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Wake instability behind a streamwise and transversely rotating sphere
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We have performed direct numerical simulations for the flow past a streamwise and
transversely rotating sphere at a Reynolds number Re = 500. To investigate the effect of
low to very high rotation rates on the flow dynamics, we have varied the dimensionless
streamwise (�x ) and transverse (�z ) rotation rates between 0.5 and 5. The streamwise
rotation of the sphere causes twisting of the vortex structures in the wake and results in
centrifugal instabilities. The wake consists of two intertwined spiral vortices at �x = 0.5,
whereas the vortex structures form threads and bifurcate into large-scale shear layers for
�x � 2. The shedding pattern during the transverse rotation is subject to turning. The
structures at the aiding side of the motion experience tearing, whereas they squeeze at
the opposing side. We found single-sided shedding of the hairpin structure at �z = 0.5.
The wake deforms into numerous small-scale vortex filaments for �x = 2, whereas it
becomes complex, constituting stretched hairpins at �x = 5. During the rotation cycle
of the sphere, the wake shows steady flow at �x = 0.5. In contrast, at �z = 0.5, we
found one-sided shedding of hairpin vortices in the near wake, which becomes ringlike
vortices in the far wake. The wake at �z = 2 forms randomly oriented vorticity patches,
which cannot cope with the sphere’s rotation, thereby retaining their shape and orientation
during the rotation cycle. The line-time reconstruction of vertical velocity signals shows
discontinuity in vortex formation for higher �x,z. We have formulated a method for tracking
the trajectories of the vortices. In the near wake at �x = 0.5, the vortex trajectories move
in a circular path, whereas it settles at a larger radius in the far wake. We observe that for
�x � 2, the local rotation center of the near-wake vortices cannot cope with high rotational
speeds, and the fluid particles partially obey the effects of solid-body rotation. A higher
degree of mixing of the fluid particles in the near wake at �x = 5 decreases the localized
rotation of the vortex trajectories, and the vortex centers settle along the radial lines in the
far wake. We found the symmetric distribution of the vortex trajectories at all transverse
planes during �z rotation. Our results indicate that a rotating sphere always experiences a
positive drag irrespective of the rotational direction. The time average normalized angular
velocity of the vortices at various transverse planes reveals that the near wake vortices
could cope with the sphere’s rotation for �x = 0.5. However, it decays marginally for
�x = 2. In contrast, most of the rotational speed is lost for �x = 5. We have calculated the
penetration depth as the downstream length for which 10% of the sphere’s angular speed
is preserved by the downstream vortices, which reveals rapid reduction for increasing �x .
At various downstream locations, the normalized angular frequency of the vortices renders
the asynchronous rotation of the vortex structures. We found a minimal impact of �z on
the rotation of the downstream vortices. However, the wake fluctuations are triggered with
increasing rotation rate, although fluctuations are lesser for �z rotation. The near wake
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vortices reveal low-frequency rotation for all �z, and the asynchronous motion of the
vortices triggers its asynchronicity for increasing �z.

DOI: 10.1103/PhysRevFluids.8.024101

I. INTRODUCTION

Description of wake structure past a rotating sphere has attracted significant research attention
owing to its prominent role in many engineering applications. Such applications include freely
falling or rising bodies [1,2], sports aerodynamics [3,4], particle-driven flows [5], and fluidized
bed combustion [6], to name a few. In addition, the rotating sphere undergoing transverse rotation
has historically drawn several researchers to understand the induced “Robins-Magnus” lift force,
which has several consequences on the industrial implications. Subsequently, studies on analytical
framework [7] reported expression for the “Robins-Magnus” lift coefficient (CL ) in the Stokes
regime (Re � 0.1,� � 0.1) as CL = 2�. Here Re = U∞D/ν is the Reynolds number, D is the
sphere diameter, U∞ is the streaming speed, and ν is fluid kinematic viscosity. The dimensionless
rotational speed of the sphere is given by � = Dα/2U∞, where α is the angular velocity of the
sphere perpendicular to the free stream. Interestingly, the drag coefficient has shown to be the Stokes
drag of a stationary sphere [7].

The earliest known experimental work on the flow past a streamwise rotating sphere dates back
to mid-1930 [8]. Later, Luthander and Ryberg [9] carried out experiments for rotating sphere flow
in the range of Reynolds number 1–5 × 105. They observed that the transition from laminar to
turbulent boundary layer depends on the rotation rate. Hoskin [10] noticed that the rotating motion
also affects the separation line, where an increase in rotation rates causes upstream motion of the
separation line by 10◦ within the laminar regime. A few experimental works have been beyond
the Stokes regime, where researchers measured the lift force for a transversely rotating sphere in
a uniform flow [11–13]. Recently, there have been other experimental studies for Re � 6 × 104

focusing on the influence of transverse rotation on the inverse Magnus effect [14–16]. It has been
found that an increase in Re caused a sudden change in the direction of the rotation-induced lift. In
a more recent study, Skarysz et al. [17] experimented wake behind a rotating sphere for Re � 500
and 0 � � � 4. In the (Re,�) parameter space, they identified an axisymmetric flow, a low helical
state, and a high helical mode wake regime.

From the numerical perspective, Kurose and Komori [18] performed direct numerical simulation
(DNS) for a rotating sphere in a homogeneous linear shear flow in the range of 1 � Re � 500
and 0 � � � 0.25. They presented a detailed analysis of the flow structure and vortex shedding
frequency. Results from their simulation showed to be in good agreement with the thereafter
DNS study of Niazmand and Renksizbukut [19] for 10 � Re � 300 and 0 � � � 1. The three-
dimensional (3D) numerical simulation for a streamwise rotating sphere by Kim and Choi [20] for
0 � � � 1 revealed that the flows become “frozen” at � = 0.5, 6 for Re = 300. In the “frozen”
state, the wake vortical structures rotate without temporal variation of their strength, and the lift
force becomes a time-independent constant magnitude. They showed that the “frozen” flow becomes
prevalent at higher � for increasing Re. Later, Kim [21] reported that the critical rotational speed
for the commencement of shear layer instability is higher at Re = 250 than at Re = 300. Giacobello
et al. [22] reported numerical results for the flow past a transversely rotating sphere for Re � 300
and � � 1. The study showed wake transition over the regime of � considered. At � � 0.8, the vor-
tex shedding resembled typical shear layer instability associated with the Kelvin-Helmholtz pattern.
Later research on a streamwise rotating sphere for Re � 350 and � � 2 identified low-frequency
periodic helical, quasiperiodic shedding, and high-frequency periodic helical wake modes [23].

