
sri

)]
e(−|s−sri |/Wc ) + A∗

n

N∑
i=1

briσ [Fn(si)]e
(−|s−si|/Wn ), (9)

F ′
s (s) = A∗

c

nc∑
i=1

criσ
[
Fs

(
sri

)]
e(−|s−sri |/Wc ) + A∗

n

N∑
i=1

driσ [Fs(si)]e
(−|s−si |/Wn ), (10)

F ′
t (s) = A∗

c

nc∑
i=1

eriσ
[
Ft

(
sri

)]
e(−|s−sri |/Wc ) + A∗

n

N∑
i=1

friσ [Fn(si)]e
(−|s−si |/Wn ), (11)

where A∗
c and A∗

n are the amplitudes of fiber-fiber interaction and noise forcing, respectively; ari ,
bri , cri , dri , eri , and fri are random numbers between −1 and 1 that generate variations in the
amplitudes of the forcing; and sri is another random value between −1/2 and 1/2 that generates
a random location for the position of the fiber-fiber interaction. In summary, the model states that
the stochastic part of the forces can be expressed as the sum of nc randomly positioned fiber-fiber
interaction forces, and 21 (the number of mesh points on each fiber) random forcings, positioned at
each fiber mesh point. The amplitudes of these forcings randomly vary between −A∗

c and A∗
c and

−A∗
n and A∗

n, respectively, and are also scaled by the local standard deviations of the forces. Other
stochastic models for drag forces in particle-laden flows have been used in the literature [48–50],
where similar to the present paper, fully resolved simulations have been used to inform the models
for the stochastic part of the forces on particles.

Now we use the closures we found for the standard deviations of the force distributions on the
fibers in Sec. III A to simplify the stochastic force part models in Eqs. (9)–(11) to

F ′
n (s) = Ac

nc∑
i=1

ari

∣∣Fn
(
sri

)∣∣e(−|s−sri |/Wc ) + An

N∑
i=1

bri |Fn(si)|e(−|s−si|/Wn ), (12)

F ′
s (s) = Ac

nc∑
i=1

cri Fn
(
sri

)
e(−|s−sri |/Wc ) + An

N∑
i=1

dri Fn(si )e
(−|s−si |/Wn ), (13)

F ′
t (s) = Ac

nc∑
i=1

eriCt e
(−|s−sri |/Wc ) + An

N∑
i=1

friCt e
(−|s−si |/Wn ). (14)

In this model, we have used a constant Ac = A∗
can and dropped the Cn and Cs constants in the models

for σ (Fn) and σ (Fs) for simplicity as we found they have an equivalent effect of varying Ac and An
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on the overall results. The advantage of the models in Eqs. (12)–(14) is that they only rely on three
empirical constants, Ac, An, and Ct , which makes the optimization process relatively simple.

Examples of modeled configurations of the total forces on a fiber are shown in Fig. 9(b). For
comparison, examples of the forces from DNS are also presented in Fig. 9(c). The modeled and
DNS forces show the same features in general. In both cases, the normal forces rise at the fiber
ends, the tangential forces attain large values at the fiber ends, and the values of the binormal forces
are small compared to the normal and tangential forces. For both modeled and DNS data, the local
disturbances to the forces appear as local peaks that occur at the same location for all the three
components of the forces, and have the same length scales between DNS and the model.

C. Fiber shape model

Now, we focus on answering the second question: can we use the predictions for fiber forces to
model the fiber shapes at different fiber concentrations? Using the stochastic models for Fn, Fs, and
Ft discussed in the previous sections, we first generate 15 000 different configurations for the forces
on the fibers for each case, using different random values for ari , bri , cri , dri , eri , and fri for the forcing
amplitudes, and sri for the forcing location. We have also generated a probability density function
that slightly favors the fiber ends for the location of fiber forcing. This is to take into account the
higher probability of fiber ends to interact with other fibers. Next, for each forcing configurations
we integrate Eqs. (6) and (7) numerically using a second order finite difference scheme to find the
curvature κ and torsion τ on each mesh point on the fiber. While the approximated functions for
Fn and Fs provide a reasonably close representation of our DNS forces for the nodes in the interior
of the fiber mesh, on the fiber ends the accuracy of these modeled functions is still compromised
due to the singular nature of fiber forces. To overcome this problem, we follow the numerical steps
below to integrate Eqs. (6) and (7).

