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Caustics in turbulent aerosols form along the Vieillefosse line
at weak particle inertia
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Caustic singularities of the spatial distribution of particles in turbulent aerosols enhance
collision rates and accelerate coagulation. Here we investigate how and where caustics
form at weak particle inertia, by analyzing a three-dimensional Gaussian statistical model
for turbulent aerosols in the persistent limit, where the flow varies slowly compared with
the particle relaxation time. In this case, correlations between particle- and fluid-velocity
gradients are strong and caustics are induced by large strain-dominated excursions of
the fluid-velocity gradients. These excursions must cross a characteristic threshold in the
plane spanned by the invariants Q and R of the fluid-velocity gradients. Our method
predicts that the most likely way to reach this threshold is by a unique optimal fluctuation
that propagates along the Vieillefosse line 27R2/4 + Q3 = 0. We determine the shape of
the optimal fluctuation as a function of time and show that it is dominant in numerical
statistical-model simulations even for moderate particle inertia.

DOI: 10.1103/PhysRevFluids.8.024305

I. INTRODUCTION

In turbulent aerosols, particle inertia allows heavy particles to detach from the flow and generate
folds over configuration space, so-called caustics [1–4]. Near such caustic folds, phase-space
neighborhoods partially focus onto configuration space, leading to transient divergencies of the
spatial particle-number density, analogous to caustics in geometrical optics [5]. At the same time,
caustics delineate regions in configuration space where the particle velocities are multivalued, a
phenomenon known as the sling effect [2,6]. It leads to anomalously large relative particle velocities
[2,7–9], increased collision rates [2,10–13], and large collision velocities [7–9,14]. The latter can
significantly affect collision outcomes [15,16].

The process of caustic formation depends sensitively on the characteristic dynamical timescales
of the fluid and of the particles [17]. For a dilute monodisperse suspension of dense identical
particles, there are three timescales: the Eulerian correlation time τc of the flow, its Lagrangian
correlation time τK, measured along the paths of fluid elements, and the particle relaxation time τp,
the time it takes the inertial-particle velocity to relax back to the fluid velocity. The particle dynamics
is characterized by two dimensionless numbers: The Stokes number St ≡ τp/τK is a dimensionless
measure of particle inertia, while the Kubo number Ku ≡ τc/τK determines the degree of persistence
of the flow.

The rate of caustic formation has been measured using direct numerical simulation of turbulence
[6,18] and kinematic turbulence models [19,20]. Yet the mechanisms of caustic formation are
understood only in certain idealized models and limiting cases. In the so-called white-noise limit
[17], the fluid velocities seen by the particles are assumed to fluctuate rapidly (Ku � 1) and
particle inertia is assumed to be large (St � 1). For Gaussian random velocity fields in this limit,
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caustic formation can be described within a diffusion approximation which predicts that the particle
dynamics depends sensitively on the (small) value of the Kubo number [17].

Aerosol models with Gaussian random velocity fields that realistically mimic homogeneous and
isotropic turbulence, by contrast, require Kubo numbers of order 10 and are thus in a parameter
regime where the particle dynamics depends only weakly upon Ku [17]. This is a motivation for
analyzing the opposite so-called persistent limit of large Kubo numbers and small Stokes numbers. It
corresponds to slowly varying fluid velocities and short particle relaxation times. Model calculations
in one [21–23] and two [24] spatial dimensions show that caustics form in the persistent limit when
the matrix of fluid-velocity gradients reaches a large threshold. Consequently, the most likely way
for caustics to form in this limit is by rare large fluctuations of the fluid-velocity gradients that
exceed this threshold. For small St, these fluctuations are dominated by a single optimal fluctuation
that can be calculated using methods from large-deviation theory [25–27], recently reviewed in, e.g.,
[28,29].

In this paper we compute the optimal fluctuation of the fluid-velocity gradient matrix A and the
corresponding most likely (optimal) path to caustic formation for an incompressible turbulent flow,
by analyzing a three-dimensional statistical model in the persistent limit. We first characterize A in
terms of its invariants Q = −Tr(A2)/2 and R = −Tr(A3)/3 [30,31] and show that it must cross a
characteristic threshold line in the Q−R plane for a caustic to form. We then employ large-deviation
techniques [28,29] to determine how this threshold is reached. Our method predicts that the optimal
fluctuation, given by the most likely way to reach the threshold, moves along the positive branch
(R > 0) of the so-called Vieillefosse line [32–35],

27
4 R2 + Q3 = 0, (1)

which forms the boundary between extensional and rotational flow configurations. The optimal
fluctuation is vorticity-free and unique up to similarity transformations, but exact only for St � 1.
Nevertheless, numerical simulations of a Gaussian statistical model show that it remains dominant
even at St numbers as large as St ≈ 0.3, suggesting a distinct way of caustic formation in three
spatial dimensions that can be tested in experiments [36]. In high-Reynolds-number turbulence,
the probability distribution of Lagrangian fluid-velocity gradients is strongly skewed along the
positive branch of the Vieillefosse line [37–39]. This means that caustic formation is expected to be
significantly higher in actual turbulent flows compared with models that neglect this skewness.