A thorough numerical analysis of the flow past a transversely rotating sphere for Re = 500–
1000 and � � 1.2 by Poon et al. [24] revealed a new “shear layer-stable foci” flow regime. The
flow regime stays at Re = 500 and � = 1; Re = 640–1000 and � � 0.8, resulting in stable focus
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formation near the onset of the shear layer instability. Dobson et al. [25] performed simulations for
a transversely rotating sphere at Re = 100–300 and � = 1.25–3. They found that for � > 2, the
flow enters the “separatrix” regime, which bifurcates the surface-driven boundary layer engulfing
the sphere surface and the free stream flow. However, a few other important numerical studies have
been conducted by the same group of researchers to examine the effect of rotating axis angle [26]
and hydrodynamic forces [27] past a rotating sphere. In a contemporary research, Lorite-Díez and
Jiménez-González [28] carried out DNS behind a strongly streamwise rotating sphere for � = 0–3
and Re � 1000, reported higher wake complexity for increasing �. The wake constitutes double-
threaded structures at low Re and strong �. Their results have shown the evolution of periodic,
quasiperiodic, and irregular regimes, comprising a classical scenario of a route to chaos at low
and intermediate Re. More recently, Sierra-Ausín et al. [29] reported the spatiotemporal pattern
formation of rotating sphere flows from a dynamical system perspective up to � � 4. They observed
that the flow field for low � yields an analogous transition to the flow past the static sphere with
rapid flow frequency variations about the rotation. Interestingly, the transition from a single helix
pattern to a double helix structure reveals various regions with hysteric behavior within the wake.

Although there have been many studies on the uniform flow past a transversely rotating sphere
at various ranges of Re, studies beyond � � 4 remain absent. On the other hand, how the wake
instability would change when the sphere rotates along the streamwise direction is not clearly
understood. Therefore, in the present research, we have attempted to address typical wake insta-
bility characteristics when the sphere rotates along the streamwise and transverse directions. The
dimensionless rotation rates along streamwise and transverse directions are considered between
0.5 and 5. Results for a stationary sphere have also been compared with the rotating case. We
have organized the paper as follows: In Sec. II A physical system is briefed, and the mathematical
modeling aspects are detailed in Sec. II B, whereas Sec. II C presents numerical methods used. The
results section starts with the vortex topology in Sec. III A, where the penetration of the sphere’s
streamwise rotation through the downstream vortex structures is analyzed. The wake instabilities
during the rotation cycle are characterized in Sec. III B. Next, the vortex trajectories are shown
in Sec. III C to reveal how the local rotation causes the movement of vortex centers. The insights
during the streamwise rotation of the sphere are discussed in Sec. III D, whereas the corresponding
analysis for transverse rotation is detailed in Sec. III E. Finally, the paper concludes by drawing the
key findings of the research in Sec. IV.

II. PHYSICAL SYSTEM AND MATHEMATICAL SETUP

A. Physical system

Figure 1 represents a schematic of the physical problem involving a uniform left-to-right free
stream flow (U∞) past a rotating sphere. The Cartesian coordinate system is aligned with the sphere’s
center, where the x, y, and z axes designate the streamwise, cross-stream, and transverse directions,
respectively. The rotation axis of the sphere for streamwise rotation is about the x axis, while for
transverse rotation it is about the z axis. We define the dimensionless rotational speed as a measure
of the ratio between the linear velocity of the sphere to the free-stream speed, � = αD/2U∞. Here
α and D are the angular velocity and diameter of the sphere. The Reynolds number based on the
sphere’s diameter is expressed as Re = U∞D/ν, where ν is the kinematic viscosity of the fluid.
At a representative Re = 500 [24], we have chosen the cases for low to high rotational speeds
of the sphere. Accordingly, in the present research, we have considered three streamwise and
transverse speeds, namely �x = 0.5, 2, 5 and �z = 0.5, 2, 5. Besides, the corresponding situation
for a stationary sphere � = 0 is also compared in our analysis.

B. Mathematical setup

The constant property incompressible mass and momentum conservation equations constitute
the governing equations for the flow around the sphere. We have used D as the length scale, U∞ as

024101-3



ARNAB KUMAR DE AND SANDIP SARKAR

x/D

y/D , z/D

Δ
x/

Δ
x ma

x

Δ
y/

Δ
y ma

x ,
 Δ

z/
Δ

z ma
x

-5 0 5 10

-5 0 5

0

0.5

1

0

0.5

1Δxmin/D=0.0149 

Δymin/D=0.0154 

Δzmin/D=0.0154

x
y
zy

U∞
Ωz

z

x
Ωx

32D

φD 16D

16D

FIG. 1. Schematic diagram showing uniform flow past a sphere. The sphere is constrained to rotate in
the streamwise (�x ) and transverse directions (�z ). The right side panel shows distribution of spatial grid
resolution normalized by maximum mesh sizes (�x, �y, �z)max along the x, y, and z directions.

the velocity scale, and D/U∞ as the timescale for reducing the governing equations dimensionless.
The resulting dimensionless form of the governing equations may be expressed as

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ ∂ (uiu j )

∂x j
= − ∂ p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
. (2)

Here xi and ui are the dimensionless coordinate axes and velocity, respectively.
We have chosen the domain extents 32D, 16D, and 16D in the streamwise, transverse, and

cross-stream directions. At the inlet a uniform velocity (u, v,w) = (1, 0, 0) boundary condition is
specified. In the exit plane, a convective boundary condition ∂ui/∂x = 0 is imposed to minimize the
upstream feedback and easy passage of the vortices. Boundary conditions in the shear-free horizon-
tal boundaries read ∂ (u,w)/∂y = 0, v = 0, whereas on the vertical side boundaries ∂ (u, v)/∂z =
0,w = 0. The boundary conditions on the sphere surface are no slip and no penetration. At all
boundaries, we have imposed zero normal pressure gradients except for the exit plane, where the
ambient pressure is prescribed at p = 0. In our research, we have started all the cases from a no-flow
state and let them settle to a dynamic steady state stage. The time average fields shown in our
analysis are obtained by considering approximately 30 shedding cycles after the dynamic steady
state. The drag, lift, and spanwise force coefficients are defined as Cx,y,z = Fx,y,z/( 1

2ρU 2
∞ D2), where

Fx, Fy, and Fz are the components of drag, lift, and spanwise forces acting on the sphere.

C. Numerical setup

The conservation equations are solved using a nonstaggered finite volume technique. We have
used the diffuse interface immersed boundary method [33–35] to resolve the complex boundaries.
For more details, please refer to De and Sarkar [36,37]. We have employed a nonuniform Cartesian
mesh with uniform grids enveloping the sphere at all times for transient computations. The grid
spacing distributions in all coordinate directions are shown in the right-hand panel of Fig. 1. We
have used a dimensionless time-step size of �t = 10−3 for simulating all the cases investigated,
which yields a maximum Courant number Cumax = 0.12 for �x = 2. The total simulation time for
all runs has been nearly 20 000 core hours on a 850-tFLOP SMP cluster.

We have carried out a mesh sensitivity test at �x = 2 for four progressively refined meshes
starting from M1 = 168 × 122 × 122 with 25% increments in each extent while keeping the
time-step value as �t = 10−3. The results of the mesh sensitivity test are obtained in terms of
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TABLE I. Mesh sensitivity test results for four progressively refined meshes M1, M2, M3, and M4 at �x = 2.
Here C′

x and C′
y are the rms of drag and lift coefficients. Nx , Ny, and Nz are grids in the x, y, and z directions,

respectively.

