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A granular raft—a two-dimensional (2D) particle layer floating at a fluid-fluid
interface—collapses when losing its stability under compression. Although granular rafts
are frequently encountered in various natural and engineering settings, how a raft fails
under compression is still an open question. Here, by combining experiments with theoret-
ical modeling, we examine the failure modes of granular rafts without free periphery under
quasistatic biaxial compression. Different from granular rafts with open periphery, granular
rafts in our study remain stable under finite compressive stresses. More surprisingly, under
large compression, granular rafts made of small particles sink gradually by expelling
individual particles, whereas rafts of large particles collapse catastrophically by forming
large-scale creases. The collective creasing is enhanced by the 2D particle density and
is suppressed by the density difference of the two fluids. We develop a one-dimensional
continuum model for the shape of the granular rafts and the concentration of particles along
the fluid-fluid interface, which provides quantitative explanations of our experimental
findings.

DOI: 10.1103/PhysRevFluids.8.024003

I. INTRODUCTION

Particles of different sizes can assemble into two-dimensional (2D) rafts on a fluid-fluid interface
through capillary interactions. While small colloids and nanoparticles adsorbed on a fluid-fluid
interface are frequently used to stabilize fluid interfaces such as those in Pickering emulsions and
cocontinuous blends [1–5], particle rafts composed of large granular particles are commonly seen
in open environments with examples including the assembly of mosquito eggs [6], shade balls for
water conservation [7], and sand particles deployed to clean oil spills [8]. These granular rafts
contain the same in-plane forces as their small particle counterparts, but the body force of particles
is equally important as the particle size becomes comparable or even larger than the particle-fluid
capillary length, �c = √

γ12/g(ρp − ρ1), where γ12 is the interfacial tension between the two fluids,
g the acceleration, ρp the density of the particles, and ρ1 the density of the more dense fluid.
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Nevertheless, although the assembly of weightless rafts of small particles has been extensively
studied [9–11], our understanding of the dynamics of heavy granular rafts is still primitive.

Much of the work on granular rafts focuses on the possibility to form and keep afloat a raft of
N particles of diameter d [12]. When two particles are introduced, the asymmetric deformation of
the fluid-fluid interface by gravity yields the spontaneous attraction of the particles. Known as the
Cheerio effect, this capillary attraction is the basic building block of a granular raft. As the number
of particles increases, the combination of the surface tension force, γ12Praft , and the hydrostatic
pressure must support the weight of the raft, ∼Ng(ρp−ρ1)d3, where Praft ∼

√
Nd2 is the perimeter

of the raft. The raft catastrophically collapses as the weight overwhelms the restoring forces with
increasing N or d [8,13]. In particular, the collapse occurs when the in-plane stress of the raft
becomes compressive [13,14], as the vertical component of a tensile traction on the periphery of the
stable raft helps balance its weight.

In this paper, we consider a new regime of granular rafts, where we eliminate the free periphery
of stable rafts. Surface tension, although still present to support individual particles and induce
the Cheerio effect, is not required to stabilize rafts at the periphery in this scenario. Instead, the
induced hydrostatic pressure balances the weight of rafts, obviating the need for surface tension
to pull up against the gravitational force. The resulting rafts can sustain finite in-plane compressive
stresses and exhibit two drastically different failure modes under large compression. Particularly, our
experiments show that granular rafts made of small particles sink discretely by expelling individual
particles, whereas granular rafts made of large particles collapse collectively by forming large-scale
creases of many particles. Such an observation is quite unexpected, as small particles are subject to
a stronger effect of surface tension and therefore more likely to float based on the existing theories
of particle rafts.

The paper is organized as follows. Section II includes the experimental observations with water
and hexane, while Sec. III provides a simplified theoretical model to explain the counterintuitive
observations. We bring the theoretical and experimental results together in Sec. IV and conclude the
paper with the summary and future work in Sec. V.

II. EXPERIMENTAL OBSERVATIONS

A granular raft on a fluid-fluid interface is formed by partially filling a conical funnel with
water of density ρ1 =1000 kg/m3 followed by hexane of ρ2 =655 kg/m3 [15,16]. While we use
a glass funnel of fixed inner diameter D=6.5 cm and wall angle α=32o [Fig. 1(a)], the qualitative
results are insensitive to the specific funnel chosen. We then deposit glass particles (density
ρp =2300–2500 kg/m3) onto the fluid-fluid interface. The mean particle diameter d is systemati-
cally varied from 90–1700 µm, while the particle-fluid capillary length �c for this set of experiments
corresponds to �c ≈ 1.7 mm.