II. PROBLEM FORMULATION

The dynamics of a spherical particle in a fluid-velocity field u(x, t ) is well approximated by
Stokes’s law [40]

d

dt
x(t ) = v(t ),

d

dt
v(t ) = τ−1

p {u[x(t ), t] − v(t )}, (2)

given that the particle is small enough and much denser than the fluid. Here x and v denote particle
position and velocity. The particle relaxation time τp = 2a2ρp/9ρfν is a function of the particle size
a, the kinematic viscosity ν of the fluid, and the particle and fluid densities ρp and ρf, respectively.

In d spatial dimensions, a caustic occurs when the separation vectors between d + 1 nearby
particles partially align so that the spatial volume V̂ (t ) = | det J(t )|, occupied by the particles,
momentarily collapses to zero. Here J denotes the spatial deformation tensor Ji j[x(t0), t] =
∂xi(t )/∂x j (t0). Caustic formation is closely related to the dynamics of the particle-velocity gradients
[2,17], written in dimensionless form as

St
d

dt
Z(t ) = −Z(t ) − Z(t )2 + A(t ), (3)

with Z(t0) = A(t0) initially. Here Zi j (t ) = τp∂vi(t )/∂x j (t ) and Ai j (t ) = τp∂ui(t )/∂x j (t ) are dimen-
sionless matrices of Lagrangian particle-velocity gradients and fluid-velocity gradients, respectively,
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evaluated at the particle position, i.e., Z(t ) = Z[x(t ), t] and A(t ) = A[x(t ), t]. Time t in Eq. (3) is
measured in units of the Kolmogorov time τK = τp〈TrAAT〉−1/2

f , where 〈· · · 〉 f denotes a Lagrangian
average along the paths of fluid elements. The particle-velocity gradients Z are related to the spatial
volume V̂ (t ) through

V̂ (t ) = V̂ (t0) exp
∫ t

t0

ds TrZ(s). (4)

Consequently, a necessary condition for caustic formation V̂ (t ) → 0 is that TrZ(t ) escapes to
negative infinity.

In the small-St limit, the particle dynamics (2) and (3) occurs on much shorter timescales than
the dynamics of A, so the problem can be treated using the persistent limit [21,23,24]. In this
limit, changes of A in Eq. (2) are adiabatic, i.e., A remains effectively constant [23,24] as Z varies.
Whenever Eq. (3) has a globally attracting stable fixed point Z∗, where

F(Z∗,A) ≡ −Z∗ − Z2
∗ + A = 0, (5)

Z rapidly relaxes to Z∗ within a short transient time of order St. In this case, TrZ remains finite and
no caustics form. In the absence of stable fixed points, by contrast, the dynamics drives the particle
gradient matrix Z to infinity, so TrZ → −∞, implying the formation of a caustic.

In summary, at small St caustics form through bifurcations of the fixed-point equation (5),
induced by large but adiabatically slow excursions of A. The probability and shape of these
excursions are determined by optimal fluctuation theory [28,29], which predicts the most likely
excursion that leads to a bifurcation and thus to a caustic.

III. FIXED-POINT ANALYSIS

To find the bifurcations of the fixed points Z∗(A) as A changes adiabatically, we note that Eq. (5)
satisfies

F(P−1ZP,P−1AP) = P−1F(Z,A)P, (6)

where P is an arbitrary invertible matrix. As a consequence, if Z∗(A) is a fixed point, then
so is P−1Z∗(P−1AP)P. Due to the symmetry (6), the set of fixed points and their stability are
invariant under similarity transformations [41] and thus only depend on the invariants of A. For
incompressible flow, A is traceless and obeys the characteristic equation [42,43]

A3 − 1
2 Tr(A2)A − det(A)1 = 0 (7)

with invariants [30]

Q(A) = − 1
2 Tr(A2), R(A) = − det(A) = − 1

3 Tr(A3). (8)

An analogous characteristic equation holds for Z∗, but with a nonvanishing trace term. We
characterize the fixed points Z∗ by evaluating Z∗ ≡ TrZ∗. To this end, we raise the fixed-point
equation A = Z∗ + Z2

∗ to the second and third powers and take the trace. This gives Q and R in
terms of Tr(Zn

∗), with n � 6. From the characteristic equation of Z∗ we obtain, by multiplication
with Z∗ and taking the trace, expressions for Tr(Zn

∗) that we substitute into the equations for Q and
R. In this way, we end up with one single equation for Z∗:

−16[2Z∗ + 3]2R ={Z∗[Z∗ + 1]2[Z∗ + 2] − 4Q}{[Z∗ + 1][Z∗ + 2]2[Z∗ + 3] − 4Q}. (9)

From Eq. (9) we conclude that possible fixed-point values Z∗ depend only on the invariants Q, and
R of A. Equation (3) is unstable in regions in the Q−R plane where Eq. (9) has no solution, allowing
TrZ to escape to −∞, so that a caustic forms.

