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to droplet migration under Poiseuille flow
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Under a fully developed Poiseuille flow with nonisothermal condition, it has been widely
reported that the thermocapillary effects always strengthen the droplet migration velocity
as long as the temperature increases along the direction of Poiseuille flow. The insoluble
surfactant, on the other hand, always retards the droplet migration. This is due to the
fact that, for most of the models, the Langmuir equation of state for the surface tension
is usually simplified under the assumption of low surfactant concentration. The coupling
term of temperature and surfactant concentration is dropped, and the thermo-induced and
surfactant-induced Marangoni forces are therefore decoupled. In the present study, we
develop a thermodynamically consistent phase-field model for investigating the coupling
effects of temperature and surfactant concentration on droplet migration under a fully de-
veloped Poiseuille flow. By choosing the interface free energy sophisticatedly, the surface
tension of our model consists of not only the classical linear part for the thermocapillary
effects but also a nonlinear coupling term of temperature and surfactant concentration
that recovers the Langmuir equation of state. This coupling term allows us to investigate
the case of high surfactant concentration. Through 3D numerical simulations, we find
that this nonlinear coupling term introduces extra thermo-induced and surfactant-induced
Marangoni forces to the droplet migration, leading to a competition between the two,
especially for the case of high surfactant concentration. In particular, the initial migration
velocity of a surfactant-covered droplet is always faster than that of a droplet with a clean
interface. The terminal velocity, on the other hand, does not reach its steady state but
instead decreases gradually as the droplet moves toward the hotter region, whereas, for
the case without this term, the initial migration velocity of a surfactant-covered droplet is
always lower than that of a clean interface and the terminal velocity stays steady.

DOI: 10.1103/PhysRevFluids.8.024001

I. INTRODUCTION

The dynamics of droplets suspended in a pressure-driven flow has emerged one of the most
important topics in science and engineering [1], as it has various applications in microfluidic
devices, such as analytic detection [2], reagent mixing [3], drug delivery [4], and cell encapsulation
processes [5]. The study of it has been the focus of research, both theoretical and experimental.
Haber and Hetsroni [6] first solved the velocity solution of a deformed droplet with a clean interface
under an imposed Poiseuille flow. Various extended works [7–13] are dedicated to investigating the
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nonlinear coupling effects, including the deformation, inertia, and fluid viscoelasticity to the droplet
dynamics.

For most fluids, the surface tension generally decreases when the temperature increases. The
variation of the temperature field across the droplet gives rise to the Marangoni force at the droplet
interface, which induces droplet motion even in the absence of an imposed flow [14]. This effect
is known as the thermocapillary effect and has important applications for droplet manipulation in
a microchannel [15–17]. On the other hand, it is also a fundamental problem in the discipline of
fluid mechanics. The pioneering work by Young et al. [14] derived an analytical expression for
the migration velocity of a spherical drop in a quiescent liquid. Many subsequent works have been
presented to investigate the more general cases, including the thermal convection, fluid inertia, and
drop deformation that was neglected in [14,18–20]. Also the ambient flow condition is gradually
released from a quiescent liquid to a uniform flow field and an unbounded Poiseuille flow in
microchannels [21,22]. In summary, the thermocapillary effect has been known to have a significant
influence on droplet migration.

Surfactants, as the surface-active agent, can also have considerable effects on droplet migration
[23,24]. They are amphiphilic organic compounds, which not only can be absorbed at the droplet
interface but also can migrate along the interface of a moving droplet. They thus tend to accumulate
at the rear meniscus leading to a inhomogeneous local surfactant concentration at the interface,
which produces gradients in surface tension and further gives rise to tangential forces along
the interface. Through this Marangoni effect, surfactants can play an important role in droplet
generation, droplet break-up, and coalescence, which are quite fundamental in microfluidic devices.
Several works have been presented to study the dynamics of a surfactant-laden droplet under a
Poiseuille flow [25–27], where the results show that the surfactant can not only retard the motion of
droplet but also induce the cross-streamline migration of the drop towards the center of the Poiseuille
flow.

