
PHYSICAL REVIEW FLUIDS 8, 024304 (2023)

Modeling the resuspension of small inertial particles in turbulent
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Particle entrainment into a turbulent boundary layer flow is a phenomenon of great
importance to many environmental and industrial processes. This paper introduces a
generalized dynamic resuspension model for applicability to particles rolling on a surface
with fractal-like multiscale roughness elements, which is termed the multiscale asper-
ity model (MSAM). Furthermore, non-Gaussian (log-normal or �) stochastic models
for the flow velocity seen by a particle are introduced and compared with a Gaussian
(Ornstein-Uhlenbeck-like) stochastic model. The stochastic flow models are coupled with
the MSAM and three complementary studies are performed to test their ability to predict
the fraction of particles remaining on the wall after a given exposure time to turbulent flow.
First, the predictions using the stochastic flow model and MSAM are compared with the
experimental measurements of Reeks and Hall [J. Aerosol Sci. 32, 1 (2001)]. The model
predictions using the MSAM show some improvement in matching the experimental data
compared with existing models, but challenges remain. Second, in order to evaluate the
stochastic flow velocity models, a comparison is performed against a time-resolved direct
numerical simulation (DNS) database of a turbulent channel flow coupled with the MSAM.
The results show that non-Gaussianity in stochastic flow models improves the agreement
with DNS-based resuspension predictions of the fraction of particles remaining on the wall
after one flow through time, presumably due to more realistic probabilities of extreme flow
events. Third, the prediction of particle resuspension is attempted using coarse-grained
simulations (i.e., filtered DNS and large-eddy simulation for resolved flow velocity) in
combination with a stochastic model for the subgrid-scale flow velocity. Comparing with
(unfiltered) DNS, the simulation results confirm the importance of the inclusion of a parti-
cle subgrid-scale model to represent the effect of unresolved fluctuations on resuspension
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dynamics. Taken together, these three tests highlight both modeling improvements and
enduring challenges related to the (multifidelity) prediction of particle resuspension.

DOI: 10.1103/PhysRevFluids.8.024304

I. INTRODUCTION

Particle-laden turbulent two-phase flows are ubiquitous in nature and engineering [1,2]. In many
circumstances, particles are directly picked up from a solid surface by turbulent flow. For example,
dust particles with diameter smaller than about 70 μm can be entrained by strong winds into short-
and long-time suspensions [3–13]. This so-called resuspension phenomenon can play an important
role in sediment transport, outdoor and indoor environments, food engineering, nuclear engineering,
filtration systems, etc., applications in which most surfaces are rough. Detailed background is
provided in the literature [14–16].

For numerical simulation of resuspension phenomena over rough surfaces, a model is needed
to describe how a particle interacts with the surface and to predict the critical condition when a
particle leaves the surface. There are mainly four classes of resuspension models in the literature
[15], namely, the empirical model, the static force-balance model, the kinetic probability model,
and the dynamic probability model. The empirical model predicts the particle resuspension rate
(ratio between particle suspension flux and surface concentration) by fitting measurement data (see,
e.g., [17]). The static force-balance model gives the critical condition at which the force balance
is broken [18]; however, the rolling or sliding motion of particles along a rough surface is not
included. The kinetic probability model, like the model of Reeks et al. [19] or the Rock ‘n’ Roll
model [20], can take into account the rolling motion and kinetic energy accumulation of particles on
rough surfaces. This type of model requires additional phenomenological differential equations. The
dynamic probability model is directly based on the fundamental principles of Newtonian mechanics
to solve the rolling motion of a particle on a rough surface. For example, the stochastic dynamic
model of Henry and Minier [21] divides the particle resuspension process into three steps, i.e., a
particle is set into motion from a static force balance, followed by particle rolling on a surface
including roughness and then a particle hitting a large asperity so it is lifted off the surface.

A key factor in particle resuspension models is to include account of surface roughness [22]. Very
often the roughness length scales are small, even smaller than the viscous scales, i.e., the surface
could be hydrodynamically smooth but its roughness can still greatly affect particle resuspension.
We have confirmed numerically in a number of tests that a small inertial particle is very unlikely
to be directly picked up by turbulent flow if placed initially on a mathematically smooth surface;
thus it is crucial to account for roughness even if very small scale. In the prior dynamic model of
Henry and Minier [21], a rough surface was modeled by assuming the presence of distinct small
and large semispherical asperities. However, in practice, a rough surface is more likely covered by
multiscale asperities [23,24]. In the present work, the resuspension model will be generalized to
include a hierarchy of multiscale asperities, more closely approximating realistic surfaces.