In general, regions with different numbers of solutions of Eq. (9) (ranging from zero to eight, see
discussion below) are separated by saddle-node bifurcations of F(Z∗,A) = 0, where fixed points are
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FIG. 1. Phase diagram with regions of different numbers of solutions of Eq. (9) as a function of Q and R.
The lines show the bifurcations described in the text. The green square (R, Q) = (0, 0) shows the most likely
gradient configuration at steady state, while for infinitesimal particle inertia the threshold (10) is reached at the
red square (R, Q) = ( 1

256 ,− 3
64 ) (see Sec. IV).

created or destroyed [44]. Exceptions are bifurcations at isolated points or on symmetry lines where
other, e.g., higher-order, bifurcations may occur [44]. To find the locations of the saddle-node bifur-
cations in the Q−R plane, we introduce the coordinate z∗ = (Z∗ + 3/2)2, because it turns Eq. (9)
into a quartic polynomial equation in z∗. Saddle-node bifurcations occur at the simultaneous positive
roots of this polynomial and of its derivative with respect to z∗. Solving for these roots, we find two
bifurcation lines, shown as solid lines in Fig. 1. The first one (orange line in Fig. 1) is the Vieillefosse
line (1) for R � 1

256 , which distinguishes rotational and extensional regions in the flow. We note that
its positive branch (R > 0) plays an important role for the Lagrangian dynamics of fluid-velocity
gradients. Vieillefosse [32,33] showed that Lagrangian fluid-velocity gradients described by the
inviscid Navier-Stokes equations self-amplify along the positive branch of (1). When the anisotropic
portion of the pressure Hessian is neglected, this self-amplification leads to a finite-time divergence
of Lagrangian fluid-velocity gradients along this branch [32–34]. Although the divergence does not
occur in more realistic approximations [38,39,45], the self-amplification effect explains why the
distribution of Lagrangian fluid-velocity gradients in Navier-Stokes turbulence is strongly skewed
towards the positive branch of Eq. (1) [35].

The second bifurcation curve (red line in Fig. 1) is given by

Q = 4R − 1
16 for R � − 1

32 . (10)

The two bifurcation lines meet at R = − 1
32 (not shown) and at R = 1

256 (red square in Fig. 1). They
divide the Q−R plane into regions where Eq. (9) has different numbers of solutions. In addition,
transcritical bifurcations, which conserve the number of fixed points [44], occur on the symmetry
line (broken lines in Fig. 1)

Q = − 3
64 , (11)

where the z∗ derivative of Eq. (9) vanishes. Importantly, the bifurcation line (10) separates the region
without any fixed points (yellow region) from the rest of the Q−R plane (blue and crosshatched
regions). The latter regions contain a finite number of fixed points and we find numerically that one
of them is always stable and smoothly connected to Z∗ ≈ A close to the origin.

In summary, at small St we can invoke timescale separation. While Z relaxes rapidly, A changes
slowly. As soon as A crosses the threshold line (10) and enters the yellow region in Fig. 1, the Z
dynamics becomes unstable. As a result, a caustic forms since TrZ(t ) → −∞ in a short time.
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IV. OPTIMAL FLUCTUATION

At small particle inertia caustics are rare, because typical fluctuations of A along particle paths
are of order St � 1, much smaller than the threshold (10), which is of order unity. While there are
typically many ways of similar probability to realize a typical fluctuation (here of order St � 1),
this is not the case for rare large fluctuations. Instead, it is a general theme in large-deviation theory
[25–27] that rare events (here fluctuations of order unity) are often dominated by unique optimal
fluctuations that correspond to the most likely realizations of these events. Here we use large-
deviation techniques developed to characterize such rare events [28,29] to determine the optimal
fluctuation for A to reach the threshold, starting from the most likely initial value Q = R = 0.

A. Matrix basis

In homogeneous and isotropic turbulence, the elements Ai j of A are correlated [46], which makes
calculations cumbersome. It is therefore convenient to represent A in a basis of matrices e1, . . . , e8,
A(t ) = ∑8

i=1 Ai(t )ei, chosen in such a way that the random processes Ai(t ) are uncorrelated. The
basis we use in the following is orthonormal with respect to the inner product 〈M,N〉 ≡ Tr(MN)/2
such that 〈ei, e j〉 = gi j , where

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1

−1
1

1
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The basis elements e1, e2, and e3 span the space of traceless antisymmetric matrices and can be
written

e1 =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, e2 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠, e3 =

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠. (13)

The remaining ei, i = 4, . . . , 8, spanning the space of traceless symmetric matrices, read

e4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, e5 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, e6 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠,

e7 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, e8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (14)

Consequently, the antisymmetric (vorticity) and symmetric (strain) parts of A are expanded as

O(t ) =
3∑

i=1

Oi(t )ei, S(t ) =
5∑

i=1

Si(t )ei+3, (15)

respectively, where Oi = Ai and Si = Ai+3. Note that since eT
i = ∑8

j=1 gi je j , one has 〈ei, eT
i 〉 = δi j .