The self-assembly of particles at the interface is sufficiently slow that particles first form finite-
sized rafts with free periphery in the process of covering the entire interface. Hence, to ensure the
formation of stable granular rafts with large particles (i.e., d > 500 µm), we first deposit particles
on the water-air interface that can support heavier rafts than the water/hexane pair due to the larger
difference in fluid densities and interfacial tension [14]. Once the raft covers the whole interface,
we subsequently add hexane to the top. As the free periphery of the raft has been eliminated, the
raft remains stable during the addition of hexane. For small particles with d < 500 µm, hexane is
first deposited on top of the water, and the particles are allowed to sediment through hexane and
directly assemble on the water-hexane interface. Note that glass particles are observed to rest on
the hexane-water interface with a contact angle of θ = 45◦ ± 3◦ and on the air-water interface with
θ = 53◦ ± 6◦, respectively.

Finally, we quasistatically impose equibiaxial compression to the interface by slowly draining
water from the bottom of the funnel at a fixed rate, Q = 50 mL/min, using a syringe pump. The
process decreases the surface area of the interface and jams the particles into one big granular
raft. Note that withdrawing liquid from a funnel has been previously used to compress granular

024003-2



COLLAPSE OF A GRANULAR RAFT: TRANSITION …

FIG. 1. A granular raft consisting of glass particles of diameter d and density ρp on a fluid-fluid interface
is compressed equibiaxially as the lower fluid (density ρ1) is drained from a conical funnel. The funnel wall
makes angle α with the vertical axis, while D denotes the diameter of the widest part of the funnel.

aggregates [17] and an elastic ring [18] on a fluid-fluid interface. Owing to the geometry of the
funnel, the drainage speed increases with the decreasing distance to the stem. However, we neglect
the changes in the drainage speed in our analysis, as the failure mode of the raft is observed soon
after we start draining. We also observe no qualitative changes in the experimental results when we
vary Q from 10 mL/min to 88 mL/min.

In contrast to granular rafts with free periphery, the raft is stable under small compression.
Then, as the compression is gradually increased, we observe that the raft fails in two distinct ways
that depend on the particle diameter, as illustrated in the time-sequential images in Fig. 2. Movies
illustrating the two different collapsing modes can also be found in the Supplemental Material [19].
First, for small particles (e.g., d = 300–400 µm), the particles are expelled individually from the
raft [Fig. 2(a)]. The side-view images in Fig. 2(a) show that the interface remains fairly flat except
near the meniscus, as individual particles continuously fall out from the shrinking hexane-water
interface. In addition, we do not observe significant changes in the particle distribution throughout
the experiment, as the raft is shown to be well jammed in the top-down video [19]. However,
additional experiments suggest that there are notable changes in the individual particle’s vertical
position prior to expulsion, a feature that will be further addressed in Sec. 3.

Second, for d = 1.0–1.3 mm, the raft collapses by forming system-wide creases with a large
number of particles sinking collectively into water [Figs. 2(b)–2(c)]. This failure mode is similar to
the collapse of granular rafts with free periphery under their own weights [8,13]. In contrast to the
single particle falling regime, the side-view images of the experiment in Fig. 2(b) indicate that the
raft starts to form large-scale deformations at early times (i.e., t0 = 6 s). Then, as time progresses
(i.e., ti − tii), the crease near the funnel wall becomes dominant and eventually leads to the collapse
of the whole raft at tiii. The formation and growth of the crease near the funnel walls are more
evident in the corresponding top-down images in Fig. 2(c), which also showcase the evolution in
the particle distribution. In the top-down images, the granular raft appears to be fairly jammed, until
the collapse at tiii when the particles fall into the dominant crease and render the surrounding area
less concentrated.

Finally, it is important to note that the granular raft does not remain flat near the funnel walls, as
the hexane-water interface tends to curve down towards the funnel surface due to the difference in
wettability between the two fluids. The meniscus shape ensures that there are more particles near
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FIG. 2. (a) The time-sequential images of the granular raft with glass particles with d = 300−400 µm are
observed to fall individually (highlighted by dashed circles) from the granular raft at an interface of water
(bottom) and hexane (top), as water begins to be drained from below at time, t0 = 0 s. Note that t1 = 0.08 s,
t1 = 0.6 s, and t2 = 0.8 s. (b) For the same liquids (water and hexane), the granular raft comprising glass
particles (d = 1.0–1.3 mm) collapses by collective creasing, where t0 = 6 s, ti = 7.4 s, tii = 7.9 s, and tiii =
8.1 s. (c) Top-down images at the same time stamps as (b) clearly show the formation of a crease near the funnel
wall, which eventually collapses at tiii. See also supplemental videos demonstrating the two failure modes.

the rim per projected area compared to the center of the raft. In turn, the enhanced weight of the
raft near the rim partly influences the two failure modes. For instance, for rafts comprising large
particles, creases leading to the raft’s collapse tend to initiate more frequently near the meniscus,
as illustrated in Fig. 2(c). However, creases can also form away from the meniscus, an example of
which is included in Fig. 6 in Appendix A. For rafts that fail via single particle expulsion [Fig. 2(a)],
particles fall out preferentially from the meniscus, instead of uniformly from the particle-laden
interface (see the supplemental video [19]). While this may reduce the effects of compression on
the center of the raft, some particles are still expelled from the center region as the bottom fluid
is drained. Hence, we focus on the particle expulsion away from the funnel walls and neglect the
effects of the meniscus in this paper.