(i) We apply the boundary conditions κ = 0 and τ = 0 at both ends of the fiber and find κ (2)
and κ (N − 1) using second order forward and backward schemes, respectively. These values are,
however, inaccurate since Fn(1), Fn(N ), fs(s1), and fs(sN ) have reduced accuracies. To correct for
these, we multiply κ (2) and κ (N − 1) by a correction factor α = 4, the value of which was found
by matching the numerical and DNS values for κ (2) and κ (N − 1).

(ii) We integrate Eqs. (6) and (7) by marching forwards from node 2 to N − 1 and also by
marching backwards from node N − 1 to node 2 to find κ forward, τ forward and κbackward, τ backward,
respectively. We find the intersection of κ forward and κbackward and assign the nodal values of κ forward

and τ forward to the nodes 2 to the point of intersection and the nodal values of κbackward and τ backward

to the nodes from the point of intersection to the node N − 1 to find the final curvature and torsion
values on all the nodes.

Once the curvature function κ (s) and the torsion function τ (s) are known, the fiber shape coordi-
nates can be found by numerically solving the following system of ordinary differential equations:

d

ds

⎡
⎣s(s)

n(s)
t(s)

⎤
⎦ =

⎡
⎣ 0 κ (s) 0

−κ (s) 0 τ (s)
0 −τ (s) 0

⎤
⎦

⎡
⎣s(s)

n(s)
t(s)

⎤
⎦, (15)

dX(s)

ds
= s(s). (16)

The same transformation process as for DNS fibers is used to rotate the fibers from the original
(x, z) frame to their (x′, z′) Frenet frame of reference.

In the numerical steps explained above, for the stochastic model to be complete, we still need
to find the constants Ac and An and Ct that correspond to the strength of fiber-fiber interaction
and random forces. To do so, we use a gradient descent optimization algorithm to minimize the
difference between the results of the DNS and the stochastic model. In this regard, we define
a measure of error for any parameter of interest, ξ , as follows. We generate the PDFs of ξ by
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FIG. 10. Plots of the empirical constants used in the models to estimate the stochastic part of the fiber
forces. Thin solid lines in (b) and (c) show linear fits. Values of Ac, An, and Ct for nL3 � 25 are found by
minimizing a cost function that measures the difference between DNS and model data, while the values at
nL3 = 35 are extrapolations of the trends found for nL3 � 25.

considering its variation over a fixed number of fibers (15 000 fibers in this case) both from the
DNS and the stochastic model data. We define an error value for the parameter ξ as the difference
between the PDFs (denoted Fprob. dist.) of the DNS and stochastic model, normalized by the area
under the DNS probability distribution function: E (ξ ) = ∫ |F DNS

prob. dist. − F model
prob. dist.|dξ/

∫
F DNS

prob. dist.dξ .
We compute the error values for the following parameters: fiber end-to-end distance, d , fiber height,
h, fiber out-of-plane height, l , averaged curvature along the fiber, 〈κ〉, maximum curvature along the
fiber, max(κ ), the standard deviation of curvature along the fiber, σ (κ ), averaged torsion along the
fiber, 〈|τ |〉, maximum torsion along the fiber, max(|τ |), and the standard deviation of torsion along
the fiber, σ (|τ |). We define a cost function as the sum of these errors and minimize this function
using a gradient descent algorithm to find the optimized values of Ac, An, and Ct that give the closest
match between the DNS and stochastic model.