In addition to e1, . . . , e8, a complete matrix basis also includes the unit matrix e0 = 1, which is
however not needed in the following, because A is traceless.
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B. Correlation functions of fluid-velocity gradients

For homogeneous and isotropic turbulence, the entries of O and S have zero mean and correlation
functions [47,48]

〈Oik (t )O jl (t
′)〉p = σ 2

OCO
i jkl fO(t − t ′), 〈Sik (t )S jl (t

′)〉p = σ 2
S CS

i jkl fS (t − t ′), 〈Oik (t )S jl (t
′)〉p = 0,

(16)

where the angular brackets 〈·〉p denote a steady-state average along inertial-particle trajectories.
The correlation functions fO and fS are normalized such that fO(0) = fS (0) = 1 and are well
approximated by exponential functions with different correlation times of order τK [45,49]. The
structure of the rotationally covariant tensors CS and CO in Eq. (16) follows from isotropy and
incompressibility [45,47]:

CO
i jkl = δi jδkl − δilδ jk, CS

i jkl = δi jδkl + δilδ jk − 2
3δikδ jl . (17)

Along the paths of fluid elements, the Lagrangian flow is homogeneous, which implies that [45,47]

〈Tr[OT(t )O(t )]〉 f = 〈Tr[ST(t )S(t )]〉 f = 1

2
〈Tr[AT(t )A(t )]〉 f = St2

2
. (18)

Along inertial particle trajectories, however, preferential concentration [50,51] breaks homogeneity
[52], so 〈Tr[OT(t )O(t )]〉p < 〈Tr[ST(t )S(t )]〉p [53]. We therefore write the variances σO and σS in
Eq. (15) as

σ 2
O = 1

6 St2CO(St), σ 2
S = 1

10 St2CS (St), (19)

where CO(St) � 1
2 and CS (St) � 1

2 are St-dependent functions with limSt→0 CO(St) =
limSt→0 CS (St) = 1

2 in the inertialess limit. The prefactors in Eq. (19) account for the three
and five independent components of O and S, respectively. In terms of the orthonormal basis
introduced in Sec. IV A, the correlation functions (16) are conveniently expressed as

〈Oi(t )Oj (t
′)〉p = δi jσ

2
O fO(t − t ′), 〈Si(t )S j (t

′)〉p = δi jσ
2
S fS(t − t ′), 〈Oi(t )S j (t

′)〉p = 0. (20)

Equation (20) makes explicit that the elements Ai(t ) are mutually uncorrelated processes with
variances σO and σS .

C. Gaussian approximation

The complete statistical information about A(t ) is contained in the cumulant-generating func-
tional [54] of the process

�(G, t ) = ln

〈
exp

(∫ t

t0

ds〈A(s),G(s)〉
)〉

p

. (21)

Here G is a traceless matrix-valued test function. An expansion in powers of G(s) = ∑8
i=1 Gi(s)ei

generates the cumulants of A(t ), which we write in terms of Ai(t ). Since the correlation functions
for the processes Ai(t ) decouple in the orthonormal matrix basis ei [see Eq. (20)] we find to second
order in G,

�(G, t ) =
8∑

i=1

∫ t

t0

∫ t

t0

ds ds′σ 2
i fi(s − s′)Gi(s)Gi(s

′) + O(G3), (22)

with σ 2
i fi(t − t ′) = σ 2

O fO(t − t ′) for i = 1, . . . , 3 and σ 2
i fi(t − t ′) = σ 2

S fS (t − t ′) for i = 4, . . . , 8.
The orders O(G3) in Eq. (22) contain terms of the form 〈Ai(s)Aj (t )Ak (u)〉p, 〈Ai(s)Aj (t )Ak (u)Al (v)〉p,
and so on. In a mean-field (or Gaussian) approximation, we decompose the higher-order cor-
relation functions in terms of the second- and first-order ones. This gives 〈Ai(s)Aj (t )Ak (u)〉p ≈
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〈Ai(s)Aj (t )〉p〈Ak (u)〉p + · · · = 0 and

〈Ai(s)Aj (t )Ak (u)Al (v)〉p ≈ 〈Ai(s)Aj (t )〉p〈Ak (u)Al (v)〉p + · · · , (23)

where the ellipsis denotes all permutations of the arguments. Applied to all orders, this approxi-
mation makes the terms O(G3) in Eq. (22) vanish so that the individual processes Ai(t ) become
Gaussian. Although the fluid-velocity gradients in the dissipation range of isotropic and homo-
geneous turbulence are well known not to be Gaussian [55–57], Gaussian models for turbulence
have proven to provide valuable information about the behavior of turbulent aerosols [13,17,52].
Uncorrelated Gaussian processes are independent, as can be seen from the fact that �(G, t )
decomposes completely when the O(G3) term in Eq. (22) is absent. The mutual independence of
the processes Ai(t ) is a crucial ingredient for the calculations that follow.

D. Threshold probability

For the stationary Gaussian process Ai(t ), the probability for reaching a given value Ai at a given
time t reads

P[Ai(t ) = Ai] ∝ e−S(Ai )/σ 2
i , (24)

where we omitted the normalization prefactor. Here S(Ai ) = A2
i /2 denotes the quadratic action

associated with reaching Ai. Due to the mutual independence of the Ai(t ), we obtain the probability
for A to reach A ≡ ∑8

i=1 Aiei as the product of Eq. (24) over i,

P[A(t ) = A] =
8∏

i=1

P[Ai(t ) = Ai] ∝ e−S(A)/σ 2
S , (25)

characterized by the weighed sum S(A) of actions S(Ai ) over i:

S(A) = 1

2

(
σS

σO

)2 3∑
i=1

A2
i + 1

2

8∑
i=4

A2
i = −1

2

(
σS

σO

)2

〈O,O〉 + 1

2
〈S,S〉. (26)

Since σS, σO ∼ St, Eqs. (25) and (26) imply that the exponent in Eq. (25) is proportional to St−2 for
small values of St. Also note that S(A) is quadratic in Ai. Both observations are a consequence of
approximating Ai(t ) as Gaussian processes.