Mesh Nx × Ny × Nz C′
x C′

y

M1 168 × 122 × 122 2.787 × 10−2 2.912 × 10−2

M2 216 × 152 × 152 3.152 × 10−2 3.125 × 10−2

M3 272 × 190 × 190 3.865 × 10−2 3.662 × 10−2

M4 330 × 240 × 240 3.868 × 10−2 3.662 × 10−2

the rms force coefficients and are tabulated in Table I. As seen in the table that for increasing
mesh resolution beyond M3, there is not much difference between the results. Therefore, it may
be safely concluded that M3 mesh is adequate for obtaining grid-insensitive results. However, to
obtain a better wake resolution in the subsequent computations, we have chosen the finest mesh size
M4 = 330 × 240 × 240 as the grid-independent mesh. We have performed 3D computations for
the flow past a stationary sphere for Re � 300 and compared our results with the experimental and
numerical data reported in the literature [30–32]. In Fig. 2(a), we have shown the comparison results
on the variations of drag coefficient (Cx ) as a function of Re. Figure 2(b) compares the functional
dependence of separation length Xs with Re, whereas in Fig. 2(c) we show the comparison results for
the time evolution of Cx at Re = 300. Given the uncertainties during experiments and the difference
in the solution method, we notice that the agreement is acceptable to excellent.

III. RESULTS AND DISCUSSIONS

We have conducted direct numerical simulations at Re = 500 to assess the implications of
three-dimensional flow attributes past a sphere subjected to streamwise and transverse rotations.
We demonstrate the results for representative situations of low to high rotation rates and analyze the
consequent wake instability characteristics. In particular, the results for a stationary sphere are also
shown and compared with the rotational cases.

A. Vortex topology

Figure 3 shows 3D vortex structures visualized with the isosurfaces of Q criteria [38] (at 10%
of the global maximum). As shown in the figure, compared with the stationary sphere case, the
planar symmetry of the flow is lost, and the vortical structures are significantly altered owing to
the sphere’s rotation. We see that the sphere’s rotation along the streamwise direction causes the
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FIG. 2. Comparison of the present simulation results with the (a) experimental and numerical results of
Roos and Willmarth [30] and Johnson and Patel [31] for the variations of drag coefficient (Cx ) as a function of
Re, (b) experimental and computational results of Taneda [32] and Johnson and Patel [31] on the dependence
of separation length Xs with Re, and (c) results of Johnson and Patel [31] for the temporal evolution of Cx in an
one period at Re = 300.
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FIG. 3. Three-dimensional vortex structures are visualized by the instantaneous isosurface of Q criteria at
10% of the global maximum for various streamwise and transverse rotation rates. The result for a stationary
sphere is shown for comparison. Note that all the vortical structures are shown at the same dimensionless
instant.

twisting of the entire vortex structure, leading to centrifugal instabilities. At a low rotation rate of
�x = 0.5, in a way, it results in the generation of two intertwined spiral vortices traversing several
sphere diameters in the downstream wake [39]. At �x = 2, the streamwise vortex shed from the
downstream end of the sphere wraps around with the threadlike structures generated upstream of
the sphere surface. The structures then undergo partial coalescence with the primary vortex strand
and are bifurcated into multiple vortex filaments. In the downstream wake, the vortex filaments
further interact with the threads under it, generating smaller structures that break down into smaller
filaments in the far stream. At �x = 5, the streamwise vortices at the downstream end bifurcate
into large-scale shear-layer structures with a trigger in their strength. The structures undergo rapid
reconnections and break down into smaller vortex filaments in the downstream wake.

The shedding pattern for the transverse rotation of the sphere is subjected to turning, leading to
wake deflection. The vortex structure at the opposing side of the rotation is susceptible to squeeze.
In contrast, the structures at the aiding side experience tearing. The relative dominance between
these two mechanisms yields the formation of dual vortical threads in the near wake by peeling
the shear layer from the sphere surface at �z = 0.5. Further downstream, these threads tilt and
join in evolving a single-sided shedding of the hairpin structure, as found for a stationary sphere.
However, increasing �z triggers tearing over the squeezing of the vortex structures. The structure
deforms and breaks into multiple smaller-scale vortex filaments in the near wake. We observe a
strong asymmetric wake for �z � 2, which deflects upward to render a one-sided vortex street. The
higher rotation of the sphere induces near-wake instability that breaks the shed vortex into thread
dipoles [40]. The threads bend toward the direction opposite the fluid motion (advancing side) and
encounter multiple reconnections, forming small-scale vortex filaments in the far stream. That again
wraps around the stretched threads, causing weakening of the threads followed by finer scale decay
of vortex structures through cross-diffusion. At �z = 5, the vortex structure deflection increases
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FIG. 4. Instantaneous vorticity contours (ωz ) at z = 0 plane for different streamwise and transverse rotation
rates. The corresponding contour for a stationary sphere is also shown.

toward the sphere’s advancing side, drawing the flow upwards, resulting in a large-scale shedding
pattern [41]. The near wake vortex street bifurcates transversely, and the topology shows complex
structures consisting of strongly attached stretched hairpins where the legs are entangled with the
locally evolving threads.

Figure 4 shows the instantaneous contours of ωz at z = 0 plane. The plot for a stationary sphere
shows elongated strands of positive and negative shear layers from the sphere’s surface to the far
stream. A finger of positive vorticity bends upwards and pushes the negative vortices further up. In
contrast, the wake structure at �x = 0.5 shows elongated positive and negative vortex strands from
the sphere surface to the far wake. At �x = 2, pair of opposite signed shear layers are intertwined
by the sphere’s rotation in the back stagnation region. The wake bifurcates into alternatively signed
cross-stream cells, developing a zigzag pattern. In the far stream, lateral diffusion of the cross-stream
cells renders a blurred wake. Higher rotation at �x = 5 causes thinning of the shear layer, which
rolls up close to the sphere’s surface and unevenly discharges patches of positive and negative
vorticity cells of triggered strength downstream. The downstream circulation cells experience
localized stretching and develop irregularly distributed, continuously interacting, complex vortex
loops and contrails. The far stream vortex contrails undergo core diffusion due to viscous decay,
yielding a blurred wake pattern. At �z = 0.5, the shear layer on the retreating side is deflected
toward the advancing side and then interacts with the negative shear layer to form branches of
hairpin legs. At �z = 2, shear layers from the retreating and advancing sides merge in the near wake
by experiencing local instability, similar to the shear layer instability regime [21,22,24]. Azimuthal
stretching splits the wake, generating multiple positive and negative vorticity cells downstream. The
shear layers become unstable at �z = 5, causing upstream shedding of vortices (Fig. 4). In the near
wake, both the positive and negative vortices roll up and bifurcate into a twin jet-type flow pattern,
resulting in the transverse expansion of the wake.