Another important aspect for resuspension prediction is the modeling of the flow velocity seen
by particles. In the dynamic stochastic model of Henry and Minier [21], the flow velocity is
decomposed into its mean and fluctuating components; the latter was modeled by a Gaussian
Ornstein-Uhlenbeck stochastic model using as inputs the known turbulence intensity and timescale
of the fluctuating flow velocity. However, it is known that the near-wall turbulent velocity, as
well as fluctuating wall-shear stress, is strongly non-Gaussian [25–27]. More specifically, it was
reported that the near-wall streamwise turbulent flow velocity and wall-shear stress approximately
follow a log-normal distribution [26,27]. The impact of non-Gaussianity in the flow velocity
model on the prediction of particle resuspension will be assessed and discussed in the present
work. While Reynolds-averaged Navier-Stokes models generally lack high fidelity and universal
applicability, accurate computation of near-wall flow velocity via direct numerical simulation (DNS)
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is prohibitively expensive for most practical applications. The coarse-grained simulation approach,
like large-eddy simulation (LES), can provide a trade-off between cost and accuracy. In an LES,
large-scale flow scales are resolved, but small scales are filtered out and need to be represented
by a subgrid-scale (SGS) stress model [28–31]. To simulate particle-laden turbulent flow with
the Eulerian-Lagrangian approach, a particle SGS model is also needed, without which particle
dispersion would not be predicted accurately [32,33]. Numerous Langevin-type stochastic models
have been developed to estimate the SGS fluid velocities in homogeneous isotropic turbulence
and wall-bounded turbulence, as reviewed by Marchioli [33]. It is even more challenging to use
wall-modeled large-eddy simulation where the near-wall turbulent motions are not fully resolved
[34–37]. A wall model is needed to enrich the prediction of near-wall turbulent velocities and
inner-outer interactions [38–44]. In this work, the effect of filtering on the particle resuspension
prediction will be assessed, along with the ability of SGS stochastic models to improve LES
accuracy.

The outline of the rest of the paper is as follows. Section II details the models to be used,
including for particle-surface interactions and turbulent flow velocities. In particular, the multiscale
asperity model is introduced to generalize the dynamic stochastic resuspension model of Henry and
Minier [21] to a rough surface with multiscale asperities. Further, in addition to existing Gaussian
stochastic models for fluid velocity seen by the particles, non-Gaussian models are introduced.
Results from three tests are reported in Sec. III. First, model predictions are compared with the
experimental measurement of Reeks and Hall [20] to demonstrate the effect of the multiscale
asperity model. Second, the stochastic flow velocity models are validated by comparing their particle
resuspension results with those obtained using DNS. Third, a simple stochastic particle SGS model
is proposed and tested for use with coarse-grained simulations. Section IV provides a summary.

II. RESUSPENSION MODEL

For the particle resuspension criterion from a rough wall, we follow the general framework of a
dynamic stochastic resuspension model of Henry and Minier [21]. In the model, the mechanics of
streamwise rolling motion of a particle on a rough wall is described. A rough wall is assumed to
be covered by hemispherical asperities of two distinct sizes, i.e., a large-scale one and a small-scale
one. Both asperities contribute to the adhesion force acting on a particle, but only the interaction
between a particle and a large-scale asperity is taken into account for the resuspension criterion. It
should be noted that although the wall is covered by asperities, their sizes are much smaller than the
thickness of the viscous sublayer, i.e., D+

a,max � 5 (Da is the asperity size and the plus superscript
indicates the viscous scaling); thus the hydrodynamic smooth-wall assumption is still valid.

In this section we briefly review the models for calculating the rolling motion of a particle on
such a rough wall, closely following the work of Henry and Minier [21]. A discussion of the model
assumptions is provided in the Appendix. Then the two-scale asperity model is generalized to a
multiscale asperity model by including a hierarchy of asperity sizes. The flow velocity model for the
fluctuating or subgrid-scale flow velocity is also introduced, assuming that only the mean velocity
data or the coarsely resolved fluctuating flow velocity data are available. A sketch of the physical
problem considered is illustrated in Fig. 1.

A. Rolling motion of a particle on a rough surface

The equation for the rolling motion of a spherical particle along a rough surface is

Ipω̇p = Md − Ma, (1)

in which Ip = 7
5 mpR2

p (mp is the mass of the particle and Rp is the radius of the particle) is the
moment of inertia of a spherical particle around a pivot point on its surface, ωp is the angular
velocity of the particle, and Md and Ma are the aerodynamic and adhesion moments acting on
the particle, respectively. The fluid-induced aerodynamic moment Md is calculated according to
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FIG. 1. Sketch of a particle rolling in a turbulent flow over a rough surface covered by fractal-like
multiscale asperities. The sizes of particle and asperities are much smaller than the thickness of the viscous
sublayer.

O’Neill [45] for a spherical particle moving in a linear shear flow in contact with a plane, following
Henry and Minier [21].

The adhesion moment Ma is also calculated following Henry and Minier [21] by

Ma = Faa0, (2)

in which Fa is the adhesion force acting on the particle by the rough wall and the pivot distance
a0 is defined as the relevant moment arm from the interaction between a particle and the furthest
small-scale asperity in contact with the particle on its downstream side. The Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory [46,47] is used as the adhesion force model to calculate the van
der Waals force between a particle and a rough wall, as

Fa = dUa

dz
≈ Ua(z0 + ε) − Ua(z0)

ε
, (3)

where z0 = 0.165 nm corresponds to the constant cutoff distance, ε = 10−11 m is a infinitesimal
value used to approximate the derivative, and Ua is the interaction energy between a particle and a
rough wall, which is calculated by a Hamaker approach that assumes the interaction energies can be
additive, i.e.,

Ua(h) = (1 − Ca)Us(h) +
Na∑

i=1

Ui,p−a(h), (4)

in which Us is the interaction energy between the particle and the smooth part of a partially rough
wall, which is detailed in Ref. [48], Ca is the fraction of the surface covered by asperities, Na is
the number of asperities in contact with the particle, and Up-a is the interaction energy between the
particle and a hemispherical asperity, modeled by

Up-a(h) = − AH RpRa

6h(Rp + Ra)

[
1 − 5.32h

λ
ln

(
1 + λ

5.32h

)]
. (5)

Here AH is the Hamaker constant for characterizing the van der Waals body-body interaction which
depends on the particle and wall materials, λ is a characteristic wavelength for retardation effects
set to 100 nm, and Ra is the radius of asperity. The values of the constants in the DLVO model,
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FIG. 2. Sketch of (a) the two-scale asperity model and (b) the multiscale asperity model.

i.e., z0, ε, and λ, are kept the same as in Ref. [21]. It should be mentioned that, for the airborne
particles considered here, the electrostatic forces are not considered since there is no overlap
between electrostatic double layers.