E. Optimal threshold configuration

To obtain the most likely way for the fluid-velocity gradients to reach the threshold (10) and
induce a caustic, we must minimize the action (26) under the constraint (10). To this end, we
multiply the constraint with a Lagrange multiplier λ and add the product to S(A) to form the
Lagrange function

L (A) = S(A) − λ
[
Q(A) − 4R(A) + 1

16

]
. (27)

Minimizing L over A gives the minimizer A∗, the most likely configuration of fluid-velocity
gradients at the threshold (10). The symmetry of F under similarity transformations [see Eq. (6)]
constrains this minimizer. In order to deduce how, we consider infinitesimal similarity transforma-
tions A → A′ = P−1AP with det P = 1, generated by traceless matrices

A′ ≈ A + δA, δA =
8∑

i=1

[A, ei]θi, (28)

where [M,N] = MN − NM denotes the commutator between two matrices, and the factors |θi| � 1
parametrize the infinitesimal transformation. For the symmetric and antisymmetric parts of A′, the
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transformation (28) implies S′ = S + δS and O′ = O + δO, with

δS =
3∑

i=1

[S, ei]θi +
8∑

i=4

[O, ei]θi, δO =
3∑

i=1

[O, ei]θi +
8∑

i=4

[S, ei]θi. (29)

The Lagrange function L (A) in Eq. (27) must be invariant under similarity transformations of the
minimizer A∗, i.e., δL (A) = L (A′) − L (A) = 0 at A = A∗, which requires that δS(A) = S(A′) −
S(A) = 0 at the minimizer. Applying the infinitesimal transformation (28) to S(A), however, we find

δS(A) =
[(

σS

σO

)2

+ 1

]
8∑

i=4

〈[S,O], ei〉θi. (30)

This expression vanishes, i.e., S(A) is invariant, only in two cases. First, θi = 0 for i = 4, . . . , 8,
which corresponds to the case when P is a rotation PT = P−1. The second case is [S,O] = 0 which
occurs when either O = 0 or S = 0. It can be checked that the constraint (10) is invariant under
all similarity transformations, not only rotations, because δQ(A) = δR(A) = 0 for all θi. Hence,
the constraint requires that δS(A) = 0 also for finite θi, i = 4, . . . , 8, meaning that either O = 0 or
S = 0. However, S = 0, and thus A = O, leads to R(O) = 0 and Q(O) � 0, so the constraint (10)
cannot be satisfied for any real O. This in turn shows that the vorticity contribution O∗ to the optimal
threshold configuration A∗ must vanish, O∗ = 0, and that A∗ must be a pure strain A∗ = S∗.

In order to determine the components of S∗, we express A in Eq. (27) in terms of Ai and
minimize (27) over A4, . . . , A8, while A∗

1 = A∗
2 = A∗

3 = 0. This leads to two solutions with equal
actions S(A∗) = 3

64 , which fix the minimizing configuration A∗
i up to equivalence under similarity

transformations. As a consequence of this symmetry, the minimizers are not isolated points but
higher-dimensional manifolds. All minimizers found in this way are related by similarity trans-
formations so that we may choose particular representatives to gain insight into the most likely
threshold configuration A∗. The simplest representatives correspond to diagonal A∗ and they show
that A∗ takes two positive eigenvalues equal to 1

8 and one negative eigenvalue equal to − 1
4 of twice

the magnitude. Similarity transformations only affect the order of eigenvalues, so we may put all
minimizers into the ordered diagonal form

A∗ = 1
4

⎛
⎝ 1

2
1
2 −1

⎞
⎠ (31)

by a suitable transformation. Expressed in the matrix basis, this corresponds to the simple configu-
ration A∗

8 = ( 1
4 )

√
3/2 and A∗

1 = A∗
2 = · · · = A∗

7 = 0.
Up to this point, our analysis provides the most likely threshold configuration that induces

a caustic in the small-St limit. The strict limit, however, is difficult to approach in numerical
simulations, since the threshold probability (25) is exponentially suppressed in St.

F. Small-St correction

We now discuss how to adjust the theory to incorporate the main next-to-leading-order effects
in St � 1 in an approach similar to that used in two spatial dimensions in Ref. [24]. Our starting
point is Eq. (3). Since caustics form on timescales of order St, we require the threshold (10) to be
exceeded for a finite time such as to leave the dynamics (3) sufficient time to form a caustic [24].
To account for this, we introduce a St-dependent threshold Ath(St) = 1

4 + o(St0) [24] that consists
of the threshold determined above plus a small positive correction o(St0) that vanishes as St → 0.
Although this o(St0) correction slightly enhances the threshold Ath(St), the rate at which trajectories
exceed Ath(St) nevertheless increases as St increases, because σ 2

S ∼ St2 in Eq. (25). Recently, Bätge
et al. [58] described a one-dimensional model for caustic formation where the time needed for
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caustics to form is accounted for by a St-dependent preexponential factor instead of a St correction
to the action S(A∗) as introduced here.