We compute the absolute magnitude of time-averaged vorticity at a streamwise plane,

〈ω〉(x) =
∫

Ayz

(〈ωx〉2 + 〈ωy〉2 + 〈ωz〉2)1/2 dAyz. (3)

Here 〈· · · 〉 refers to the time average. The streamwise variation of 〈ω〉 for a stationary sphere and
both rotation rates are plotted in Figs. 5(a) and 5(b), where the shaded region marks the sphere’s
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FIG. 5. Streamwise variations of the absolute magnitude of time-averaged vorticity 〈ω〉 for a stationary
sphere and for various (a) �x and (b) �z. A shaded region shows the sphere’s location.

location. The data for a stationary sphere nearly collapse with those for �x,�z = 0.5, which
typically signifies the decay of vortex structures from the sphere to the far wake. The distribution
of 〈ω〉 shows how deep �x and �z effect penetrate in the x direction. We see that 〈ω〉 peaks over
the sphere surface and decays monotonically with increasing x. Consequently, the structures are
in coherence with the forced rotation with the formations of localized circulation cells at various
streamwise locations. The local rotation rate increases with the sphere’s rotation. The vorticity
accumulation is identical for �x and �z. We observe that the sphere rotation induces the strongest
wake rotation in its own plane. Only the high rotation rates of the sphere modify the wake nature with
a significant rotation component. The shed vortices experience maximum forced-rotation induced
circulation for both �x,�z = 5, which eventually penetrate through the large far stream region. In
contrast, sphere rotation hardly affects the localized circulation cells beyond x � 10 for �x,�z � 2.
Notably, at �x,�z = 5, there is a local minimum of the 〈ω〉 distribution around x ≈ 4, which is due
to the change in shedding regime (more prominent at �x = 5). The distortion, including partial
tearing of the primary vortex structure to bifurcate into a twin jet-type flow pattern, renders a
loss of the identity of the primary vortices. It is important to note that although there have been
dissimilarities between the shed structures, the magnitudes of 〈ω〉 for both the rotation rates are
similar. Therefore, revealing the global nature of circulation characteristics at various axial planes.

B. Rotation cycle

Figure 6 presents temporal evolution of vortical structures for the instances (a–h) in a complete
rotation cycle at �x = 0.5, where the corresponding plots for �x = 2 is shown in Fig. 7. We have
demonstrated the vortex structures by the isosurfaces of Q at 10% of the global maximum. The drag
(CD) and lift (CL ) signals are portrayed in the insets. The vortex structures shown in a → h equal one
dimensionless rotational period, τ = 2π/(αD/U∞) = 2π/2� = π/�. In contrast, the period of
CD,CL are different from that of τ , and its variation is shown here within the dimensionless period τ .
The vortex structures show a pair of steady vortex threads attached to the sphere surface in the near
wake at �x = 0.5. The flow is steady, and no vortex shedding is observed. The vorticity diffusion
gets affected by the close velocity contours due to the surface-driven boundary layer around the
sphere [24], yielding the ceasing of the vortex shedding. The threads in the far wake wrap around
due to the relative angular rotation in the streamwise direction, and as a result, we observe spiral
formation in the downstream wake. The small footprint of the wake leads to less form drag, resulting
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FIG. 6. Rotation cycle visualized by the three-dimensional vortex structures by the instantaneous isosurface
of Q criteria at 10% of the global maximum for �x = 0.5. The inset shows the temporal evolutions of CD and
CL . The vortex structures shown in a → h equal one dimensionless rotational period, τ = 2π/(αD/U∞) =
2π/2� = π/�. Note that the period of CD and CL are different from that of τ .

in a lower fluid volume in the near wake. This is reflected in the drag and lift signals, where we notice
a constant CD magnitude for the entire rotation cycle. In contrast, CL shows trivial fluctuations in
the neighbourhood of CL ≈ 0.

At �x = 2, we observe vortex shedding with the periodic formation of hairpin-type structures
in the downstream wake. It is found that the separation point moves upstream along the direction

FIG. 7. Three-dimensional visualization of the rotation cycle with vortex structures by the instantaneous
isosurface of Q criteria at 10% of the global maximum for �x = 2. Time variations of CD and CL are shown in
inset. As depicted in a → h, the wake structures correspond to one dimensionless rotational period τ = π/�.
The period of CD and CL in the insets are different from that of τ .

024101-9



ARNAB KUMAR DE AND SANDIP SARKAR

FIG. 8. The instantaneous Q isosurfaces of the three-dimensional vortex structures at 10% of the global
maximum in a complete rotation cycle for �z = 0.5. The inset shows the time variations of CD and CL . Here
the vortex structures, shown in a → h, correspond to one dimensionless rotational period τ = π/�, while the
periods of CD and CL are different from that of τ .

of the sphere rotation. The high streamwise rotation of the sphere causes stretching of the shear
layers at the sphere’s surface. The stretched shear layers from either side of the sphere undergo
higher generations of reconnection, forming a series of hairpin vortices shedding bidirectionally
in the downstream wake. The resultant wake appears to be a blunt shape, and no particular vortex
shedding pattern is seen. As evident, the blunt wake hardly rotates during the consecutive instances
of the rotation cycle (a–h). This out-of-sync motion of the shed structures with the sphere’s rotation
contributes to a larger magnitude of drag generation, as evident from the inset. The shed structures
constituting the wake experience higher rotational inertia, which is generally reflected by the
topologically alike wake structures for the instances (a–h). We also note that the lift magnitude
is small and �CL ≈ 0.

We present in Fig. 8 the isosurfaces of Q (at 10% of the global maximum) for �z = 0.5 at
the instances (a–h) in a complete rotation cycle, whereas Fig. 9 depicts the corresponding results
for �z = 2. In stark contrast to the situation at �x = 0.5, we observe one-sided vortex shedding
when the sphere undergoes turning motion at �z = 0.5. The rotation sequence begins with the
roll-up of the shear layer on the lee side of the sphere. Roll-up layers grow in size in the successive
instants by accumulating peeled-up shear layers separating from the advancing side of the sphere’s
surface. In the later stage, the rolled-up layers evolve into a hairpin vortex structure convecting
downstream after detaching from its source. As the hairpin propagates, they develop and become
more diffused, although they retain their shape as �z is low. Legs of the hairpin approach each other
via curvature-induced self-induction and merge to form ring-tail-like structures downstream. The
tail, having lower strength, experience rapid diffuson in the far stream, and we observe the shedding
of a ringlike vortex structure. Notably, there is a one-ring formation per cycle. The lift and drag
signals are nearly uniform during the period a–h, although CL is always negative.

For the higher rotation rate at �z = 2, the separation point advances upstream, and we observe
that the vortex structures experience high-intensity core instability. As a result, the vortex loops
start to roll up randomly from the advancing side of the sphere and in different directions. The
turning motion causes the wake to deflect upward, forming a top-heavy shear layer. The resulting
consequence is reflected in CL < 0 for the entire rotation sequence. The vortex structures wrap
around each other, and we do not discern any specific shape of the wake vortices. We found that
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FIG. 9. Isosurfaces of three-dimensional vortex structures visulaized by the Q criteria at 10% of the global
maximum in a complete rotation cycle for �z = 2. Evolutions of CD and CL are shown in the inset. Note that the
evolutions of vortex structures shown in a → h correspond to one dimensionless rotational period τ = π/�.
In contrast, the period of force signals, CD,CL in the insets, are different from that of τ .

the wake cannot cope with the high sphere rotation. As a result, the structures retain their shape
and orientation during the successive instances of the rotation cycle. The structures undergo core
diffusion in the far stream to yield randomly oriented vorticity patches.