III. THEORY

To rationalize the two modes of failure observed in the experiments, we consider a one-
dimensional model of the particle-laden interface under compression, which comes with a number
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of major simplifications. First, due to the 1D nature of our model, we cannot fully capture the
dynamics of a 2D granular raft under biaxial compression. Second, we treat the raft as a continuum,
which inherently neglects the discrete nature of the granular raft. As the current model cannot
capture individual particles falling out of the raft, we hypothesize that the shape of the raft under
compression is a prelude to the failure mode. Third, we assume that the particles are completely
wetted by the lower fluid and do not exhibit interparticle frictional interactions for simplicity. Given
these limitations, we do not aim to quantitatively reproduce the experimental results with our model.
Instead, the purpose of our bare-bones theoretical model is to qualitatively capture the essential
aspects of the observed phenomena and to uncover the physical mechanism behind the change of
the failure mode of the granular raft.

A. 1D model of the jammed raft

We first consider the particle-laden interface with the vertical position, η(s), defined as a function
of arc length position, s, along the interface, as illustrated in Fig. 3(a). We assume the overall arc
length of the raft is fixed and the number of particles per unit length φ is equal to the jammed
concentration φJ = 1/d . The assumption yields a model analogous to that for a compressed elastic
film proposed in Ref. [20] and later extended to account for the density difference of the two fluids
[21]. Moreover, we assume there is no contact line pinning on the particles, so that the particles at
the interface are free to rotate over its neighbors. This particle-level behavior results in no apparent
bending modulus of the granular raft under compression [13,22]. Thus, we include no intrinsic
bending energy in our continuum model.

Since the particles are everywhere jammed, the total surface area of the interface is fixed, with
constant surface energy. The relevant energies are the gravitational potential energy of the two fluids,

Ug, f = 1

2
(ρ1−ρ2)g

∫ L

0
η2

√
1−

(
dη

ds

)2

ds, (1)

and the gravitational potential energy of the particles,

Ug,p = (ρp−ρ1)g
πd2

4

∫ L

0
ηφds, (2)

where L is the length of the raft [21]. In addition, we constrain the liquid volume beneath the raft to
η0L:


V = R
∫ L

0

⎡
⎣η

√
1 −

(
dη

ds

)2

− η0

⎤
⎦ds, (3)

where η0 is the height of the raft prior to compression, and R is a Lagrange multiplier. This produces
a hydrostatic pressure equal to the weight of the particles per unit projected area. We also impose
the horizontal extent of the compressed raft to Lx with a Lagrange multiplier P , such that


Lx = P
∫ L

0

⎡
⎣

√
1 −

(
dη

ds

)2

− Lx

L

⎤
⎦ds. (4)

Then, putting the energies and constraints together, we obtain the following functional:


=
∫ L

0

⎡
⎣(

ρ1−ρ2

2
gη2 + P + Rη

)√
1−

(
dη

ds

)2

+ (ρp−ρ1)g
πd2

4
ηφ − P Lx

L
− Rη0

⎤
⎦ds. (5)
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FIG. 3. (a) The schematic of a 1D granular raft under compression: z = η is the vertical displacement of the
raft, while s and x denote the arc length position and the horizontal coordinate, respectively; φ is the particle
concentration along the raft. (b) The shape of the raft η(x) for mode n = 2 (top), 10 (middle), 50 (bottom),
respectively, at varying levels of compression, Lx/L. ρ1−ρ2 =1000 kg/m3, ρp =2500 kg/m3, d =1 mm, g =
9.81 m/s2, and L=1 m. The solid lines correspond to the analytical solutions in the limit of dη/ds � 1, while
the dashed lines denote the full nonlinear solutions. (c) The total energy associated with the given raft shape is
plotted as a function of n, which shows a monotonic decrease with increasing n.