B. Rough-wall model and resuspension criterion

In the original dynamic stochastic resuspension model of Henry and Minier [21], a rough wall is
assumed to be covered by two-level small-scale and large-scale hemispherical asperities; we refer to
it as the two-scale asperity model (TSAM). The particle resuspension process is modeled by a three-
stage scenario, i.e., the setting in motion of a particle (stage I), followed by its rolling motion along
the rough wall due to aerodynamic and adhesion forces (stage II), and finally a detachment from
the wall when a particle with sufficiently high kinetic energy collides with a large-scale asperity
(stage III) (see Fig. 2). It should be stressed that no definite spatial distribution of asperities is
generated in the model; instead their effects are introduced in a stochastic way. For example, the
asperity number Na in contact with a particle is stochastically generated by a Poisson distribution.

Since the introduction of distinct small-scale and large-scale asperities is somewhat arbitrary,
we generalize the model by introducing a multiscale fractal-like rough wall with a hierarchy of
asperity sizes [23,24]. The distribution follows Dn+1 = 2−nD1, where Dn is the nth-level asperity
size. Assuming a constant coverage area for different asperity sizes, the number density of asperity
in each level obeys a D−2

n power law, as N (Dn) ∼ D−2
n . The generalized rough surface model is

referred to as the multiscale asperity model (MSAM).
In the present study, definite differentiation of large-scale and small-scale groups of multiscale

asperities is still needed, the latter of which only provide adhesion action on particles while not
involved in any resuspension events. We define the large-scale group of asperities responsible for
resuspension as having Dn � Dlarge = Dp/100 (Dp is the particle diameter); hence the small-scale
group of asperities has Dn < Dp/100. The sensitivity of this threshold value to the resuspension
prediction is given in Sec. III A. Then if a particle hits a large-scale asperity, the resuspension
criterion is whether its kinetic energy is higher than the adhesion well, i.e.,

Ek = mpu2
p/2 > Ua(z0), (6)

and if yes, the particle will be lifted off at a vertical velocity equivalent to the streamwise one before
the collision (assuming elastic collision). Note that the current resuspension criterion is conceptually
similar to the impulse- or work-based criterion for the incipient motion of a particle sitting on a
rough bed in turbulent flow [49–51]. However, these models are for much larger particles and do
not invoke the adhesion effect as it may be less important than aerodynamic forces for large particles.
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Equation (6) describes the resuspension criterion used in our simulations, in which the relevant
physical quantities include particle mass mp, particle velocity up, and adhesion well Ua. The particle
velocity is determined by Eq. (1) and the adhesion well is defined by Eq. (5). According to the above
equations, we can finally find that the relevant quantities involved in the resuspension criterion are
the particle density ρp, the particle radius Rp, the fluid density ρ f , the fluid kinematic viscosity
ν f , the fluid friction velocity uτ , the asperity radius Ra, and the Hamaker constant AH . Therefore,
a group of independent governing nondimensional parameters can be determined as the density
ratio σ = ρp/ρ f , the size ratio λ = Rp/Ra, the nondimensional particle radius R+

p = uτ Rp/ν f , and
the velocity ratio uτ /ua, where ua = √

σAH/mp. In addition, the particle Stokes number based on
the viscous scales is defined as St = τp/τ f = 2

9σR+2
p , where τp = 2ρpR2

p/9ρ f ν f and τ f = ν f /u2
τ .

Therefore, it can be expected that the resuspension is determined by the above nondimensional
parameters or an equivalent set of recombinations.

C. Flow velocity model

The instantaneous streamwise flow velocity u f seen by a particle is required as an input in the
resuspension model. For particles having a diameter smaller than the viscous sublayer thickness
D+

p < 5, the fluid velocity seen by the particle may be written as

u f = τw

μ f
Rp. (7)

Here τw is the instantaneous wall-shear stress along the wall at the location of the particle. Thus,
the drag force on a particle along the wall is proportional to the local instantaneous wall-shear
stress. Small-scale fluctuations of wall-shear stress are typical for turbulent flows, so accurate fluid
velocities seen by particles require a direct numerical simulation on a fine mesh with a fine time
step [52–54]. In contrast, it may be much more efficient and cheaper to model flow velocity by
knowing mean flow velocity from a Reynolds-averaged Navier-Stokes (RANS)–like solution or
coarsely resolved flow velocity from a wall-modeled LES solution.