To gain more insights into the wake dynamics, in Fig. 10, we show the line-time reconstruction
of v along the streamwise direction at a vertical section y = d/2 on z = 0 for 10 shedding cycles.
At a given x, if we draw a vertical line, then it shows how the wake evolves with time. We observe
that for �x,z = 0.5, the line intersects the wake at negative and positive values alternatively, which
clearly marks the highly periodic and coherent vortex structures across the streamwise extent. The
flapping of the shear layers is significant for lower �x,z. However, the change in the sign of v is

FIG. 10. Line-time reconstruction of the vertical velocity (v) along the streamwise direction at a vertical
section y = d/2 on the midspan plane z = 0. Here, the time evolution is shown along the y direction while the
x axis denotes the streamwise direction.
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trivial for larger rotational speeds. As a result, the flapping motion cannot penetrate downstream.
Hence, the wake instabilities are limited in the near wake. For �z = 0.5, we observe the broadening
of both positive and negative cells, which reveals the growth of large-scale deformation associated
with the flattening of the vortex core. Between the shed vortices, a constant time lag is observed for
�x = 0.5 and is higher for �z = 0.5. The periodicity of the shed structure is lost for higher �x,z.
We observe intermitted bands of positive and negative cells undergoing streamwise diffusion, which
is attributed to the far wake fragmentation of the threads into filaments. The discontinuity in vortex
formation is evident for higher �x and �z, which is a result of severe relative velocity between
the sphere and the near wake. In contrast, for a specified t , we witness the same signed v velocity
occupying a larger downstream section at a higher �x,z. This indicates that the vortex breakdown
occurs early, culminating in the gradual convection of the well-mixed fluid downstream.

C. Vortex trajectory

We track instantaneous vortex trajectories at various transverse (y-z) planes to examine how
the local rotations cause the movement of vortex centers. Here we extend the experimental vortex
center identification algorithm proposed by Graftieaux et al. [42] for the present 3D problem. For
flow through a circular path, we consider some point “S” and any point “R” inside and on the circle.
We define a function ζS as

ζS = 1

Aα

∫
Aα

∣∣∣∣∣
SR × V

|SR||V |

∣∣∣∣∣ dA. (4)

Here V is the velocity vector, Aα is the local neighborhood of “S,” and | · · · | is the magnitude.
Therefore, as one approaches the center of a circle, ζS → 1. We adopt this method for tracking the
instantaneous vortex centers. We compute ζS for all domain points, assuming a small neighborhood
Aα around it. As a result, we obtain multiple close-by points satisfying ζS ≈ 1. Hence, we choose a
global maximum of ζS to avoid duplicacy in identifications. Therefore, vortex trajectories are plotted
as the locus of the vortex centers where ζS attains a global maximum within spatial region Aα .

The vortex trajectories at various transverse planes are shown for different streamwise and
transverse rotation rates in Figs. 11 and 12, respectively. The direction of rotation of the vortex
trajectories during streamwise rotation is shown in blue arrows. The transverse rotation direction
of the trajectories in a y-z plane is out of the plane and hence not shown in Fig. 12. The vortex
trajectories clearly show the radial motion of the localized vortices at various y-z planes in sync or
out of sync with the sphere’s rotation. For �x = 0.5, the trajectories at all streamwise stations are
in sync with the sphere’s motion, indicating the wake rotation following the sphere. As a result,
the trajectories move in a circular path in the near wake, whereas the far wake trajectories settle at
a larger radius. The maximum diameter of the trajectory orbit reaches an approximately constant
value of twice the sphere’s diameter. Notably, the vortex core at all planes always occupies the
sphere’s footprint (shown by a solid circle), marked by the congregation of vortex centers.

The figure shows that a higher rotation rate at �x = 2 significantly affects planer vortex trajecto-
ries. In the near wake x � 4, the vortical structures past the sphere try to rotate in the same direction
as the sphere’s rotation. However, owing to the higher angular velocity of the sphere, the local
rotation center cannot cope with high �x. As a result, we observe scattered centers of the vortex
motion paths that eventually lead to a larger wake footprint. We found that the fluid particles at
such a larger rotational speed partially obey the consequences of solid-body rotation. At each plane,
a higher sphere rotation triggers the angular velocity of the revolution of each fluid particle about
the center. Accordingly, fluid particles try to retain their location relative to other particles. In turn,
there is a preferential distribution of the vortex centers along a radial line from the sphere, where the
vortex trajectories follow along the radial paths from the center. Therefore, with increasing radial
distance (r) from the center, the angular velocity triggers liner velocity (uθ ) of the fluid particles
across the radial line. Since, for a solid-body type motion, uθ = �xr. Therefore, closer to the wake
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FIG. 11. Streamwise variations of the vortex trajectories at different transverse (y-z) planes for various
streamwise rotation rates. The direction of rotation of the vortex trajectories is shown in blue arrows, whereas
the location of the sphere about each plane is shown as a solid circle.

boundaries, the fluid particles move faster than the particles preceding them. The overall effect is
shown by a curved vortex trajectories across the y-z planes. On the contrary, the rotational speed
of the vortical structures in the far wake decreases with increasing downstream distance from the
sphere. We found that the trajectories move apart azimuthally. The result is lesser mixing of the fluid
across these planes.

At �x = 5, we see that higher degrees of mixing of the fluid particles in the near wake reduce
localized rotation of the vortex trajectories. However, the far wake shows the vortex centers settle
along the radial lines. The vortex trajectories bear the consequences of rigid-body type motion
at different transverse planes for this rotational speed. Near the wake boundaries, the trajectories
follow a curved path, whereas the motion is almost through a radial line closer to the center. We
observe that the trajectories settle along four lines rotating about the center. Notably, the wake
rotation experiences phase lag with the sphere. As a result, the vortex centers approach the wake
boundary without deformation because the viscous stresses are minimal in this flow. We notice that
vortex centers populate less around the sphere’s footprint than �x = 2.

The vortex trajectories show symmetric distribution at all transverse planes for �z = 0.5. We see
that the flow is induced along the axis of rotation, causing the vortex centers to move toward the
negative z axis. We attribute this observation to the one-sided shedding of hairpin vortices. We see
from Fig. 8 that the turning motion of the sphere causes the structures to tilt slightly along the axis
of rotation during vortex shedding. The vortex trajectories are spread vertically about the rotation
axis, with the core encompassing the maximum concentration of vortex centers. They are primarily
counter-rotating pairs of streamwise legs of the hairpins where the tip confines the core. The legs
grow in size downstream, causing the vortex centers to cover a wide area. However, the far stream
diffusion yields thinning of hairpin structures. That eventually leads to a reduction in vortex centers
population noticed in the far wake.