To minimize the system energy, we take the first variation of 
(η,P,R) and use the integration by
parts, to obtain the differential equation for η(s):

d

ds

⎡
⎢⎣

⎧⎪⎨
⎪⎩

(ρ1−ρ2)gη2 + P + Rη

2
√

1 − ( dη

ds

)2

⎫⎪⎬
⎪⎭

dη

ds

⎤
⎥⎦+((ρ1−ρ2)gη + R)

√
1−

(
dη

ds

)2

+(ρp−ρ1)g
πd2

4
φ=0,

(6)

in addition to the two constraints:

∫ L

0
η

√
1 −

(
dη

ds

)2

ds = η0L,

∫ L

0

√
1 −

(
dη

ds

)2

ds = Lx. (7)
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Then, we linearize Eq. (6) in the limit of dη/ds � 1 to obtain

P d2η

ds2
+ (ρ1−ρ2)gη +

[
R + (ρp−ρ1)φ

πd2

4
g

]
= 0, (8)

which can be solved analytically, subject to dη/ds=0 at s= [0, L].
We set R = −(ρp−ρ1)gφπd2/4 via conservation of the fluid volume underneath the raft and

η0 = 0. Note that we can think of −R as the pressure that would be generated by setting a piston of
weight per unit area ρpgφVp on the interface. With R set, the problem becomes a homogeneous
second-order differential equation with homogeneous boundary conditions, which gives rise to
eigenvalues for the compressive force Pn and sinusoidal interface shapes ηn, respectively:

Pn = (ρ1−ρ2)gL2

n2π2
, ηn = Cn cos (nπs/L). (9)

The linear solution is the superposition of these modes in some combination that satisfies the
horizontal extent of the raft, or Lx. If we consider only a single mode at a time, we can compute Cn for
the prescribed value of Lx/L, which is shown to decrease linearly with increasing n in Fig. 3(b). The
full nonlinear solutions of η are also included (dashed lines) and closely match the linear solutions
(solid lines) in Fig. 3(b). We compute the total energy associated with each n by plugging in ηn

in Eqs. (1) and (2). As shown in Fig. 3(b), the total energy decreases quadratically with n, for both
linear and nonlinear solutions. Note that Ug,p does not affect the energy of the deformed raft, because
the integral constraint for volume beneath the interface renders Ug,p constant.

Hence, for a uniformly jammed raft, the model shows that the high wave-number modes are most
energetically favorable. Indeed, for this continuum model with no bending and surface energies, the
mode with infinite wave number would have zero amplitude and zero energetic penalty. In the phys-
ical system, infinite wave numbers are disallowed because the minimum wavelength must scale with
the particle size. Instead, fixing the minimum wavelength as the particle diameter gives an interface
shape in which alternating particles are displaced upward and downward, in a sawtooth configura-
tion. Such a pattern is precisely the configuration observed in both experiments and models [23]
before the expulsion of individual particles from the raft. In other words, this small-scale wrinkling
is the precursor to individual particles leaving the interface. We include the experimental images
that show the formation of particle-scale wrinkles prior to expulsion in the Appendix (see Fig. 7).

B. 1D model of the raft with variable φ

Overall, our simple model with constant φ successfully predicts single particle expulsion.
However, the model lacks the dependence of the wrinkling mode on particle diameter, because
the induced hydrostatic pressure perfectly offsets the weight of the particles. Furthermore, by fixing
φ = φJ , we ensure that there may only be instability in η, in addition to eliminating the effects of
surface tension.

To address the experimental observations of size dependence and spatially varying φ, we
construct a more general model with two dependent variables, η and φ. Distinct from the fixed
φ model, both φ and η are set as functions of the horizontal coordinate x [see the schematic in
Fig. 3(a)]. Hence, the potential energies of the fluids and the particles are given as the following:

Ug, f = 1

2
(ρ1−ρ2)g

∫ Lx

0
η2dx, Ug,p = (ρp−ρ1)g

πd2

4

∫ Lx

0
ηφ

√
1+

(
dη

dx

)2

dx, (10)

while constraining the volume of the lower liquid to V leads to 
V = R[V − ∫ Lx

0 ηdx] with the
Lagrange multiplier, R. Since the total length of the raft is no longer a fixed constant in this new
model, we modify the second constraint to keep the number of particles on the raft to constant N ,
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such that


N = Q

⎡
⎣N −

∫ Lx

0
φ

√
1+

(
dη

dx

)2

dx

⎤
⎦, (11)

where Q is the Lagrange multiplier.
In addition to the gravitational potential energies, Ug, f and Ug,p, we include a soft interparticle

repulsion energy

Upp =
∫ Lx

0

kd2

2

(φ−φJ )2

φ
H (φ−φJ )

√
1+

(
dη

dx

)2

dx (12)

and an interface energy between the two fluids

U12 =
∫ Lx

0
γ12

φJ −φ

φJ
H (φJ −φ)

√
1+

(
dη

dx

)2

dx, (13)

where H (·) is a Heaviside function, k the stiffness of the particle-particle repulsion, and γ12 the
interfacial tension coefficient between the two fluids. Note that U12 becomes nonzero only in the
regions with bare fluid-fluid interfaces (i.e., φ < φJ ), while Upp is activated when φ > φJ to penalize
the compression and resultant elastic deformation of the particles.