We make the ansatz

A∗ = Ath(St)

⎛
⎝ 1

2
1
2 −1

⎞
⎠ (32)

for the gradient matrix, i.e., A∗
8 = √

3Ath(St)/2, A∗
1 = . . . = A∗

7 = 0, leading to the St-dependent
threshold line

Q = 4R − A2
th(St)

[
Ath(St) + 3

4

]
, (33)

which reduces to Eq. (10) as St → 0. The magnitude of the difference Ath(St) − 1
4 determines by

how much the gradient threshold 1
4 is exceeded at the time t = tth when the gradient excursion

peaks, and through the dynamics (3) it also fixes the time tc > tth at which the caustic is generated.
Using this information and input from numerical simulations, we model the optimal fluctuation to
next-to-leading order in St.

G. Optimal path to caustic formation

In order to find the optimal path to caustic formation, we must understand how the optimal
fluctuation connects typical values of A ∼ St to the optimal threshold configuration A∗ ∼ 1 as a
function of time. To make this connection, we use that the most likely way A∗

i (t ) for a Gaussian
process Ai(t ) to reach a large value Ai � σi at a given time t is equal to the correlation function (20)
of the process, normalized to the threshold value [24], i.e.,

A∗
i (t ) = Ai fi(t − tth ). (34)

We give a derivation of this formula in the Appendix. Since A∗
8 � σS for the optimal threshold

configuration (32), we may use Eq. (34) to determine the optimal fluctuation A∗
i (t ) of the fluid

velocity gradients to reach the threshold. This leads to A∗
8(t ) = √

3Ath(St) fS (t − tth )/2 and A∗
1(t ) =

· · · = A∗
7(t ) = 0. Denoting by λ1(t ) > λ2(t ) > λ3(t ) the ordered eigenvalues of A∗(t ) along the

optimal fluctuation, i.e.,

A∗(t ) =
⎛
⎝λ1(t )

λ2(t )
λ3(t )

⎞
⎠, (35)

we obtain

λ1(t ) = λ2(t ) = 1
2 Ath(St) fS (t − tth), λ3(t ) = −Ath(St) fS (t − tth ) (36)

so that A∗(tth) = A∗ at the time the threshold is reached [cf. Eq. (32)]. The optimal path to caustic
formation Z∗(t ) for the particle-velocity gradients is now obtained by substituting A∗(t ) into Eq. (3).
Since A∗(t ) is vorticity-free and diagonal in the chosen coordinates, Z∗(t ) is initially diagonal,
Z∗(t0) = A∗(t0). The initial time t0 is chosen such that |tc − t0| is of the order of the expected time
for caustic formation, which implies |tc − t0| ∼ exp[S(A∗)/St2] � 1 for the model considered here.
Since Eq. (3) decouples for diagonal matrices,

Z∗(t ) =
⎛
⎝ζ1(t )

ζ2(t )
ζ3(t )

⎞
⎠ (37)

remains diagonal along the optimal path to caustic formation. The dynamics of the eigenvalues ζi(t )
is then governed by the equations

Stζ̇i(t ) = −ζi(t ) − ζ 2
i (t ) + λi(t ), (38)
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with i = 1, 2, 3. In words, along the optimal fluctuation, the nine-dimensional matrix equation (3)
reduces to three uncoupled equations for the eigenvalues ζi, akin to the one-dimensional equa-
tion studied in Refs. [21,59]. The theory summarized here demonstrates that the process of caustic
formation in the persistent limit is essentially one dimensional, as shown for two dimensions in
Ref. [24] and as argued in Ref. [58]. We also see that the leading negative eigenvalue of A∗ must be
smaller than − 1

4 (in our dimensionless formulation) when St → 0.
We solve (38) numerically for a given normalized strain correlation function fS (t ) [see Eq. (36)]

that we extract from numerical simulations (Sec. V). The threshold value Ath(St) is then obtained
from Eq. (38) by tuning Ath(St) to match the time difference tc − tth(St) for the optimal fluctuation
with the numerical value. The optimal fluctuation in the Q−R plane reads

Q(t ) = − 3
4 Ath(St)2 f 2

S [t − tth(St)], R(t ) = 1
4 Ath(St)3 f 3

S [t − tth(St)]. (39)

For St → 0, we have |tc − t0| → ∞ and Ath(St) → 1
4 so that Eqs. (39) in this case represent an

infinite-time trajectory that connects the green and red squares in Fig. 1, along the right branch of
the Vieillefosse line. For finite St, the optimal fluctuation remains on this line, but it now penetrates
the yellow region in Fig. 1 for a short time, because Ath(St) > 1

4 , and relaxes back to the origin for
t > tth.