The induction of trajectories toward negative z axis continues to exist at �z = 2, which is
again due to the one-sided vortex shedding shown in Fig. 9. The vortex centers are more scattered
across the transverse planes. Although in the near wake, trajectories are clustered along the rotation
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FIG. 12. Vortex trajectories at different transverse (y-z) planes for various transverse rotation rates. The
location of the sphere about each plane is shown as the solid circle.

axis. We observe that the trajectories appear symmetric about the z = 0 axis. This is owing to the
structural similarity of the vortex structures during consecutive instances of the rotation cycle. As
a result, the vortex centers at various streamwise planes almost retain its position and orientation
during the vortex shedding.

With increasing transverse rotation, we have seen that the separation points approach upstream of
the sphere’s surface. Notably, at �z = 5, shedding of vortices starts from the front stagnation zone
of the sphere. Besides, the roll-up vortex structure bifurcates into twin-jet type shedding patterns in
the near wake (Fig. 3). Such a consequence is reflected in the vortex trajectories, where we observe
that vortex centers are symmetrically distributed in the ±z axis. It is found that the vortex centers
do not spread vertically. Instead, they follow a horizontal motion. However, Fig. 12 shows the less
rotational effect on the footprint of the sphere.

We report the dynamic behavior for the drag, lift, and transverse force coefficients acting on
the sphere by plotting phase portraits of (Cz,Cy) and (Cx,Cy) in Figs. 13 and 14, respectively. The
corresponding phase diagram for a stationary sphere is also shown for comparison. We observe
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FIG. 13. Phase diagrams of Cy and Cz for various streamwise and transverse rotation rates.
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FIG. 14. Phase portraits of Cy and Cx for various streamwise and transverse rotation rates.

that, in general, the phase plots change irregularly and have a preferential orientation toward both
positive and negative Cy axis. It is found from Fig. 13 that the phase diagram falls on a point for a
stationary sphere. However, the sphere experiences a positive lift for increasing �x. At �x = 0.5,
the sphere behaves like a stationary sphere with negligible Cy and Cz. Nevertheless, the sphere
encounters negative Cz for increasing �x. In contrast, a transversely rotating sphere always induces
a negative lift owing to the flow induced in the negative y direction due to the “Robins-Magnus”
effect, as shown in the figure. As a result, Cy is negative at �z = 0.5 and becomes more negative
for increasing �z. However, Cz is almost zero for all cases, except at �z = 5, where we notice a
small variation along the ±Cz axis. We attribute this to the upstream shedding of vortices followed
by a twin-jet type flow bifurcation in the near wake that eventually induces a flow bias through the
rotation axis.

Irrespective of the rotation directions, a rotating sphere always experiences a positive drag, as
revealed in Fig. 14. The magnitude of drag increases with rotational speed and is independent of
the sign and magnitude of lift coefficients that the sphere is subjected to. In particular, we observe a
positive drag for the stationary sphere, although the lift is nearly trivial. It is seen that both (Cx,Cy)
and (Cz,Cy) show large oscillations at �x,�z = 5. An increase in oscillation magnitudes may be
due to an increase in the near wake pressure fluctuations that trigger the generation of complex
vortex structures, as observed in Fig. 3.

D. Streamwise rotation

As discussed previously, effect of the sphere’s rotation does not penetrate the far wake. In turn,
vortex structures at various streamwise stations rotate at speed different from the sphere’s rotational
motion. We examine such a consequence by computing the angular velocity of the wake vortex,
�v (y, z), at various transverse (y-z) planes located at different streamwise stations. For a streamwise
station p, we define the area average angular velocity of the vortices at any y-z plane having an area
Ayz as

�p(x, t ) = 1

Ayz

∫
Ayz

�v (y, z) dAyz. (5)

We have calculated the value of �p as follows: For any y-z plane along any streamwise station p, if S
is the mean position of the sphere and Q is any point on the plane, then one may compute the radius
r = |−→SQ|. The azimuthal and angular velocities at the point Q about the mean poisition S may be
obtained as uθ = −v cos θ + w sin θ and �v (y, z) = uθ /r, respectively. Furthermore, by computing
angular velocities for all the points within the plane y-z and on integrating within the planar area
Ayz, one may obtain the numerical value of �p as shown in the equation above.

Figure 15 shows streamwise variation of the time average normalized angular velocity,
〈�s〉 = 〈�p(x, t )〉/�, at each streamwise rotation rate. At a given �x, the value of 〈�s〉 decays
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FIG. 15. Streamwise dependence of time average normalized angular velocity at various transverse (y-z)
planes for different streamwise rotation rates. Estimated penetration depths for various �x are indicated in the
corresponding Q structures.

monotonically from the near wake to far stream saturation. We observe far wake saturation for
�x = 0.5. However, it is revealed that 〈�s〉 saturates early in the near wake with increasing �x. As
can be seen from the figure, the near wake vortices at x = 2 could cope up with the sphere’s rotation
for �x = 0.5, whereas it is reduced marginally for �x = 2. In contrast, much of the rotational speed
is lost for �x = 5. Compared to �x = 0.5, the downstream decay of 〈�s〉 is much faster for �x =
2, 5, yielding a steeper curve. This result clearly indicates that the penetration of angular velocity
of the sphere to the downstream vortices varies with �x. In this context, we define the penetration
depth as

〈�p(x = δp/D, t )〉 = β�. (6)

In the present study, we have chosen the threshold parameter β = 0.1. Thus, δp marks the down-
stream distance for which up to 10% of the sphere’s angular speed is preserved by the downstream
vortical structures. We have shown the numerical values of δp/D in the insets of the figure with
lateral measures in the respective instantaneous vortical structures visualized by the Q criteria. The
value of δp/D is largest at �x = 0.5, where we see that the sphere’s rotation influences nearly
the entire downstream wake. As a result, the wake tries to rotate with the sphere, causing a gross
twisting of the downstream vortices. That, in turn, culminates in intertwined spiral vortices. It is
noted that increasing �x causes a rapid reduction of the penetration depth. For �x = 2, the near
wake vortices are in sync with the angular velocity of the sphere, and as a result, we observe a clear
twisting of the vortical structures to δp/D ≈ 5.8. However, the wake instability causes the structures
to bifurcate into multiple vortex filaments beyond the penetration depth, where the structures cannot
preserve the sphere’s angular velocity. The penetration depth is minimum at �x = 5, where the flow
is inherently unstable, reducing the influence of � on the wake vortices. We see the formation of
complex vortex structures in the wake with multiple bifurcations into small-scale structures. Thus,
the effect of � on the wake vortical structures are limited to a region closer to the sphere.