Similar to the 1D model with the fixed length, we derive the energy functional that we seek to
minimize, by combining all the relevant energies and constraints: 
(φ, η,R,Q) = Ug, f + Ug,p +
Upp + U12 + 
V + 
N . Then, we take the first variation of 
 and include the effects of viscous
energy dissipation to obtain a set of highly nonlinear differential equations for φ(x) and η(x).
The resultant equations are nondimensionalized based on η∗ = η/d , φ∗ = φ/φJ , x∗ = x/Lx with
Lx = 1 m, the details of which are included in the Appendix. In addition to ε ≡ d/Lx, the nondi-
mensionalization yields the following key dimensionless parameters: D1 ≡ (ρ1−ρ2)/(ρp−ρ1),
D2 ≡ d/�c, and D3 ≡ d/

√
kd/g(ρp − ρ1), where �c = √

γ12/g(ρp − ρ1). As Lx and k are fixed in
the simulations and not experimentally controlled, we primarily focus on the effects of systemically
varying D1 and D2. For given values of the dimensionless parameters, we solve the coupled PDE’s
for φ(x) and η(x) numerically by using an overdamped transient with implicit time discretization,
which is an iterative numerical method used to converge to stable equilibrium solutions. The
interface displacement is initialized with a white noise profile. To preclude the flat interface solution,
the particle concentration is initialized as a uniform concentration with slightly more particles than
that needed to jam particles on a flat interface.

Representative results for interface shapes and particle distributions are shown in Fig. 4 for
three different scenarios. In all three simulations, we fix ρp =2500 kg/m3 (glass particles), ρ1 =
1000 kg/m3 (water), kd =2 × 105 N/m, and γ12 =72 mN/m. For D1 ≈ 0.67 and D2 ≈ 0.45 (i.e.,
d =1000 µm, �ρ =ρ1−ρ2 =1000 kg/m3), the simulation exhibits the low-energy mode of high
wave-number wrinkling, consistent with the model with fixed φ discussed above (the red lines
in Fig. 4). When D2 is increased to 0.68 (i.e., d =1500 µm) with D1 fixed at 0.67 (i.e., �ρ =
1000 kg/m3), the raft forms a sharp crease rather than uniformly distributed wrinkling. Notably, the
raft becomes completely flat away from the crease, in clear contrast from the case with small-scale
wrinkles. The sharp crease suggests the collapse of granular rafts via collective creasing for larger
particles, which qualitatively matches the dependence of the failure mode on the particle size in the
experiments.

In addition to the changes in d , we also consider the effects of modulating the density difference
between the two fluids, or equivalently D1, on the granular raft. When �ρ is decreased to 500 kg/m3

while d =1000 µm (i.e., D1 ≈ 0.33, D2 ≈ 0.45), the simulations in Fig. 4(a) reveal the formation of
a sharp crease, indicative of the collective creasing mode. This suggests that the increase in d (i.e.,
D2) as well as the decrease in �ρ (i.e., D1) can both lead to the transition from individual particle
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FIG. 4. (a) The computed shape of the raft η(x)/d and (b) the corresponding particle concentration
(φ(x)/φJ ) − 1: at different values of D1 and D2. (Black line: d =1500 µm, �ρ =1000 kg/m3; red line:
d =1000 µm, �ρ =1000 kg/m3; blue line: d =1000 µm, �ρ =500 kg/m3.)

expulsion to large-scale collective creasing. In addition, there is an evident coupling between the
interface shape, η, and the particle concentration φ. Figure 4(b) shows the localization of high φ

at the crease, which is consistent with the experimental observation of particles falling into the
dominant crease. Hence, the results of our modified 1D model are able to qualitatively capture key
aspects of the collective failure mode.

IV. TRANSITION IN FAILURE MODES

The results of our simple 1D model with variable φ have revealed the role of the particle diameter
d and the density difference �ρ in causing the collapse of the raft by large-scale creases. Hence,
we use this model to parametrically investigate the effect of d and �ρ for collective creasing,
while ρp =2500 kg/m3, ρ1 =1000 kg/m3, kd =2 × 105 N/m, and γ12 =72 mN/m. We summarize
the simulation results in the phase diagram of D1 versus D2 in Fig. 5. The phase diagram shows
that the minimum value of D1 required for creasing increases linearly with D2 (Fig. 5), where
collective creasing is denoted with an open circle, and particle-scale wrinkling with an open square.
This suggests that for fixed �c, the minimum particle diameter above which creasing is observed
increases linearly with �ρ.