1. Stochastic model for instantaneous flow velocity

If the mean streamwise flow velocity is known from a RANS solution or an analytical expression,
we can use a stochastic model to generate an instantaneous flow velocity seen by a particle obeying
several basic statistical properties of canonical wall turbulence. Henry and Minier [21] modeled the
instantaneous flow velocity seen by a particle using an Ornstein-Uhlenbeck-type stochastic model,
which is Gaussian in nature and written as

du+
f = −u+

f − U +
f

T + dt +
√

2

T + σ+
u f

dW +, (8)

where u+
f is instantaneous streamwise flow velocity seen by a particle, U +

f = 〈u+
f 〉 is the mean

streamwise flow velocity (〈·〉 is the average operator), T + is the correlation timescale of the flow
(which is set to 40 according to Ref. [21] if not explicitly noted), σ+

u f
is root-mean-squared (rms)

value of u+
f , dt is the time step, and dW + is a discrete Wiener process. Here the plus superscript

indicates the viscous normalization by ν f (the fluid kinematic viscosity) and the friction velocity uτ

(uτ = √〈τw〉/ρ f , where 〈τw〉 is the mean wall-shear stress).
The particle size considered in this work is much less than the thickness of the viscous sublayer,

and the dispersed phase is so dilute that one-way coupling is appropriate (neglecting the feedback of
particles to fluid flow). Therefore, the mean streamwise flow velocity can be modeled by the linear
law [29], as

U +
f = R+

p , (9)
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log-normal
Γ

log-normal
Γ

FIG. 3. Probability density function of the streamwise wall-shear stress from the DNS data, as well as the
Gaussian and non-Gaussian (log-normal or �) PDFs.

and the rms value of the fluctuating flow velocity is modeled by an empirical fitting formula [55], as

σ+
u f

= 0.4R+
p

1 + 0.002 39R+1.496
p

. (10)

On the other hand, it has been well documented that the statistics of near-wall turbulence
velocities and wall-shear stress are not Gaussian [25–27,54,56]. Figure 3 shows the probability
density function (PDF) of streamwise wall-shear stress from a channel DNS database at Reτ = 1000
[57], together with the Gaussian and the non-Gaussian (log-normal or �) PDFs. The parameters in
the PDF expressions, i.e., the mean wall-shear stress 〈τw,x〉 and its rms value στw,x , are directly
obtained from the DNS data. It should be noted that only τw,x > 0 data are used, and the negative
wall-shear events (which are very infrequent) are not taken into account, because only positive flow
velocity is used in the resuspension model. It is expected that rare instances of negative velocities
do not significantly impact particle resuspension behavior.

Figure 3(a) displays the PDFs in linear coordinates. It can be seen that the log-normal distri-
bution and the � distribution are in much better agreement with the DNS data than the Gaussian
distribution. On the other hand, Fig. 3(b) plots the PDFs on a semilogarithmic scale to examine the
relative probability of extreme wall-shear stress events. The probability of τ+

w,x > 2 is evidently
underestimated by the Gaussian distribution, but only slightly overestimated by the log-normal
model and slightly underestimated by the � model. Therefore, the wall-shear stress is highly
non-Gaussian, and the log-normal model or the � model can be expected to give a better prediction
of the probability of encountering extreme events than the Gaussian model.

Thus, we aim to model the fluid velocity seen by particles considering the non-Gaussianity of
flow velocity [29]. We employ a log-normal or a � stochastic model which provides improved
predictions of the PDF of wall-shear stress or near-wall velocity especially for infrequent large-
magnitude events. The log-normal model is [29]

dY + = −Y + − μ+
L

T + dt +
√

2

T + σ+
L dW +, (11)

in which

Y + = ln u+
f , μ+

L = ln
(
U +2

f /

√
U +2

f + σ+2
u f

)
, σ+

L =
√

ln
(
σ+2

u f
/U +2

f + 1
)
. (12)
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FIG. 4. Probability density functions of the subgrid scale streamwise fluctuating wall-shear stress with a
filter (FDNS) and a coarser filter (CFDNS). Gaussian1 and Gaussian2 are the corresponding Gaussian PDFs to
FDNS and CFDNS, respectively.

The � model can be written as [29]

du+
f = −u+

f − U +
f

T + dt +
√

2U +
f u+

f

T + σ+
u f

dW +. (13)

The models (9) and (10) for the mean flow velocity U +
f and the rms value of fluctuating flow velocity

σ+
u f

are still adopted in the non-Gaussian stochastic models (11) and (13).

2. Stochastic model for subgrid-scale flow velocity

In a coarse-grained simulation, e.g., large-eddy simulation, only a resolved flow velocity ũ f

above the filter length scale is provided, and the omission of a subgrid-scale (SGS) flow velocity
u′

f = u f − ũ f will typically cause biased predictions of particle resuspension [33]. Figure 4 shows
PDFs of streamwise subgrid-scale wall-shear stress from the channel DNS database using two
planar box filters in the two wall parallel directions. The first filtering width is chosen as 16 times
the DNS grid size (i.e., 
+

x = 196), the same as that used in Ref. [58], while the second filter scale
is twice coarser. It is seen that the subgrid-scale wall-shear stress is also non-Gaussian. However,
implementation of a non-Gaussian model of the type used for the RANS-level modeling described in
the preceding section is challenging. The SGS stress fluctuations exhibit both positive and negative
values while the log-normal and � distribution models represent only positive fluctuations. Also,
in filtered DNS, we have verified that some asymmetry (non-Gaussianity of the large-scale stress
fluctuations) is present at the filtered level. Thus, for the present purposes, a simple Gaussian
Ornstein-Uhlenbeck-type stochastic SGS flow velocity model will be used to approximate the flow
velocity seen by a particle in coarse-grained simulation. While not accounting for non-Gaussianity
at the SGS scales, such a model allows for testing the basic effect of SGS fluctuations on particle
resuspension. Development of non-Gaussian wall-shear stress SGS models is left for future efforts.