To infer how the dominant azimuthal frequency of �p(x, t ) differ relative to �, in Fig. 16 we have
shown the dependence of normalized angular frequency of the vortices, f�/ fs, as a function of �x at
various streamwise stations. Here f� and fs are the frequencies of �p(x, t ) and �, respectively. We
have performed fast Fourier transform of the time signals of �p(x, t ) and obtained the dominant
frequency f�. This figure clearly establishes that the vortex structures at different downstream
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FIG. 16. Plot of the normalized angular frequency of the vortices, f�/ fs, as a function of �x at various
streamwise stations.

stations rotate asynchronously with the sphere, f� 	= fs. In general, with respect to fs, the angular
velocities of the vortices at various downstream stations are at high-frequency levels for �x = 0.5.
In contrast, f� 	= fs decreases with increasing �x. From this, we may conclude that the entire wake
at �x = 0.5 is dominated by high-frequency motion. Nevertheless, we have seen that the vortex
structure triggers its strength at higher �x. The normalized angular frequencies of the near wake
vortices at �x = 0.5 are nearly equal. The low-frequency rotation in the near wake is asynchronous,
signifying torsion of the vortex structures. However, at x ≈ 6, it shows a discontinuous jump to
saturation in the far stream. Analogous behavior is also noticed for other rotational speeds, albeit
the saturation of f�/ fs occurs early in the near wake for increasing �x. The jump in f�/ fs is
perhaps due to the detachment of the primary vortex strand from the source. We observe a plateau
region in the normalized frequency plot for �x = 2, 5, where f�/ fs remains nearly at the same
level for the corresponding streamwise stations. We attribute this observation to the zone of wake
transition, where the primary vortices bifurcate and form many interconnected vortex loops. The
strain rate causes the vortex loops to split into multiple vorticity cells in the far stream (Fig. 3). In
this plateau region, where 〈�s〉 is higher, the wake breaks down indicating termination of δp. Beyond
the transition zone, the small-scale structures rotate at a lower frequency, and as a result, we observe
a drop in f�/ fs values before far stream saturation. The vortices settle for a smaller 〈�s〉. The sphere
angular velocity does not reach this region and is primarily dominated by the wake instability.

Figure 17 shows the time histories of normalized angular velocity at three different streamwise
stations marked by the corresponding f�/ fs transitions shown in Fig. 16 for different �x. Based
on the nature of wake transition and different regions in the frequency plot in 16, we have chosen
three representative regions, namely near wake at x = 3, transition/plateau region at x = 6, and the
saturation/far-wake region at x = 10, respectively. We observe periodic/quasiperiodic behavior of
�s(t ) in the near wake at x = 3. As can be seen, �s(t ) shows periodic fluctuations for �x = 0.5 and
become quasiperiodic for increasing rotation rates. It is found that the smaller angular velocity of
the sphere induces larger �s(t ) with a rapid change in angular acceleration and deceleration. The
amplitudes of oscillations reduce from the near to far wake stations. A same trend is also noticed for
the transition zone (x = 6) and far wake (x = 10) locations. The transition region (x = 6) shows
lower magnitude of �s(t ). There are frequent evolutions in �s(t ) with small timescale changes.
The angular velocity of the sphere greatly influences the instantaneous angular velocities of the
vortex structures in the near wake at �x = 0.5. In contrast, it is suppressed for �x = 2, 5, and the
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FIG. 17. Time histories of normalized angular velocities with the angular velocity of the sphere at various
streamwise locations for different streamwise rotation rates.

structures cannot carry the rotational inertia of the sphere. We observe that �s(t ) is always positive
for �x = 0.5. However, it alternatively changes the sign for higher values of �x. Such occurrences
are most prominent in both transition and far wake locations for �x = 2, 5. At higher rotation rates,
the structures experience bifurcations into small-scale vortex filaments, which undergo localized
rotations about their core in the clockwise and counterclockwise directions, respectively. This is not
discerned at �x = 0.5, where we oversee a pair of two intertwined spiral vortices covering the entire
downstream wake (Fig. 3). Notably, in the saturation region (x = 10), there is a trivial change in
�s(t ). The effect of the sphere’s angular velocity does not reach this zone, and the wake instability
mainly dominates the vortex motions.

E. Transverse rotation

We investigate the effect of transverse rotation on the angular velocity at various streamwise
locations. In Fig. 18(a), the plot of 〈�s〉 with x is shown for different �z. It is found that compared to
the streamwise rotation, transverse rotation of the sphere has an insignificant effect on the rotation of
the vortices. Therefore, angular velocities of the vortices are primarily due to the localized rotation
of the vortex structures associated with the wake instability. In this context, it may be mentioned that
the wake structure is entirely different for both the streamwise and transverse rotation rates. As in the
former case, the sphere rotation influences the local motion of the wake vortices, which experience
near-wake twisting of the vortex filaments. In the latter, the wake instability triggers its motion,
and the flow is continuously drawn upwards toward the advancing side, resulting in a large-scale
shedding pattern. That is essentially reflected in the magnitude of wake fluctuations, which we
quantify by the rms of lift coefficient (C′

y) in Fig. 18(b). For increasing �, the fluctuating force
coefficient increases monotonically in accordance with the increasing amplitude response shown
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FIG. 18. (a) Functional variations of time average normalized angular velocity at various transverse (y-z)
planes for different transverse rotation rates. (b) Dependence of the rms lift coefficient (C′

y ) with the streamwise
and transverse rotation rates.

in Fig. 13. The trend of C′
y with � is similar to the one reported in Poon et al. [24]. Interestingly,

it appears that increasing transverse rotation decreases the fluctuating component of the lift force,
leading to a decrease in the oscillation amplitudes of the vortices. This observation is consistent
with the earlier experimental results on a transversely rotating sphere [41]. In general, the peak
magnitude of C′

y for �z = 5 is significantly smaller [O(10−2)] as compared to �x = 5. We attribute
this observation to the increased roll-up of the shear layers into randomly distributed vortex loops
and contrails, which eventually trigger flow fluctuations and corresponding enhancements in C′

y
magnitudes.

To obtain more insights, in Fig. 19, we plot the variations of f�/ fs at different streamwise
locations for various �z. For all �z, the turning motion of the sphere yields low-frequency rotation of
the near wake vortices. As expected, the motion is asynchronous and becomes more asynchronous
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FIG. 19. Variation of the normalized angular frequency of the vortices, f�/ fs as a function of �z at various
streamwise stations.
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FIG. 20. Time histories of normalized angular velocities with the angular velocity of the sphere at different
streamwise locations for various �z.

with increasing �z. Similarly to the one observed in Fig. 16, the vortices at lower �z rotate at a
higher frequency at different downstream stations. Although f�/ fs settles at a constant value in
the far wake. We observe a discontinuous jump in f�/ fs curve in the near wake around x ≈ 5 for
�z = 0.5. Such a trend is due to the higher magnitudes of the angular velocities of the horseshow
vortex structures just after its detachment, which eventually triggers the linear velocity of the
vortices. Notice that for higher �z, such discontinuity in the f�/ fs variation is not discerned. We
observe a marginal variation in f�/ fs up to the far wake saturation. Therefore the low and high
rotation rates display quite a different evolution of the wake. The former exhibits periodic shedding
of coherent horseshoe vortices, while the latter show random roll-up of the structures advancing
upstream of the sphere to yield top-heavy shear layers. As a result, the angular motion of the
downstream vortices does not produce any local change in their frequency levels. This behavior
is further revealed in the time histories of the normalized angular velocities at various downstream
locations.