The optimized values of Ac, An, and Ct , as presented in Fig. 10, have been obtained for fiber
concentrations nL3 � 25 in each data set. At nL3 = 35, we have extrapolated the trends found for
nL3 � 25 to estimate the values of Ac, An, and Ct . The amplitude Ac, representing the strength
of fiber-fiber interaction forces, increases monotonically with fiber concentration, but reaches a
plateau for nL3 > 10. This is a threshold for transitioning from dilute to semidilute regime, where
the mobility of fibers starts to be limited [29]. Therefore, at nL3 = 35, we have simply assumed that
Ac can be found as the average of the previous two data points. The amplitude An, that models
the effects of hydrodynamic fluctuations, decreases linearly with increasing nL3 for nL3 � 25.
To extrapolate this linear trend to nL3 = 35, however, we note that the fitted lines cross An = 0
before reaching nL3 = 35 for all the cases and therefore we assume An = 0 at nL3 = 35. The
amplitudes of Ac and An reveal the nature of the stochastic forces in each concentration regime.
At low concentrations, the amplitude of fiber-fiber interaction forcing compared to noise forcing is
small, and Ac = 0 for the single fiber simulation. The stochastic part of forces at low concentrations
mainly comes from the fluctuations in the hydrodynamics forces. For high fiber concentrations,
on the other hand, the forcing due to fiber-fiber interactions becomes dominant and An linearly
decreases until it reaches zero at high enough concentrations. The values of Ct , a measure of the
strength of binormal forces, start from Ct = 0 for the single fiber simulation, and increase linearly
with nL3 for all the three simulated data sets. We use these linear extrapolations to find Ct values at
nL3 = 35. All coefficients Ac, An, and Ct show the same trends for the three sets of simulations with
different Ga and γ values. This indicates that the functional form of the stochastic model proposed
here can be suitable for all these three data sets. The exact values of the plateaued values for Ac in
Fig. 10(a), and the slopes of the linear regressions for Ac and Ct in Figs. 10(b) and 10(c), however,
vary from case to case.

In Figs. 11–13, we present the PDFs of the fiber parameters at Ga = 160, γ = 0.1, and different
fiber concentrations, computed based on the DNS and the stochastic model. In these figures, for
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FIG. 11. PDFs of the fiber end-to-end distance, d , fiber height, h, and fiber out-of-plane height, l , for
γ = 0.1 and Ga = 160 at different fiber concentrations: nL3 = 3, 10, 25, and 35 (top to bottom rows) from
DNS and the stochastic model. The circles delineate the PDFs from raw data, and the smoothed PDFs are
indicated by solid lines. The vertical lines show the averages. At nL3 = 35, the stochastic model uses the
extrapolated empirical constants.

nL3 = 3, 10, and 25, the constants An, Ac, and Ct used in the stochastic model were obtained by the
optimization process explained above. At nL3 = 35, to test the validity of the model beyond the set
used for the optimization process, the stochastic model has used the extrapolated values of An, Ac,
and Ct .

In terms of geometric properties, d , h, and l , as shown in Fig. 11, the DNS and stochastic model
PDFs are close for d and l , and slightly different for h. Effects of increasing nL3 on the distribution
of PDFs of d , as demonstrated by both DNS and model data, are mostly to shift PDFs toward
higher values of d as the fiber mobility becomes limited at high fiber concentrations (see [29] for
a more detailed discussion). As nL3 increases, the probability of finding fibers with lower heights
increases, a trend which is also predicted by the model. Increasing the fiber concentration in the
suspension significantly widens the PDFs of the fiber out-of-plane height, indicating that the fiber-
fiber interactions induce more torsion. While this trend is correctly followed by the model as well,
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FIG. 12. PDFs of averaged curvature, 〈κ〉, maximum curvature, max(κ ), and standard deviation of curva-
ture, σ (κ ), on each fiber for γ = 0.1 and Ga = 160 at different fiber concentrations: nL3 = 3, 10, 25, and 35
(top to bottom rows) from DNS and the stochastic model. The circles delineate the PDFs from raw data, and the
smoothed PDFs are indicated by solid lines. The vertical lines show the averages. At nL3 = 35, the stochastic
model uses the extrapolated empirical constants.