To experimentally verify the numerical results, we expand our experimental parameters to
include different combinations of fluids beyond hexane and water (i.e., �ρ = 345 kg/m3, D1 =
0.23), whose results are also included in Fig. 5 as filled symbols. For instance, granular rafts
compressed on the air-water interface (�ρ = 999 kg/m3, D1 ≈ 0.67) are shown to exhibit single
particle expulsion (blue square) for D2 � 0.4, or all particle diameters below d =1 mm, consistent
with the numerical results. On the other hand, when D1 is decreased to 0.1 (i.e., water/mineral oil
with �ρ = 135 kg/m3), we experimentally observe collective creasing (red circle) for all values of
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FIG. 5. The phase diagram illustrating the transition from wrinkling (single particle falling) to collective
creasing with increasing D2 = d/�c and decreasing D1 = (ρ1−ρ2 )/(ρp−ρ1). Open symbols are from theory,
whereas filled symbols are from experiments. The solid line indicates the phase boundary, while the horizontal
error bars denote the size range of the particles used.

d/�c, where �c ≈ 1.86 mm. This is in contrast to the simulation results that show the transition
from creasing to wrinkling between D2 = 0.045 and D2 = 0.090. However, the experiment at
d =90 µm (i.e., D2 ≈ 0.05) is very close to the numerical transition point. Hence, given the inherent
uncertainty in the particle size and experimental conditions, this mismatch between simulations and
experiments does not represent a clear failure of the simplified 1D model.

The phase diagram also includes the experiments with fluid combinations that exhibit a clear
transition in the failure mode with varying D2. In particular, we conduct two sets of experiments
with hexane on top and water on the bottom, one of which includes 5 wt% IPA in water with
�ρ = 336 kg/m3 (i.e., D1 ≈ 0.22). For both cases, the failure mode of the granular raft is observed
to transition from single particle falling to collective creasing as d is increased above 300 µm. This
transition corresponds to D2 ≈ 0.22, which is slightly above the numerical transition from wrinkling
(open green square) to creasing (open green circle) in Fig. 5. Similarly, experiments with the water-
glycerol mixture as the lower fluid (�ρ = 556 kg/m3, D1 ≈ 0.43) exhibit collective creasing for
D2 � 0.34, in remarkable agreement with the model results.

Both the experimental and numerical results presented in Fig. 5 clearly demonstrate the im-
portance of �ρ and d in determining the failure mode of the granular raft. To rationalize this
observation, we consider the fundamental balance for the creasing mode, which is the competition
between the weight of the granular raft and the restoring force of buoyancy of the two fluids. We
can think of this as akin to a Rayleigh-Taylor instability, where we have a medium-density lower
fluid, a high-density particle layer and a low-density upper fluid. The weight of the granular raft
per unit projected length corresponds to ρpgd2φ

√
1 + (∂η/∂x)2, while the restoring force from the

liquids scales as �ρgη. When the weight of the raft per unit length overwhelms the restoring force
of buoyancy (i.e., ρpgd2φ

√
1 + (∂η/∂x)2 > �ρgη), the raft creases.

Based on this force balance, the necessary condition for collective creasing can be simplified
to ρpd > �ρη in the limit of (∂η/∂x)2 � 1, as φ ∼ 1/d . This implies that when the interfacial
deformation reaches the critical size of ηc ∼ ρpd/�ρ, the restoring buoyancy force becomes large

024003-10



COLLAPSE OF A GRANULAR RAFT: TRANSITION …

enough to stop the growth of the deformation and suppress creasing. However, if the interfacial slope
also increases with η such that (∂η/∂x)2 	 1, the destabilizing force now scales as ρpgd|∂η/∂x|, or
ρpgd (η/λ), where λ is the characteristic width of the deformation. Hence, in this limit, the creasing
criterion becomes ρpd (η/λ) > �ρη, which suggests that the weight of the raft may overwhelm the
restoring force, independent of η. These ideas together lead to the following condition for collective
creasing: By the time η grows to ηc ∼ ρpd/�ρ, λ must be small enough to meet (η/λ)2 	 1 and
ρpd/λ > �ρ, such that the interfacial deformation continues to grow, unimpeded. If we require
ηc/λ � 1, which simultaneously satisfies ρpd/λ � �ρ, the minimum particle diameter required for
collective creasing corresponds to dc ∼ λ(�ρ/ρp).