Figure 20 shows the time trace of the �s(t ) at different streamwise stations for various �z. As
the figure shows, the normalized angular velocity signals appear symmetric as the sphere rotates
from the advancing to the retreating side. The overall signature of the �s(t ) contains quasiperiodic
behavior. The lower rotational speed of the sphere induces larger �s with a symmetric variation
about �s(t ) = 0. The amplitudes of oscillations are maximum in the near wake and decay to a
minimum in the far wake locations. Compared to the lower rotational speed, the time evolutions
of �s(t ) at �z = 2 show low-amplitude oscillations. The time histories of �s(t ) at all x locations
are almost symmetric about �s(t ) = 0. A similar trend is also discerned at �z = 5. Notably, the far
wake (x = 10) shows nearly marginal variations in �s(t ). As we have seen, the turning motion of
the sphere at higher rotation rates causes upstream shedding of the vortices, which in turn results in
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an azimuthal stretching of the wake into numerous negative and positive vorticity cells with smaller
circulation loops. In the far stream, owing to the wake instabilities, the circulation loops nullify each
other to yield a few numbers of vorticity cells. That, in turn, leads to a gradual reduction in their
angular velocities. We further note that the vortices at all downstream planes undergo clockwise
and counterclockwise motions in each case of the rotational speeds. Therefore, it seems reasonable
to argue that the added feature of the clockwise motions of the vorticities essentially cancels the
equal magnitude of counterclockwise motion and culminates to trivial magnitudes of 〈�s〉, shown
in Fig. 18(a). This is in contrast to the situation during the streamwise rotation of the sphere, where
the angular velocity of the vortices is mostly counterclockwise (Fig. 17).

IV. CONCLUSIONS

We have studied the effect of streamwise (�x ) and transverse (�z ) rotation on the uniform flow
past a sphere at Re = 500 for varying dimensionless rotation rates �x,�z = 0.5, 2, 5. In particular,
we have compared the results with a stationary sphere. By studying the unsteadiness of the flow
structure, we have found the generation of two intertwined spiral vortices at �x = 0.5. For �x � 2,
the vortex structures form threads and, in the near wake, fragment into multiple vortex filaments.
In the downstream end, the streamwise vortices bifurcate into large-scale structures for �x = 5.
Moreover, the intense rotation of the sphere yields thinning of the shear layer, which then rolls up
very close to the sphere’s surface and discharges patches of negative and positive vorticity cells.

Our computations further uncovered a single-sided shedding of the hairpin structure at �z = 0.5.
For increasing �z from 0.5 to 2, the wake becomes asymmetric, and in the near wake, we found the
deformation of vortex structures into multiple smaller-scale vortex filaments. At �z = 5, the vortex
structures deflect toward the advancing side of the sphere, and the wake topology becomes complex,
comprising strongly attached stretched hairpins. The shear layers become unstable, leading to
upstream shedding of the vortices. In the downstream, we observe the transverse expansion of the
wake owing to the bifurcation of the rolled-up positive and negative vortices into a twin jet-type
flow pattern. We have computed the absolute magnitude of time-averaged vorticity (〈ω〉) at a
streamwise plane to mark how deep the effects of streamwise and transverse rotations penetrate
in the x direction. The 〈ω〉 data for a stationary sphere nearly collapse with those for �x,�z = 0.5.
In contrast, the shed vortices experience maximum forced-rotation-induced circulation at higher
rotation rates.

The transient evolution of the vortical structures in a complete rotation cycle show absence
of vortex shedding for �x = 0.5. In contrast, for �z = 0.5, we observe one-sided shedding of
hairpin vortices in the near wake. The far wake shows a ringlike vortex structure. At �x = 2, the
shear layers at the sphere’s surface undergo successive stretching and then form hairpin vortices
that shed bidirectionally in the far wake. The wake appears to be blunt shaped, which hardly
rotates during successive instances of the rotation cycle. On the other hand, at �z = 2, the sep-
aration points advance upstream, causing roll-up of vortex loops randomly from the advancing
side in various directions. The wake cannot cope with the sphere’s rotation, rendering the down-
stream structures to retain their topology at various instances of the rotation cycle. The line-time
reconstruction of v signals along x shows the flapping of shear layers at low rotation rates.

We have presented a technique for identifying the downstream vortex trajectories along various
y-z planes. For �x = 0.5, the near wake trajectories follow a circular path, whereas, in the far
wake, it settles at a larger radius. We have observed that the local rotation center of the near-wake
vortical structures cannot cope with high rotational speeds, and fluid particles partially follow the
consequences of solid-body rotation. In turn, fluid particles closer to the wake boundaries move
faster than the particles preceding them, resulting in curved vortex trajectories. However, at �x = 5,
a higher degree of mixing of the fluid particles in the near wake reduces localized rotation of the
vortex trajectories, whereas the far wake vortex centers settle along the radial lines. Further, the
vortex trajectories are symmetrically distributed at all transverse planes for �z = 0.5. The vortex
centers move toward the negative z axis owing to the fluid motion along the axis of rotation.
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However, for �z = 5, the trajectories are distributed symmetrically about the ±z axis. The phase
diagrams of drag and lift change irregularly for increasing rotational speeds and has a preferred bias
toward both negative and positive Cy axis. Notably, regardless of the direction of rotations, a rotating
sphere always experiences a positive drag.

As the sphere rotates, its rotational inertia does not penetrate far in the wake. We have revealed
such effects by computing the area average angular velocity at any y-z plane. For �x = 0.5, the near
wake vortices at x = 2 could cope with the sphere’s rotation and marginally decreases for �x = 2.
Most of the sphere’s rotational speed is lost for �x = 5. We have defined the penetration depth
(δp) as the downstream distance for which 10% of the sphere’s angular velocity is preserved by
the downstream vortices. The normalized dominant azimuthal frequency ( f�/ fs) shows the asyn-
chronous rotation of the vortex structures at different downstream stations. We found low-frequency
rotation in the near wake at �x = 0.5, indicating torsion of the vortex structures. However, at
higher rotational speeds, f�/ fs variation yields a plateau region for �x = 2, 5. We have identified
near wake, transition/plateau, and saturation/far-wake regions from the f�/ fs distribution. The
normalized angular velocity (�s(t )) in the near wake is periodic and becomes quasiperiodic for
increasing �x. For �x = 0.5, �s(t ) > 0, however its changes sign alternatively for increasing �x.

The effect of transverse rotation has a marginal influence on the rotation of the downstream
vortices. The wake instability triggers the motion of the vortices, which are drawn toward advancing
side of the sphere, ensuing a large-scale shedding pattern. The rms of the lift force increases with
increasing �, although it is always lower during transverse rotation. We found that the transverse
rotation of the sphere exhibits low-frequency rotation of the near wake vortices for all �z. The
motion is asynchronous, and its asynchronicity triggers with increasing �z. The normalized angular
velocity signals are symmetric and display quasiperiodic behavior. Oscillation amplitudes of �s(t )
at higher �z are lower and show minimal variations in the far wake. Further, the angular velocity of
the vortices is counterclockwise during the streamwise rotation of the sphere, whereas the transverse
rotation yields clockwise and counterclockwise motions.
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