The present stochastic model for SGS wall-shear stress is based on the Gaussian Ornstein-
Uhlenbeck-type process, i.e.,

du′+
f = −u′+

f

T + dt +
√

2

T + σ+
u′

f
dW +. (14)
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Here σ+
u′

f
is the rms value of the SGS flow velocity u′+

f , which can be estimated using DNS data as

σ+2
u′

f
= σ+2

u f
− σ+2

ũ f
, (15)

where σ+
ũ f

is the rms value of the resolved flow velocity ũ f , which was actually obtained from wall-
shear stress data and using (7). We found from the data that the relation (15) is a good approximation,
since the resolved and the SGS wall-shear stresses are approximately uncorrelated. Note that the
specific values used in the present application are tuned specifically from filtered DNS data and
thus lack generality. The approach is followed for demonstration purposes and for motivating future
work to develop more general models.

III. RESULTS

A. Comparison with experimental measurement

First, we compare the model predicted �mod (remaining particle fraction) on a wall after 1 s
exposure to airflow with experimental data of Reeks and Hall [20]. The measurement is conducted
in a long duct with a rectangular section. In the experiment, the duct is horizontally placed (normal to
gravity). The height of the duct is 0.02 m and the width is ten times larger, so it can be approximately
regarded as a plane channel flow with a half height of H = 0.01 m. The test section is 3.5 m down-
stream along the duct, where the flow is fully developed. The friction velocities in the experiment
range between approximately 0.2 and 5.0 m/s. Therefore, we can estimate that the friction Reynolds
number is roughly in the range Reτ ≈ 130–3300 with air viscosity ν f = 1.57×10−5 m2 and air
density ρ f = 1.3 kg/m3, which is well within the fully turbulent regime of channel flow [59–62].

For the model, 10 000 particles are initialized on the wall at rest with a uniformly random
planar distribution. The densities of the alumina and graphite particles are 1600 and 2300 kg/m3,
respectively. The time step in the simulation is set to 10−6 s, which is small enough to produce
accurate and statistically converged results. The model and physical parameters in the simulations
are kept the same as in [21] and can be found there. It should be noted that we use a total surface
coverage of asperities Ca = 6% in the present stochastic simulations (0.6% for each hierarchy of
asperities), the same as in [21]; the exact value was absent in the experimental measurement of
Reeks and Hall [20]. The size distribution of asperities was also not measured and reported. For the
MSAM simulation, the minimum and maximum asperity radii are 5 nm and 2 μm, respectively, and
the number of asperity levels is set to 10. As the overall model output we consider the fraction of
particles that remain on the wall after 1 s, denoted by �mod. Stronger resuspension will correspond
to smaller �mod and vice versa. Results are obtained for various values of the velocity ratio uτ /ua.

We performed simulations using the TSAM and MSAM coupled with the Gaussian stochastic
flow velocity models with the mean flow velocity according to Eq. (9). The results are compared
with the experimental results of Reeks and Hall [20] in Fig. 5. In addition, the simulation results of
the three different particles (different material or/and size) in Reeks and Hall’s experiment are also
displayed in Figs. 5(a), 5(b), and 5(c), respectively. The reference velocity ua is solely determined
by the particle and fluid properties and unchanged for each kind of particle. In each plot we only
varied the value of uτ to obtain the given data points. It can be seen that the predictions for the
fraction of remaining of particles on the wall using the MSAM vary less steeply with respect to a
normalized friction velocity than those by the TSAM, and the former are often in better agreement
with the experimental data, but not always so. In addition, the predictions using the MSAM at small
friction velocity are generally good, but the predictions at high wind velocity are all underestimated,
which may be attributed to physics that is not considered by the model, e.g., the wind velocity deficit
in the wake of asperities and particles (the sheltering effect) or the effect of particle collision [63].

Furthermore, we assess the sensitivity of the resuspension prediction to the threshold size of
large-scale asperities Dlarge and the results are displayed in Figs. 5(d)–5(f). Besides Dlarge = Dp/100,
another two threshold sizes of Dlarge = Dp/50 and Dp/200 are chosen for comparison. It can be seen
that the prediction results have a notable sensitivity to Dlarge, and using Dlarge = Dp/100 generally
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Reeks and Hall [20]

ex
p
t.

ex
p
t.

ex
p
t.

Reeks and Hall [20]

FIG. 5. Fraction of particles remaining on the wall after 1 s exposure to airflow with varying wind friction
velocity uτ . Here ua = √

σAH/mp is a reference velocity scale, σ = ρp/ρ f is the density ratio, AH is the
Hamaker constant, and mp is the mass of the particles. The particle parameters are (a) and (d) alumina particles
with Rp = 5 μm, (b) and (e) alumina particles with Rp = 10 μm, and (c) and (f) graphite particles with
Rp = 6.5 μm. The Hamaker constant is set to 25×10−20 J for alumina particles and 80×10−20 J for graphite
particles, the same as in [21]. The minimum and maximum asperity radii are 5 nm and 2 μm, respectively,
and the number of asperity levels is set to 10. The total asperity coverage is 6% (0.6% for each hierarchy
of asperities). (d)–(f) Sensitivities of remaining fraction of particles with the threshold size of large-scale
asperities.

yields better predictions of the remaining particle fraction, which validates the present choice of
Dlarge = Dp/100. However, we should emphasize that the sensitivity of resuspension prediction to
the threshold is not small and Dlarge can be regarded as an additional free parameter in the model.
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Therefore, it provides more flexibility for the resuspension prediction by the MSAM compared with
the TSAM.