As both the thermal- and surfactant-induced Marangoni effects have significant influences on the
droplet motion under the Poiseuille flow, various works have been dedicated to investigating the
coupling effects analytically and numerically [28–31]. For instance, Das et al. [28,29] studied
the cross-stream migration of the droplet and obtained the droplet velocity analytically by neglecting
the fluid inertia and thermal convection. Their results show that the motion of a surfactant-laden
droplet in the combined presence of a temperature gradient and imposed Poiseuille flow cannot
be obtained by a simple superposition of the following two independent results: migration of a
surfactant-free droplet in a temperature gradient and the motion of a surfactant-laden droplet in a
Poiseuille flow. Similarly, Sharanya et al. [30] have studied the motion of viscous surfactant-laden
droplet in the combined presence of a temperature field and imposed Stokes flow. They show
that the retardation due to the surfactants is marginal, and the thermal-induced Marangoni forces
dominate the overall migration. Luo et al. [31] presented a three-dimensional numerical study on
the thermocapillary migration of a surfactant-laden droplet under Poiseuille flow in a microchannel.
Their result show that the surfactant-induced Marangoni forces always oppose the thermal-induced
Marangoni force, and the competition between them is significantly altered by the convection. In all
these works, however, the surfactant concentrations are assumed to be dilute or slightly higher,
and the surface tension is simplified to be a linear function of the temperature and surfactant
concentration, or a linear function with an extra simple product of temperature and surfactant
concentration.

As pointed out by Luo et al. [31], the general case of nonlinear coupling variation of interfacial
tension on both temperature and surfactant concentration in the case for the droplet migration
has not been explored yet analytically and numerically, especially for the case of high surfactant
concentration. Moreover, to our best knowledge, there is a lack of mathematical derivation for
the interfacial flows coupling with thermocapillary effects and surfactants in a thermodynamically
consistent framework. The objective of this paper is twofold: First, we aim to develop a thermo-
dynamically consistent model with an easily implemented numerical tool to deal with the coupling
of the surfactants and temperature field as well as the hydrodynamic flows. Second, we aim to
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explore the effects of nonlinear coupling variation of surface tension on both temperature and
surfactant concentration gradients to the droplet migration, especially for the case of high surfactant
concentration.

From a numerical point of view, solving the problem of multiphase flows with soluble and
insoluble surfactants and thermocapillary effects is highly challenging. The fluid-fluid interface
is dynamic and complex, which may stretch, break up, or even coalesce with other interfaces.
The heat equation and the bulk and interface surfactant system (PDEs) must be coupled with
the fluid flows and solved on the moving, complex domain or interface. The available numerical
methods for solving these problems can roughly be divided into two categories: interface-tracking
and interface-capturing methods. Interface-tracking methods use either a separate grid for the
interface or a set of interconnected points to mark the interface. In the context of the evolution
of surfactant, examples are the boundary integral method (see [32] as the method review and
[33–35] as examples), front-tracking method (see [36] as the review and [37,38] as examples),
immersed boundary method (see [39] as the review and [40,41] as examples), and several hybrid
methods [42–45]. In the context of the thermocapillary effects, we refer to [46] as a review. In
general, interface-tracking methods can be made very accurate but can be relatively complicated to
implement, especially in three dimensions and for problems involving interface topological changes.

In the interface-capturing methods, the interface is not tracked explicitly, but instead is implicitly
defined through an auxiliary function (e.g., level-set, color, or phase-field function). This means
that the solution of the problem can be done independently of the underlying grid, which greatly
simplifies gridding, discretization, and handling of topological changes. In the context of the
surfactant, examples are the level-set method (see [47] as the review and [48,49] as the examples),
volume-of-fluid (VOF) method (see [50] as the review and [51,52] as the examples), and arbitrary
Lagrangian-Eulerian (ALE) method (see [53] as the review and [54,55] as the examples).

Another interface capturing method is the phase-field method, which has now emerged as a
powerful approach for simulating various types of multiphase flows [46,56,57]. The basic idea of
the phase-field method is to treat the multiphase fluid as one fluid with variable material properties.
An order parameter is employed to characterize the different phases, which varies continuously over
thin interfacial layers and is mostly uniform in the bulk phases. Sharp interfaces are then replaced by
thin but non-zero-thickness transition regions, where the interfacial forces are smoothly distributed.
One set of governing equations for the mixture can be derived variationally from its energy density
field, where the order parameter fields satisfy an advection-diffusion equation (usually the advective
Cahn-Hilliard equations) and are coupled with Navier-Stokes equations through extra reactive
stresses that mimic surface tension force.

Several phase-field models have been developed to simulate the two-phase flows with thermo-
capillary effects. In [46] the temperature field is introduced into the internal energy, free energy,
and entropy leading to a temperature dependent surface tension for the thermocapillary effects.
The phase-field model is then derived within a thermodynamically consistent framework such
that the model equations satisfy the conservation of mass, momentum, energy, and entropy, which
meanwhile allows for the fluid components to have different physical properties. The current work
is also based on this framework.