Now, determining λ remains an open question. One possible choice for λ is the particle-fluid
capillary length �c, such that dc ∼ √

γ12/g(ρp − ρ1)(�ρ/ρp). This is consistent with the linear
scaling between D1 and D2 observed in the numerical phase diagram. If we plug in the physical
values into this scaling law, which reflects the experimental variations in γ12 and ρ1, we find that
dc ≈ [0.9, 0.3, 0.2, 0.1] mm for air-water (γ12 =72 mN/m), hexane/glycerol (γ12 =28 mN/m),
hexane-water (γ12 =43 mN/m), and mineral oil-water (γ12 =51 mN/m), respectively. The resultant
values of dc are in qualitative agreement with the experimental findings summarized in Fig. 5.
However, verifying this scaling law would require additional experiments, as the values of γ12 and
ρ1 have not been widely varied in the experiments. Furthermore, it is important to acknowledge that
our current theoretical framework implicitly assumes the existence of a stable granular raft which
requires the flotation of individual particles. Hence, we expect our simulations to become invalid
as we lower γ12 or increase d and ρp in the experiments to the limit where individual particles are
unstable at the interface. This limit will be considered in future studies.

Finally, it is noteworthy that the variation in φ is imperative to observe the creasing behavior,
although it does not directly enter the scaling. While the onset of creasing does not require variation
in φ, the particles need to be able to move preferentially towards the fold, for the instability to
develop and for one dominant crease to emerge. This is further confirmed in Fig. 4(b), which shows
a preferential increase in φ at the crease and a corresponding decrease in φ elsewhere, which acts
to exacerbate the folding instability. When φ is not allowed to vary along the raft as in the fixed φ

model, this transition to creasing is suppressed.

V. SUMMARY AND CONCLUSIONS

In this paper, we consider the dynamics of the granular raft by combining simple experiments
and theory. We first form a raft of noncolloidal glass particles between two fluids inside a funnel and
biaxially compress it to the point of failure by draining the lower fluid from below. Our systematic
experiments reveal that the granular raft exhibits two distinct failure modes, depending on the
particle diameter d and the density difference between the lower and upper fluids �ρ. In particular,
for small d and large �ρ, individual particles are observed to fall out sporadically from the interface,
as the raft is gradually compressed. By contrast, as d is increased or �ρ is lowered, the compressed
raft tends to collapse by forming large-scale creases.

To rationalize the experimental observations, we construct a 1D continuum model of the raft
based on the variational formulation. We compute the shape of the particle-laden interface that
minimizes its total energy, building on a conjecture that the interfacial shape (i.e., small-scale
wrinkles versus large-scale creases) corresponds to one of the two failure modes. The first iteration
of the model with a uniformly jammed raft demonstrates that wrinkles with infinite wave number
are most energetically favorable regardless of d and �ρ, suggesting the single particle expulsion
as the failure mode. We then relax the uniform φ constraint and numerically compute coupled η

and φ. Remarkably, allowing the particles to move along the interface (or variable φ) is shown
to be a sufficient condition for the collective creasing mode to emerge for large d and small
�ρ. We also develop a simple scaling law based on the competition between the weight of the
granular raft and the restoring buoyancy force, which qualitatively matches both the numerical and
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FIG. 6. The top-down images of the granular raft on a hexane-water surface comprising colored glass
particles (d = 625 µm). The image on the left-hand side shows the formation of two creases at t = 0: one near
the funnel walls (bottom) and one in the middle of the raft (top). At t = 2.5 s, the crease away from the walls
appears to grow and leads to the collapse of the raft.

experimental observations. However, additional experiments are needed to further validate the
scaling law.

From their formation to failure modes, the granular rafts explored in our study are purely
driven by gravity, in stark contrast to colloidal rafts. The failure modes in the granular rafts are
set by the weight of the particles in competition with the stabilizing buoyancy force, whereas
the surface wettability of particles is shown to determine the behavior of the colloidal raft under
compression [24]. Our model with no bending modulus qualitatively captures both failure modes,
i.e., single particle falling and collective creasing, observed in our experiments. This modeling
approach may be generalized to the colloidal limit by incorporating the energy associated with
particle adsorption on the interface, to develop a unifying picture of particle rafts across length
scales.
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APPENDIX A: COLLECTIVE CREASING

While the top-down images in Fig. 2(c) show the formation of a large crease near the funnel
walls, the creasing location is not limited to the meniscus. Figure 6 comprises the images of the
granular raft with d = 625 µm on a hexane-water surface. As the raft is compressed, we observe the
creases form both near the meniscus (bottom) as well as near the center of the raft (top). Then, at
t = 2.5 s, the crease near the center is shown to grow deeper, which leads to the collapse of the raft.