B. Validation of the stochastic flow velocity model

In order to accurately quantify the effects of the stochastic flow velocity models, i.e., Eqs. (8),
(11), and (13), we resort to using DNS of turbulent flow and simulate particle resuspension with the
MSAM as reference data. Other model components are kept fixed to isolate the effect of the flow
velocity model. More specifically, we use the turbulent channel flow data set at Reτ = 1000 avail-
able from Johns Hopkins Turbulence Databases [57] as the background flow to compute the particle
motion in one-way coupling. The channel flow data set is produced by a DNS in a wall-normal
velocity-vorticity form using a pseudospectral method in the horizontal plane and a seventh-order
B-spline collocation method in the wall-normal direction [64]. Dealiasing is performed using the
3/2 rule. Temporal integration is performed using a low-storage third-order Runge-Kutta method.
The simulation domain size is 8π×2×3π with a spatial resolution of 2048×512×1536 in the
streamwise (x), wall-normal (y), and spanwise (z) directions, respectively. The grid resolution of
the DNS data is relatively standard, i.e., 
x+ ≈ 12 and 
z+ ≈ 6. The effect of grid resolution
on wall-shear stress fluctuations has been investigated in detail by Yang et al. [54]. These authors
observed that the standard grid resolution resolves about 99% of the wall-shear stress fluctuations
at Reτ = 180. Further, that paper estimated that only a slightly higher resolution is necessary at
Reτ = 5200 to capture 99% of the fluctuations. Of course, some very rare events will be obscured by
the grid resolution, but this has a minimal impact on our results here. The error of the log-normal or
� models in precisely reproducing the PDF is much more significant than the relatively small error
observed by Yang et al. [54]. In total, 4000 snapshots in a flow through time approximately (Lt ≈ 26)
are available in the database. The three velocity components and pressure data are stored every five
time steps, corresponding to a nondimensional database time step 
t = 0.0065 (normalized by the
bulk velocity and half channel height). Initially, 10 000 particles are put on the wall at rest with a
uniformly random planar distribution.

In this work we only compute the rolling motion and the resuspension of a particle on a rough
surface, while not taking into account wall interactions of particles that have already been entrained
in the bulk of the flow. The particle size considered here is much smaller than the thickness of
the viscous sublayer; therefore, we use the instantaneous streamwise wall-shear stress τw,x from
the DNS data and the linear law to give the instantaneous flow velocity seen by a particle, i.e.,
Eq. (7). Three kinds of particles, namely, the same as those in the experiment of Reeks and Hall
[20], are considered. Specifically, we consider alumina particles with Rp = 5 μm, alumina particles
with Rp = 10 μm, and graphite particles with Rp = 6.5 μm. The air density is 1.3 kg/m3 and
the density ratios of the alumina and graphite particles to air are 1230 and 1770, respectively. The
Stokes number St defined by viscous scales is on the order of 1–103 in our simulations. The Hamaker
constants for the alumina and graphite particles are 25×10−20 and 80×10−20 J, respectively. The
total surface coverage of asperities is 10% (1% for each hierarchy of asperities).

Since the DNS provides a convenient common reference, we compare the model predictions
using the Gaussian and non-Gaussian flow velocity models with known mean velocity, i.e., Eqs. (8),
(11), and (13), to the results obtained using the known DNS velocity. Results are shown in
Figs. 6(a)–6(c). It can be seen that the Gaussian model yields an overprediction of the fraction
of particles remaining at the surface or an underprediction of the resuspension rate. This is probably
owing to the underprediction of extreme flow velocity events generated by the Gaussian model,
which are rare but may play an evident role in particle resuspension. On the other hand, the
non-Gaussian models yield predictions in better agreement with the DNS results, further supporting
that the non-Gaussianity of the near-wall velocity is an important factor in particle resuspension.
To further quantify the difference between the predictions using the stochastic flow velocity models
and DNS flow data, we show their fraction difference �mod − �DNS in Figs. 6(d)–6(f). It can be seen
that for the three types of particles, the maximum fraction difference with the Gaussian model can
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FIG. 6. (a)–(c) Fraction of particles remaining on the wall after a time exposure of one flowthrough to flow
with varying velocity ratio uτ /ua using the channel DNS data for the three particles as in Fig. 5.

exceed 10% and that the difference (error) when using the log-normal model is about 3 times smaller
than when using the Gaussian model. It can also be seen that there is a maximum in the error for an
intermediate uτ /ua. This is qualitatively explained as follows. At very small friction velocity, all of
the particles remain attached on the wall and this is easy to predict. At very large friction velocity, all
of the particles are removed from the surface; again, this is easy to predict. At intermediate friction
velocity, a significant portion of particles are removed while another significant proportion remain
attached. In this regime, the predicted resuspension rate is most sensitive to the modeling error, so a
maximum error occurs near the friction velocity where roughly half of the particles remain attached.
Furthermore, Secs. III A and III B together show that the stochastic flow velocity model has some
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influence on the prediction and non-Gaussianity does improve agreement with the DNS, but it is
generally smaller than other concerns such as how to model the particle-roughness interactions.