A phase-field method has also been used for simulating the two-phase flows with surfactants
[58–60]. In these models, another phase variable is employed to represent the bulk-interface
surfactant concentrations simultaneously, and additional terms are introduced to the original
Ginzburg-Landau free energy which account for the surfactant effects, including absorption,
desorption, and the lowering of the surface tension. The model consists of Navier-Stokes equa-
tions governing the two-phase flows and two Cahn-Hilliard equations governing the fluid-fluid
interface and the surfactant concentration, respectively. A similar idea is applied by Zhu et al. [60]
to simulate a two-phase flow with soluble surfactant and moving contact line, where the model was
obtained in a thermodynamically consistent way, such that the model equations satisfy the conser-
vation of mass and energy. In this type of model, as the bulk-interface surfactant concentrations
are now represented by one phase variable, only one equation governs the transportation of the
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surfactant in the bulk and on the fluid-fluid interface simultaneously, whereas in the current work,
our model is based on the sharp-interface surfactant equations, such that the bulk-interface surfactant
equations are computed separately.

Since the phase variable is introduced to characterize the different regions and the interface, it
can be further used to solve partial differential equations in or on a complex domain or interface.
This is the so-called diffuse-domain method [61–65]. In the diffuse-domain method, we can extend
any dynamic and complex domain or interface to a larger and regular domain, and use a phase
variable to smoothly approximate the characteristic function of the original domain or interface.
The original partial differential equation is then reformulated on the larger domain with additional
source terms that approximate the boundary conditions. It has been shown that the reformulated
partial differential equation asymptotically converges to the original system as the width of the
diffuse interface layer tends to zero [63]. The advantages of such a method are that no modifications
of standard software packages are required and the stationary or moving complex boundary can be
imposed easily and smoothly.

In [61] a phase-field method is coupled with the diffuse-domain method to simulate the two-phase
flow problem with a soluble surfactant, where the fluid-fluid interfaces are represented implicitly by
a phase variable. The bulk (interface) surfactant equations are then coupled with the phase variable
(a delta function based on the phase variable) and extended on a larger and regular domain, where
the additional terms are introduced as source terms to the bulk-interface surfactant equations ap-
proximating the adsorption-desorption flux boundary conditions. However, since the equations of
fluid flows and surfactants are simply coupled, the model does not satisfy the conservation of energy.
Moreover, the model is restricted only to the matched density and isothermal case.

In the present paper, we develop a thermodynamically consistent phase-field model for two-phase
flows with thermocapillarity and insoluble surfactant. We apply the phase-field method for modeling
the two-phase flows with thermocapillary effects, and use the diffuse-domain method for coupling
the two-phase flows with a sharp-interface surfactant equation. The model consists of Navier-Stokes
equations for the fluid flows, a Cahn-Hilliard equation for the fluid-fluid interface, a heat equation,
and the bulk-interface surfactant equations in the diffuse-domain formulation. Our model allows for
the binary incompressible fluid to have different densities, viscosities, and thermal conductivities
for each component, which meanwhile maintains the conservation of mass, momentum, energy
and entropy. In addition, the interface free energy is chosen sophisticatedly, leading to a surface
tension that consists of not only a classical linear part for the thermocapillary effects but also
a nonlinear coupling term of temperature and surfactant concentration that covers the classical
Langmuir equation of state for surface tension.

Our paper is organized as follows: we first present the model derivations in Sec. A and then
discuss the problem setup and the nondimensionalization in Sec. II. We validate our model and
numerical methods through several tests and benchmarks in Sec. III. Finally, we show the numerical
results in Sec. IV and conclude in Sec. V. The Appendixes show the details of model derivations.

II. PROBLEM SETUP AND NONDIMENSIONALIZATION

A. Problem setup

In this study we consider the motion of a surfactant-covered droplet in a square microchannel un-
der a fully developed Poiseuille flow with a linearly increasing temperature field imposed along the
flow direction, where the temperature gradient is a constant ∂T /∂z = ∇T∞. See Fig. 1 as an illustra-
tion for the problem setup. The size of the square microchannel is [−H, H] × [−H, H] × [0, 8H],
where the fluid flows upwards along z axis. The droplet (fluid 2) of radius R∗ is initially centered
at (0, 0, 1.5R∗) and is surrounded by another immiscible fluid (fluid 1) in the square microchannel.
Here we investigate only the behavior of droplets moving along the microchannel centerline z axis;
therefore, there is no cross-stream droplet migration taking place, i.e., the droplet velocities in the
direction of the x and y axes are always zero due to the symmetry. The steady unidirectional flow
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FIG. 1. Problem setup. A surfactant-covered droplet is initially centered at the centerline of a square
microchannel under a fully developed Poiseuille flow. The initial temperature field is assumed to be linearly
increasing along the flow direction (z axis).