the accuracy of the model is slightly reduced at nL3 = 25. The averages of all the parameters in
Fig. 11 are close between DNS and the model. The model with extrapolated constants at nL3 = 35
predicts the distribution and averages of PDFs of d , h, and l fairly closely. The differences between
the features of the PDFs from DNS and the model at this fiber concentration, particularly for h and
l PDFs, can be due the general trend of the model slightly deviating from DNS results at higher
concentrations, as also observed at nL3 = 25.

For fiber curvature properties, as presented in Fig. 12, the DNS and model PDFs are fairly similar;
they have very close averages, and follow the same trends for increasing fiber concentration. The
PDFs from the stochastic model are, however, in general narrower than those from DNS, indicating
that the model is creating less variations in curvature compared to DNS. Using extrapolated
empirical constants at nL3 = 35 has not changed the accuracy of the model in predicting the
curvature properties of the fibers. As for the PDFs of the absolute values of torsion, presented in
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FIG. 13. PDFs of averaged absolute torsion, 〈|τ |〉, maximum absolute torsion, max(|τ |), and standard
deviation of absolute torsion, σ (|τ |), on each fiber for γ = 0.1 and Ga = 160 at different fiber concentrations:
nL3 = 3, 10, 25, and 35 (top to bottom rows) from DNS and the stochastic model. The circles delineate the
PDFs from raw data, and the smoothed PDFs are indicated by solid lines. The vertical lines show the averages.
At nL3 = 35, the stochastic model uses the extrapolated empirical constants.

Fig. 13, the agreement between DNS and the model varies depending on the fiber concentration and
the quantitative metric used. Fiber torsion reached higher values compared to curvature, particularly
at high fiber concentrations, and demonstrated more abrupt local variations. Therefore, minimizing
the differences between torsion PDFs from DNS and the model was more challenging compared to
geometric and curvature properties. The predictions of the model for the PDFs of |τ | are reasonable
for nL3 = 3 and 10, although the averages of the PDFs do not match in all the cases. At nL3 = 25 and
35, the DNS distribution of |τ | is much wider and demonstrates long tails, indicating large variations
in fiber torsion. Modeled PDFs follow these trends, but are biased towards smaller values. Despite
these differences between the PDFs of |τ |, the model is still capable of generating out-of-plane
heights for the fiber shape that are close to DNS. The averages of the PDFs of |τ | from DNS and
the model are also close.
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D. Validity of the model

An important question to address is how well the proposed stochastic model can predict the
DNS results in different regimes where fiber concentration, inertia, and flexibility vary. While
answering this question requires a large set of data, which is beyond the scope of this paper, in
Fig. 5, we compare the averages of the fiber curvature, torsion, height, out-of-plane-height, and
end-to-end distance from DNS and the model, for all the three data sets we have simulated. In this
figure, for nL3 � 25, the three empirical constants in the stochastic model have been found using
an optimization process to minimize a cost function defined based on the differences between the
DNS and the model, as explained in Sec. III C. At nL3 = 35, the empirical constants are found by
extrapolating the trends found for nL3 � 25. This will allow us to test the validity of the model
beyond the training set used for finding the empirical constants.

The difference between the averages of the shown parameters for all the cases, either with
optimized or extrapolated constants, is less than 10%, with the trends being closely predicted by
the model. When using the extrapolated constants, the model overpredicts fiber heights, but does
not show a compromised accuracy in predicting other parameters. The accuracy of the model in
predicting 〈κ〉 and h̄ is lower for the single fiber simulation compared to the low concentration
fiber suspensions at Ga = 160 and γ = 0.1. The single fiber simulation reveals higher averaged
curvature and height compared to the fibers in suspensions. At Ga = 160 and γ = 0.05, where
the fiber average curvature, torsion, and deformations are the highest, the accuracy of the model
for 〈κ〉, 〈|τ |〉, and h̄ is slightly lower compared to their counterpart simulations in other data sets.
These trends indicate that the accuracy of the model might in general be lower for cases where the
fiber deformations are large, e.g., in cases where fiber flexibility or inertia significantly increases.
Nonetheless, as mentioned above, these conjectures should be verified in future studies.