Note that the Vieillefosse line separates regions in the Q−R plane where A has real eigenvalues
from regions where two eigenvalues form a complex conjugate pair [30]. Thus, on the Vieillefosse
line, all eigenvalues are real and two eigenvalues must be degenerate. Our theory predicts that
caustics form when a single eigenvalue of A becomes large and negative, while the other two remain
degenerate and positive, with half the magnitude of the negative eigenvalue. For this reason and
because the large negative eigenvalue implies R > 0, this entails that the optimal fluctuation must
propagate along the positive branch of the Vieillefosse line for small St.

V. NUMERICAL SIMULATIONS

We compare our theory with results of numerical simulations of a Gaussian statistical model for
turbulent aerosols at small but finite St. The model captures particle clustering and caustic formation
of aerosols in the dissipative range of turbulence qualitatively and, in some cases, even quantitatively
[17]. For the simulations, we evolve a large number of particles with Eq. (2). The particles move
in a turbulent fluid-velocity field u(x, t ), modeled by a fluctuating, statistically homogeneous and
isotropic Gaussian vector field with a prescribed correlation function [17]. In addition, we evolve
Eq. (3) for Z(t ) along the particle trajectories and track the histories of A(t ). Whenever TrZ(t )
reaches a large negative threshold, i.e., a caustic is imminent, we record a caustic and store the
corresponding time series of A. This provides us with an ensemble of fluid-velocity gradients,
conditioned on observing a caustic at each end point. From this ensemble, we evaluate the invariants
Q(t ) and R(t ) and compute numerical approximations of their trajectory densities, allowing us to
quantify the most likely fluctuations that result in a caustic at time t = tc.

Figure 2 shows snapshots of the trajectory density in the Q−R plane, at different times. Regions
of high density are shown in yellow with the maximum marked by a yellow star. The theoretically
obtained optimal fluctuation is shown by the green circle. As predicted by the theory, the yellow
star performs a large excursion along the positive branch of the Vieillefosse line towards the St-
dependent threshold [Figs. 2(a) and 2(b)], reaches it in Fig. 2(c), and returns to the origin [Fig. 2(d)].
At the time of caustic formation in Fig. 2(e), the gradients have almost completely relaxed. Note that
typical fluctuations of the fluid-velocity gradients in the Q−R plane [Fig. 2(a)] are tiny compared
to the magnitude of the gradient excursion in Fig. 2(c). Although the theory explains the excursion
qualitatively, we observe slight deviations in the time dependences of the green circle and the yellow
star.

The time evolutions of the optimal fluctuation and of its vorticity contributions are analyzed in
more detail in Fig. 3. Vorticity O contributes to Q and R through the expressions QO = Tr(OTO)/2
and RO = Tr(OTOS), respectively. Figures 3(a) and 3(c) show the vorticity contributions QO and
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FIG. 2. Snapshots of the trajectory density (heat map) in the Q−R plane at different times (a) t − tc = −6,
(b) t − tc = −4, (c) t − tc = −2.5, (d) t − tc = −1.25, and (e) t − tc = 0 for St = 0.3 and Ku ≈ 22. The
yellow star shows the location of maximum density. The Vieillefosse line is shown in orange. The red
dashed line shows the St-dependent threshold, Eq. (33) with Ath(St) ≈ 0.336, featuring the optimal threshold
configuration (red diamond). The green circle shows the location of the optimal fluctuation from theory with
arrows indicating the change with respect to the next snapshot.

RO as functions of time, together with the theoretical curves for their optimal fluctuations (dotted
lines), which are identically zero. The yellow streaks of high trajectory density for QO and RO remain
close to zero at all times, which confirms that in both theory and numerics the optimal fluctuation is
dominated by the strain S while vorticity O remains small.

Figures 3(b) and 3(d) show the trajectory densities of Q and R (including both strain and vorticity)
as functions of time, together with the theoretical curves for the optimal fluctuations (dotted lines).
The yellow streaks for Q and R perform large excursions, centered at t − tc ≈ −2.5, which are
in good agreement with our theory. However, the optimal fluctuations in the numerics (yellow
streaks) grow faster and are slightly more persistent than predicted. These deviations are likely
due to too large St, which leads to inaccuracies in both the optimal fluctuation approach and our
approximations.

Outside the regime St � 1, many fluctuations, not only the optimal one, contribute to caustic
formation. Furthermore, the fluid-velocity gradients measured along particle trajectories acquire
non-Gaussian statistics and more importantly the timescale separation in the dynamics of Z and
A becomes less sharp. However, the comparison between numerics and theory in Figs. 2 and 3
shows that optimal fluctuation theory does explain caustic formation qualitatively, even at moderate
St. The theory not only reproduces the large excursion of the fluid-velocity gradient along the
Vieillefosse line, but also correctly predicts vanishing vorticity, as well as the main features in the
time dependence of the optimal fluctuation.