Note also that the DNS data are nondimensional and need to be transformed into dimensional
data if applied to an actual particle resuspension problem. A question is whether uτ /ua uniquely
determines the resuspension rate at a fixed flow Reynolds number and particle-to-fluid density ratio.
For this purpose, we consider two variations, by varying the friction velocity uτ while keeping
others unchanged or varying ρ f and ρp while keeping others unchanged. In these transformations,
the three aforementioned similarities are satisfied, i.e., the particle-to-fluid density ratio similarity
(σ ), the particle-to-asperity size ratio similarity (λ), and the velocity ratio similarity (uτ /ua), while
the viscous-scaled particle size R+

p is different. Figure 6(a) shows the results using the different
transformations. It can be seen that the remaining fraction �mod after one flowthrough time is exactly
the same by the two transforms, validating the similarity of the velocity ratio uτ /ua.

C. Coarse-grained simulation with stochastic subgrid-scale flow velocity model

In this third and final test, a priori and a posteriori testing is performed for wall-modeled
LES predictions of particle resuspension, with and without a stochastic model for the unresolved
fluctuations. For coarse-grained simulation for turbulent flow, we first perform filtering of the DNS
data in both time and space, i.e., filtered DNS (FDNS), to mimic an ideal large-eddy simulation.
A two-dimensional box filter is used to calculate the filtered wall-shear stress at the wall with two
resolutions. The first one is the same as that in Ref. [58], where all 16 wall-shear stress snapshots
were downloaded and filtered in space with a box filter 16 times larger than the DNS resolution
(
x+ ≈ 196 and 
z+ ≈ 98). The second resolution is twice coarser, so it is 32 times the DNS
resolution in time and space (
x+ ≈ 392 and 
z+ ≈ 196). Figure 7 shows the remaining fraction
of particles using FDNS data with or without the subgrid-scale flow velocity model, i.e., Eq. (14). It
is seen from Fig. 7 that the FDNS without SGS flow velocity model (MSAM FDNS) significantly
overestimates the fraction of particles remaining or underestimates the resuspension rate. The
coarser FDNS (MSAM CFDNS) slightly increases the overestimation of the remaining fraction
or the underestimation of the resuspension rate. The maximum fraction difference with the DNS
results can reach 30%–40%. On the other hand, by including the SGS flow velocity with Gaussian
distribution, i.e., the model (14), the prediction for the remaining fraction is much improved. The
maximum fraction difference is reduced to about 10%, which is consistent with the results in Fig. 6.
The effect of different filter widths seems to be only marginal. Therefore, the results presented here
indicate the necessity of adding an SGS flow velocity component in predicting the resuspension of
particles.

In order to test the proposed resuspension model in the context of a realistic coarse-grained
simulation (a posteriori testing), we follow the approach of Ref. [58] and perform large-eddy
simulation of channel flow at Reτ = 1000 and couple the coarse-grained flow fields with the
stochastic SGS flow model. The open source LESGO code [65] was employed to simulate the channel
flow with a series of snapshots that match those from the FDNS data. The code uses a pseudospectral
treatment with 2/3 dealiasing in the wall-parallel directions and second-order finite differencing on
a staggered grid in the wall-normal direction. The second-order Adams-Bashforth scheme is used
for time advancement, and the pressure Poisson equation is solved to satisfy the divergence-free
condition on the velocity field. The scale-dependent dynamic Smagorinsky model [66,67] is adopted
for the SGS stress closure. The equilibrium wall model [68] is implemented as the first off-wall
grid lying in the logarithmic region. The computation domain size is the same as the DNS one,
i.e., 8π×2×3π in the x, y, and z directions. Two grids are generated, namely, a normal one with
128×32×96 and a coarser one with 64×16×48. Note that the grid in the wall-normal direction is
uniformly distributed.

Figure 8 shows the remaining fraction of particles �LES using the LES solution with or without
a subgrid-scale flow velocity model. The results are quite similar with the FDNS. The LES without
SGS flow velocity model (MSAM LES) significantly overestimates the fraction of particles remain-
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FIG. 7. (a)–(c) Fraction of particles remaining on the wall after a time exposure of one flowthrough to flow
for the three particles as in Fig. 6. The total asperity coverage is 1%. (d)–(f) Fraction difference between the
predictions using filtered DNS and DNS flow data.

ing or underestimates the resuspension rate. The coarser LES (MSAM CLES) slightly increases the
overestimation of the remaining fraction or the underestimation of the resuspension rate. In addition,
by including the SGS flow velocity with the Gaussian distribution, i.e., the model (14), the prediction
for the remaining fraction is much improved. The maximum fraction difference is reduced to about
10%. The effect of different filter widths seems to be only marginal. Note that the SGS model
was tuned using knowledge of the wall-shear stress variance from DNS. This enabled the current
demonstration of the importance of the SGS model. For general applicability, the model must be
supplied with additional modeling needed to prescribe the SGS wall stress fluctuation variance.
Future work is needed in this regard.
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FIG. 8. (a)–(c) Fraction of particles remaining on the wall after a time exposure of one flowthrough to flow
for the three particles as in Fig. 6. The total asperity coverage is 1%. (d)–(f) Fraction difference between the
predictions using LES and DNS flow data.