IV. SUMMARY AND CONCLUSIONS

In the present paper, we have investigated the shape of flexible fibers in inertially settling
suspensions at different fiber concentrations, fiber flexibility, and inertia, using DNS coupled to an
immersed boundary method for fiber-fluid coupling. Fibers’ averaged curvature and height revealed
a nonmonotonic dependence on fiber concentration, nL3. In the dilute regime, with nL3 < 10, fiber
curvature and height decreased with increasing fiber concentrations as hindering of fiber settling
velocities reduces the hydrodynamic forces on the fibers. For semidilute regimes, with nL3 > 10,
where hindering effects are reduced, averaged curvature and height showed a smaller dependence on
nL3. These parameters both increased for a higher value of fiber flexibility or inertia. Fiber torsion
and out-of-plane height both increased monotonically with nL3 as the binormal forces are enhanced
by fiber-fiber interactions and are not dependent on the gravitational forces. Fiber out-of-plane
heights also increased with increasing fiber flexibility and inertia. While the out-of-plane fiber
heights were smaller than fiber heights, their values were not negligible. Therefore, the planar shape
assumption for fibers settling in suspensions may not be valid, particularly at higher fiber flexibility
and higher fiber concentrations.

To understand the fiber shapes, we examined the forces on the fibers by splitting the total forces
into mean and stochastic parts. The DNS results showed that the means of the normal and tangential
forces along the fibers can be represented by a modified version of the analytical solutions found
by Xu and Nadim [52] for a single weakly flexible fiber settling in a viscous fluid. The mean of
the binormal forces was zero. To quantify the stochastic parts of the forces, we proposed closure
models that consist of the sum of Gaussian kernel functions with amplitudes that scale with the local
standard deviation of forces on the fiber. The Gaussian kernel functions represent interactions with
other fibers and also random fluctuations in hydrodynamic forces due to inertial effects. The effects
of random fluctuations were more significant compared to those of fiber-fiber interactions in dilute
regimes (nL3 < 10). However, fiber-fiber interactions played a more important role in semidilute
regimes (nL3 > 10).
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Using the models for the mean and stochastic parts of fiber forces, we employed a reduced-order
model to generate different three-dimensional (3D) shapes that fibers can adopt in suspensions
of settling fibers at different fiber concentrations. A gradient descent algorithm was used to find
the empirical constants needed for the reduced-order model, by minimizing error functions that
were defined based on the differences between PDFs of different fiber parameters from DNS and
the model. The predictions of the model were also tested for a higher fiber concentration using
extrapolated empirical constants. The model could generate fiber shapes similar to those observed
in DNS, with reasonably agreeing PDFs of fiber curvature, torsion, end-to-end distance, fiber height,
fiber out-of-plane height, and fiber end-to-end distance. The similarity of fiber shapes between
DNS and the model suggests that the forms of the forces we have assumed in the model are close
representations of the forces on fibers in settling suspensions.