APPENDIX B: SINGLE PARTICLE EXPULSION

We hypothesize that small-scale wrinkles of our 1D model are a prelude to the expulsion of
individual particles when the raft is compressed. While the particle-scale wrinkles may be too small
to be visualized from the side-view images, the changes in the particle’s vertical position can become
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FIG. 7. The top-down image of the granular raft on an air-water surface comprising colored glass particles
(d ≈ 1.0 mm). We focus on the evolution of the small region on the raft highlighted by an open square. The
row of zoomed-in images on the bottom shows the formation of particle-scale wrinkles at t = 2.5 s. As the
raft is further compressed at t = 3.4 s, two particles in particular are shown to grow darker, after which they
are promptly expelled from the raft. Note that the pixel intensity is correlated with the vertical position of the
particles.

evident from the top-down images if the particles are sufficiently large. Figure 7 shows a granular
raft comprising colored glass particles (d ≈ 1.0 mm) on an air-water interface. Specifically, the
time-sequential images in Fig. 7 reveal the formation of a small wrinkle at t = 2.5 s. As the raft is
further compressed, the wrinkle becomes more localized and evolves into darkening of two particles
(noted by dashed circles), after which the two particles promptly fall off the raft. This indicates that
the particles are being lowered further into the funnel before they are expelled.

APPENDIX C: DERIVATION OF THE VARIABLE φ MODEL

We include the viscous dissipation into our variational formulation, so that the first variation of
our total energy and constraints corresponds to

δUg, f + δUg,p + δUpp + δU12 + δ
V + δ
N = δWη + δWφ, (C1)

where the work done by the viscous damping has contributions from the interfacial deformations
(δW ) and from the particle motion along the interface (δWφ):

δWη =
∫ Lx

0
− c

∂η

∂t
δηdx, δWφ =

∫ Lx

0
− cφ

∂φ

∂t
δφdx. (C2)

Finally, by collecting terms that are linear in δη, δφ, δQ, and δR, respectively, we derive a set
of coupled partial differential equations from Eq. (C1). We apply the periodic boundary for φ and
∂η/∂x = 0 at [0, Lx]. The η profile is initialized with a white noise profile, while φ is set to be a
uniform value that ensures that there are sufficient particles to jam the flat interface. Then, for given
Lx, we numerically compute η(x) and φ(x) by using backward Euler differentiation for its stability.
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The resultant governing equations have been made dimensionless based on η∗ = η/d , φ∗ =
φ/φJ , x∗ = x/Lx, and t∗ = t/τ , where the asterisk denotes dimensionless variables. Here, τ is the
characteristic time scale associated with interfacial deformations.

D−2
3

[
φ∗−1

φ∗ H (φ∗−1)

(
1 − φ∗−1

2φ∗

)
+ (φ∗−1)2

2φ∗ δ(φ∗−1)

]
−D−2

2 [H (1−φ∗)+(1−φ∗)δ(1−φ∗)]

+ π

4
η∗ − Q∗ = −c∗

φ

∂φ∗

∂t∗

(
1+ε2

(
∂η∗

∂x∗

)2
)−1/2

, (C3)

−ε2 ∂

∂x∗

⎡
⎣∂η∗

∂x∗

(
1+ε2

(
∂η∗

∂x∗

)2
)−1/2{

D−2
3

2

(φ∗−1)2

φ∗ H (φ∗−1)+D−2
2 (1−φ∗)H (1−φ∗)−Q∗φ∗

}⎤
⎦

− R∗ + π

4

⎡
⎣φ∗

√
1+ ε2

(
∂η∗

∂x∗

)2

− ε2 ∂

∂x∗

⎧⎨
⎩η∗φ∗ ∂η∗

∂x∗

(
1+ ε2

(
∂η∗

∂x∗

)2
)−1/2

⎫⎬
⎭

⎤
⎦+D1η

∗ = −c∗ ∂η∗

∂t∗ ,

(C4)

subject to the constraints: V/(dLx ) = ∫ 1
0 η∗dx∗ and εN = ∫ 1

0 φ∗√1+ ε2(∂η∗/∂x∗)2dx∗. Note that
δ(.) denotes the Dirac delta function. The complete list of dimensionless parameters in Eqs. (C3)
and (C4) is as follows:

D1 ≡ ρ1−ρ2

ρp−ρ1
, D2 ≡ d

�c
, D3 ≡ d√

kd/g(ρp−ρ1)
, ε ≡ d

Lx
, (C5)

Q∗ ≡ Q
(ρp−ρ1)gd3

, R∗ ≡ R
(ρp−ρ1)gd

, c∗
φ ≡ cφ

(ρp−ρ1)gd4τ
, c∗ ≡ c

(ρp−ρ1)gτ
. (C6)
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