Finally, we would like to clarify the difference between the results of Secs. III C and III B.
In Sec. III B we dealt with the stochastic model for the total fluctuating velocity containing all
scales of turbulent motions, and the mean flow velocity is given like a RANS solution. In this
circumstance, we found that the non-Gaussianity of fluctuating flow velocity plays a visible but not
vital role. On the other hand, in Sec. III C, coarse-grained simulation (filtered DNS or LES) can
provide large-scale-resolved flow velocity containing a large portion of turbulent motions, while
small-scale unresolved motions are modeled by the stochastic SGS flow velocity model. Although
the SGS flow velocity is non-Gaussian as shown in Fig. 4, it is not as straightforward to model by
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a stochastic process. We found that a Gaussian stochastic SGS flow velocity model can account for
most of the error by ignoring the SGS flow velocity, and including non-Gaussianity may be expected
to provide only a small additional improvement.

IV. CONCLUSION

In this study we numerically solved the equations of particle motion with a resuspension model
to simulate the resuspension of small inertial particles by a wall-bounded turbulent flow. The
resuspension model of Henry and Minier [21] was generalized to a more realistic multiscale rough
surface geometry that often improves agreement with the experimental data. To isolate the effect of
the fluid velocity stochastic model, the multiscale asperity resuspension model was coupled with a
time-resolved DNS database of channel flow for comparison while keeping the asperity model fixed.
It was found that a log-normal stochastic model for the instantaneous flow velocity can generate a
more accurate prediction of particle resuspension than the Gaussian stochastic model; however, the
error attributable to the flow velocity model is small compared to other aspects of the resuspension
model. Finally, we coupled the resuspension model with coarsely grained simulation, i.e., filtered
DNS and LES, as well as a Gaussian stochastic model for the SGS flow velocity. It was shown
that LES without an SGS velocity fluctuation model causes significant errors (underestimation) in
the resuspension prediction compared with DNS and the inclusion of the SGS model significantly
improves the prediction.

Further refinements of the resuspension modeling introduced here can be considered. For ex-
ample, one could develop and include a non-Gaussian SGS flow velocity model. Also, one may
consider possible sheltering effects in the asperity model as well as the effects of particle collision
[63]. The results here provide an important step toward developing a more complete large-eddy
simulation framework to predict particle resuspension processes with high accuracy [69]. Wall
models that incorporate the inner-outer interaction physics [38–44] may also be important to such
efforts.
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APPENDIX: MODEL ASSUMPTIONS

In this Appendix we would like to discuss and justify the underlying assumptions in modeling
particle motion of this work, i.e., the ignorance of slipping motion, gravity, lift, lubrication, and
particle-particle and particle-flow interactions.

(i) Possible slipping motion. Slipping motion is possible if the aerodynamic force on particle is
larger than the friction force. We have checked that the aerodynamic force is about two to three
orders of magnitude smaller than the van der Waals adhesion force (in the wall normal towards the
surface) on average and it is probably also smaller than the friction force as the friction coefficient is
commonly on the order of 10−1–1 (e.g., 1.05 for aluminum on aluminum). Therefore, it is reasonable
to only consider purely rolling motion in our simulations and there is no need to solve the linear
momentum equation of particle motion.

(ii) Gravity and lift. We have checked that the gravity is two to four orders of magnitude smaller
than the adhesion force on average, so it can be reasonably neglected. Recently, Bragg et al. [70]
showed that gravitational settling may play a role in determining particle concentration and velocity
distribution in a particle-laden wall-bounded turbulent flow. In their work, particles were introduced
at the upper plane of the domain and settled down under gravity and turbulence, which is different
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from the present resuspension setup. Here we just consider purely rolling motion of particles on
the horizontal wall, so only horizontal aerodynamic and adhesion moments are considered. In other
words, we did not compute particle motion away from the wall and into the fluid flow; thus the
gravitational settling is not included. We have also checked that the Saffman lift is smaller than the
gravity on average, so the lift force is also neglected and a small heavy particle considered here is
unable to be directly picked up away from the wall by the aerodynamic lift alone.

(iii) Lubrication. Lubrication force is generated by relative motion between two surfaces getting
very close, when the fluid between the gap is squeezed out. There have been several analytical
models for calculating the lubrication force and torque in the Stokes regime [71–73]. In the wall-
normal direction, the normal lubrication force is infinite if a particle is in contact with a smooth
surface. Usually a minimum height related to surface roughness size is prescribed in computations,
and the normal lubrication force is assumed to be zero or continuously varied when the gap size is
smaller than the minimum height [74–83]. Nevertheless, the normal lubrication force is proportional
to the normal relative velocity between the two surfaces. In our case, particles are rolling along a
surface and there is no normal relative motion between the particle and the surface; thus the normal
lubrication force can be neglected. For the tangential lubrication force and torque, analytical models
have also been developed [84,76,81], in which it is assumed that the tangential lubrication force and
torque are zero for surfaces that are in contact with each other. Therefore, the tangential lubrication
force and torque are also neglected. However, the lubrication force would presumably resist the
particle as it leaves the surface, which is potentially a topic for further study in the future, as we
only focus on particle rolling motion on the wall in this work.

(iv) Particle-particle and particle-flow interactions. In our simulations, the initial particle volume
fraction (in a slab with a height of particle diameter) is on the order of 10−11–10−6; thus it is well
within the one-way coupling regime [1,85] and particle-particle (four-way coupling) and particle-
flow (two-way coupling) interactions can be omitted.
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