FIG. 3. Trajectory densities (heat maps) of (b) Q and (d) R and of their respective vorticity contributions
(a) QO and (c) RO, normalized to unity at each time slice, as functions of t prior to caustic formation for
St = 0.3 and Ku ≈ 22. Yellow regions correspond to high trajectory density. The black dotted line shows the
optimal fluctuation obtained from theory [Eq. (39)].
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VI. CONCLUSION

We explained caustic formation in turbulent aerosols for small particle inertia (St � 1) in three
spatial dimensions by means of optimal fluctuation theory. We found that caustics are formed by an
instability of spatial particle neighborhoods that occurs when the fluid-velocity gradients exceed a
large threshold in the Q−R plane. The most likely way to reach this threshold is by an optimal
fluctuation of the fluid-velocity gradients consisting of a large excursion of the strain S, while
vorticity O remains small. We determined the shape of the excursion explicitly within a mean-field
(Gaussian) approximation. The theory predicts that the optimal fluctuation propagates along the
positive branch of the Vieillefosse line [32–34] to reach the threshold, before it relaxes back to the
origin. Using numerical simulations of a Gaussian statistical model, we showed that the optimal
fluctuation is dominant not only at infinitesimal St, but also at values of order St ∼ 10−1, where we
observed qualitative agreement with the theory.

The predominance of the strain part in the optimal fluctuation qualitatively explains why col-
lisions are preceded by strong strains and low vorticity in simulations [60]. More generally, our
fixed-point analysis shows that at small St, the particle dynamics enters caustic formation only by
posing a threshold for the fluid-velocity gradients. This implies that the rate of caustic formation may
be estimated solely from the threshold probability (25), without explicitly referring to the particle
dynamics, rather than following local particle neighborhoods over long times, as in Refs. [6,18,36].

Finally, our analysis indicates that the tear-shaped elongation of the probability distribution of
turbulent fluid-velocity gradients along the positive branch of the Vieillefosse line [35,37–39] may
facilitate caustic formation in homogeneous and isotropic turbulence, as it leads to an increased
probability of reaching the threshold, perhaps even more so if one takes into account preferential
concentration [61].

ACKNOWLEDGMENTS

K.G. thanks J. Vollmer and G. Bewley for discussions regarding the role of the invariants Q and R
for caustic formation. We thank D. Mitra for discussions regarding caustic formation in turbulence
and A. Bhatnagar for sharing his unpublished data [62], which indicates that also in homogeneous
and isotropic turbulence caustics form near the Vieillefosse line at small St, as predicted by our
theory. J.M. is funded by a Feodor-Lynen Fellowship of the Alexander von Humboldt-Foundation.
B.M. was supported in part by Vetenskapsrådet (VR), Grant No. 2021-4452. The statistical-model
simulations were conducted using the resources of HPC2N provided by the Swedish National
Infrastructure for Computing (SNIC), partially funded by VR through Grant No. 2018-05973.

APPENDIX: DERIVATION OF EQ. (34)

Equation (34) was derived previously in Ref. [24]; here we give a simplified derivation. We start
with a path-integral expression for Eq. (24),

P[Ai(tth) = Ai] = 〈δ[Ai(tth) − Ai]〉p =
∫

DAi(t ) exp

(
−S [Ai(t )]

σ 2
i

)
δ(Ai(tth) − Ai ), (A1)

where δ(x) denotes the Dirac delta function. For Gaussian processes, the action S [Ai(t )] is
explicitly known [63]:

S [Ai(t )] = 1
2

∫ ∞

−∞
ds

∫ ∞

−∞
dt Ai(s) f −1

i (s − t )Ai(t ). (A2)

Here f −1(x) is the inverse of the normalized correlation function fi(x) of Ai(t ), defined as∫ ∞

−∞
ds′ f −1

i (s − s′) fi(s
′ − t ) = δ(s − t ). (A3)
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For Ai � σi, the path integral in (A1) can be approximated by the saddle point of the action
S [Ai(t )] under the constraint that Ai(tth) = Ai [enforced by the δ function in (A1)]. We perform
the constrained minimisation by adding a Lagrange multiplier λ to S [Ai(t )]:

Sλ[Ai(t )] = 1
2

∫ ∞

−∞
ds

∫ ∞

−∞
dt A(s) f −1

i (s − t )A(t ) − λ

(∫ ∞

−∞
ds δ(tth − s)A(s) − Ai

)
. (A4)

For computational convenience, we have expressed the constraint Ai(tth) = Ai as an integral involv-
ing a Dirac δ function, as was done in a different context in Ref. [64]. We now compute the optimal
fluctuation A∗

i (t ) as the constrained saddle point δSλ[A∗
i (t )] = 0 of the path integral in Eq. (A1).

The variation of Eq. (A4) over Ai(t ) gives

δSλ[A∗
i (t )] =

∫ ∞

−∞
ds δAi(s)

(∫ ∞

−∞
dt f −1

i (s − t )A∗
i (t ) − λδ(tth − s)

)
, (A5)

which leads to the saddle-point equation∫ ∞

−∞
dt f −1

i (s − t )A∗
i (t ) = λδ(tth − s). (A6)

Comparison with Eq. (A3) immediately gives

A∗
i (t ) = λ fi(t − tth ). (A7)

The Lagrange parameter λ is now simply obtained by using the constraint A∗
i (tth) = Ai and the

normalization condition fi(0) = 1. This gives λ = Ai and thus the optimal fluctuation (34). We
evaluate the action S [Ai(t )] at the saddle point by using the optimal fluctuation (34) and obtain

S [A∗
i (t )] = A2

i

2
. (A8)

Hence, we recover the quadratic action in Eq. (24) from Eq. (A1), evaluated at the optimal
fluctuation (34).
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