The present paper has investigated 3D geometric properties, curvature, and torsion of inertial
settling fiber suspensions. We have proposed models for the forces on fibers in a suspension and
explored the possibility of using these models to simulate the shape of the fibers. For future work,
the validity of the models should be examined for a wider of range of fiber flexibility, concentration,
and inertia and for different flow settings to explore the possibility of extrapolating the model to
parameter sets for which DNS is an expensive option. In addition, with our current flow solver,
performing simulations at low Ga was not feasible. For future studies, the transitional effects of
increasing Ga from viscous to inertial regimes on the fiber forces should be investigated.
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APPENDIX: DETAILS OF THE FORCES IN THE IMMERSED BOUNDARY METHOD

In our simulations, fluid and solid motions are coupled using an immersed boundary method [63].
In this approach, there are two sets of grid points: a fixed Eulerian grid x for the fluid and a moving
Lagrangian grid X for the fibers. The volume force, f , arising from the action of the filaments on
the fluid is obtained by the convolution of the singular forces estimated on the Lagrangian nodes
onto the Eulerian mesh; these are computed using the fluid velocity interpolated at the location of the
Lagrangian points. We perform the interpolation and spreading using the regularized delta functions
proposed by Roma et al. [64]. The fluid and solid equations are linked together by a hydrodynamic
force:

Fh = U ib − U
�t

, (A1)

where U ib is the interpolated velocity on the Lagrangian points, U is the velocity of the Lagrangian
points, and �t is the time step. The interpolation and spreading between the two grids are performed
using the smooth delta function introduced by Roma et al. [64]:

U ib =
∫

V
uδ(X − x)dV, (A2)

f = ρc

∫
L f

Fδ(X − x)ds, (A3)

where the factor ρc = �ρA f (ρoL2), with A f being the cross sectional area of the fiber, arises from
choosing different scales for Eulerian and Lagrangian forces.

The lubrication model proposed by Lindström and Uesaka [65], for the lubrication force between
two infinitely long cylinders, is used to include the short-range interactions between fibers. For
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nonparallel cylinders, Yamane et al. [66] derived a first order approximation of the lubrication force:

F l
1 = −12

Ga sin θ

ζ̇

ζ
, (A4)

where ζ denotes the shortest distance between the cylinders, ζ̇ is the velocity along the shortest
distance, and θ is the angle between the axis of the two cylinders. This force is converted into a
force per unit length, i.e., it is divided by �s, the Lagrangian grid spacing such that it is applicable
to the Euler-Bernoulli equations. Equation (A4) has a singularity for the case of parallel cylinders
as F l

1 → ∞ as θ → 0. For parallel cylinders, a first order approximation of the force per unit length
was derived by Kromkamp et al. [67]:

F l
2 = −4

πGar2
p

(
A0 + A1

ζ

a

)(
ζ

a

)−3/2

ζ̇,

A0 = 3π
√

2/8, A1 = 207π
√

2/160, (A5)

where a is the radius of the cylinders (a = d/2). Combining Eqs. (A4) and (A5), an approximation
for the lubrication force for two finite cylinders can be derived [65] as

F l = min
(
F l

1/�s, F l
2

)
. (A6)

In our simulations, when the shortest distance between two Lagrangian points becomes lower
than d/4, we impose the lubrication correction FLC = F l − F l

0, with F l
0 being the lubrication force

at a distance of d/4. Finally, the total lubrication force acting on the ith element is obtained as

FLC
i =

Nl∑
j �=i

FLC
i j , (A7)

where Nl is the number of Lagrangian points closer than the activation distance d/4 to the ith point.
To avoid contacts and overlap between fibers, a repulsive force is also implemented. This has the

form of a Morse potential [68], with a general form

φ = De[ e−2β(r f −re ) − 2e−β(r f −re )], (A8)

where De is the interaction strength, β a geometrical scaling factor, r f the distance between two
elements on two different fibers, and re the zero cutoff force distance. The repulsive force between
the elements i and j is the derivative of the potential function φ:

Fc
i j = dφ

dr
d i j, (A9)

where d i j is the unit vector in the direction joining the contact points. Finally, the total repulsive
force on the ith element is obtained as

Fc
i =

Nc∑
j �=i

Fc
i j, (A10)

where Nc is the number of Lagrangian points closer than the cutoff distance re to the ith point. As
we consider moderate values of flexibility, we neglect the interaction of fibers with themselves. We
also neglect contact frictional forces for all the cases in this paper.
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