(velocity component W in the direction of the z axis) in the square microchannel far from the droplet
is given by [66]

W (x, y, z) = K (H2 − y2) + K
∞∑

n=1

Bn cosh (αnx) cos (αny), (1)

K = −d p/dz

2μ1
, Bn = (−1)n4H2

α3
n cosh (αn)

, αn = (2n − 1)π

2
. (2)

Here d p/dz is a constant pressure gradient along z axis that drives the fluid flow. The maximum
velocity in the square microchannel can be given as V ∗ = KH2. In our computations, we neglect
terms with n > 40 in Eq. (2), which creates a truncation error on the order of 10−5. Moreover, the
droplet is initially covered by the insoluble surfactant with an initial concentration φ0

� .

B. Nondimensionalization

In the present study, we applied a diffuse-interface based model for the numerical simulations. In
particular, we applied the phase-field method for simulating the two-phase flows, which is coupled
with the diffuse domain method for the insoluble surfactants on the fluid-fluid interface. The model
derivations are done by following a thermodynamically consistent framework that ensures the
conservation laws of the two-fluid system. The dimensional system equations and the corresponding
derivations are presented in Appendix A. We now nondimensionalize the system based on the above
setup. Using the properties of fluid 1 as the characteristic quantities, we nondimensionalize the
variable properties as

�̄ = c + ζ�(1 − c), (3)
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where ζ� are the corresponding physical property ratios. By choosing R∗, V ∗, and ∇T∞R∗ as the
characteristic length, velocity, and temperature, μ∗

c = ρ1(V ∗)2 the characteristic chemical potential
and pressure, φ∞

� the characteristic interface surfactant concentration, respectively, and m∗
c the

characteristic mobility for the phase field, we nondimensionalize the physical quantities as follows:

t̄ = tV ∗

R∗ , v̄ = v

V ∗ , T̄ = T − T0

∇T∞R∗ , ε̄ = ε

R∗ , m̄c = mc

m∗
c

,

φ̄� = φ�

φ∞
�

, μ̄c = μc

ρ1(V ∗)2
, p̄ = p

ρ1(V ∗)2
. (4)

Note that the above setup is considered for all the computations in Sec. 5. It might be slightly
modified in Sec. 4 for benchmark validations. We then nondimensionalize the surface tension
defined in Eq. (A35) by using σ0, such that

σ̄ f (φ̄�, T̄ ) = 1

σ0

[
σ0 + ∂σ̃0

∂T
(T − T0) + RT φ∞

� ln

(
1 − φ�

φ∞
�

)]

= 1 − Ca[MaT T̄ − Ma�1 ln(1 − φ̄� ) − Ma�2 T̄ ln(1 − φ̄� )], (5)

where

Ca = μ1V ∗

σ0
, MaT = −∂σ̃0

∂T

∇T∞R∗

μ1V ∗ , Ma�1 = Rφ∞
� T0

μ1V ∗ , Ma�2 = Rφ∞
� ∇T∞R∗

μ1V ∗ . (6)

Here Ca is the capillary number, and MaT is the thermal Marangoni number representing the
relative strength of thermal-induced interface-tension-driven Marangoni flow and the imposed
Poiseuille flow. In addition, we introduce two surfactant Marangoni numbers Ma�1 and Ma�2 that
measure the relative strength of surfactant-induced interfacial-tension-driven Marangoni flow to
that of the imposed Poiseuille flow with respect to the reference temperature T0 and the temperature
difference across the droplet ∇T∞R∗, respectively. Moreover, Bi and all the other nondimensional
parameters are given by

Bi = rd R∗

φ∞
� V ∗ , Re = ρ1V ∗R∗

μ1
, PeT = ρ1c∗

hc1V
∗R∗

k1
, Pec = V ∗R∗

m∗
cμ

∗ , Pe� = V ∗R∗

mφ�

,

Pei = V ∗R∗

mφi

, Ec = (V ∗)2

c∗
hcT ∗ , M� = ρ1(V ∗)2

(φ∞
� )2R∗ , We = Ca Re, El = Ca Ma�1, (7)

where Bi is the Biot number, Re is the Reynolds number, PeT , Pec, Pe� are the Péclet numbers for
the heat equation, phase field, and interface surfactants, respectively, Ec is the Eckert number, and
M� is the Mach number for the interface surfactants, respectively, We is the Weber number, and El
is the elastic number. After dropping the bar notations, the nondimensional phase-field model for
two-phase flows with thermocapillary effects and insoluble surfactants can be given as follows:

ρvt + ρv · ∇v = ∇ · m, (8)

∇ · v = α

Pec
∇ · (mc∇μc), (9)

ct + ∇ · (vc) = 1

Pec
∇ · (mc∇μc), (10)

(δφ� )t + ∇ · (vδφ� ) = 1

Pe�

∇ · (δ∇φ� ), (11)

(ρchcT )t + ∇ · (vρchcT ) = 1

PeT
∇ · (k∇T ) + Ec hs, (12)
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where

m = 1

We
σ f (φ�, T )[δI − ηε(∇c ⊗ ∇c)] − pI + 1

Re
τ − p̃I, (13)

σ f (φ�, T ) = 1 − Ca[MaT T − Ma�1 ln(1 − φ� ) − Ma�2 T ln(1 − φ� )], (14)

τ = μ(∇v + ∇vT ) − 2

3
μ(∇ · v)I, (15)

μc = η

We
μ0 + αp, (16)

μ0 = h′(c) − ε�c. (17)

Here the nondimensional terms p̃ and hs are given in D 1. Choosing ρ1(V ∗)2 as the characteristic
energy density, the nondimensional internal energy and free energy densities are given by

û = 1

Ec
ρchcT + 1

We
δγu(φ� ), (18)

f̂ = 1

Ec
ρchcT − 1

Ec
ρchcT ln

(
T

T0

)
+ 1

We
δγ f (φ�, T ). (19)

After the nondimensionalization, we consider a square microchannel of [−h, h] × [−h, h] × [0, 8h]
with h = H/R∗, in which a droplet of radius 1 is initially centered at (0,0,1.5). The following initial
conditions are imposed:

u(x, y, z, 0) = 0, (20)

v(x, y, z, 0) = 0, (21)

w(x, y, z, 0) = W/V ∗, (22)

T (x, y, z, 0) = z, (23)

φ� (x, y, z, 0) = φ0
�, (24)

c(x, y, z, 0) = 0.5 + 0.5 tanh [(1 − r)/2
√

2ε], (25)

where W is defined by Eq. (1) with K = 1, r =
√

x2 + y2 + (z − 1.5)2 and φ0
� is a constant that will

be specified later.
On all the side boundaries (x = ±h or y = ±h), we apply no-slip boundary conditions (BCs) for

the velocity v, and fix the temperature as T = z. On the top and bottom boundaries (z = 0, 8h), we
fix v and T by using Eqs. (20)–(23). Moreover, no-flux BCs are imposed for c, μc, and φ� on all the
boundaries.

Due to the appearance of the nonlinear coupling term in the surface tension (14), the model allows
us to investigate the case with insoluble surfactant in high concentration. Moreover, by calculating
the derivatives of surface tension, we obtain the thermal-induced and surfactant-induced Marangoni
forces, respectively:

∂σ f (φ�, T )

∂T
= −Ca MaT + Ca Ma�2 ln(1 − φ� ), (26)

∂σ f (φ�, T )

∂φ�

= −Ca Ma�1
1

1 − φ�

− Ca Ma�2T
1

1 − φ�

. (27)

From Eq. (26), we observe that for the case with high surfactant concentration, as φ� approaches
1 (or, say, φ∞

� ), the temperature derivative becomes strongly negative, indicating that the surface
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tension becomes increasingly sensitive to the temperature field at the evaluated surfactant concentra-
tion. Meanwhile, the surfactant concentration derivative (27) also becomes strongly negative, where
the magnitude becomes even larger as T increases. Therefore, higher surfactant concentration would
lead to a stronger competition between the thermal-induced and surfactant-induced Marangoni
forces, which is significantly affected by both the temperature and surfactant concentration. See
Sec. IV B for the numerical investigation and discussion.

Note that for the case with dilute surfactant concentration where φ� is small, we can simplify the
surface tension Eq. (14) to obtain

σ f (φ�, T ) = 1 − Ca MaT T − Ca Ma�φ�, (28)

where the surface tension is assumed to be linearly depending on both the temperature and
interface surfactant concentration, the logarithm is simplified to be a linear function of φ� , and
the coupling term is dropped. Here Ma� = Ma�1 as defined in Eq. (7). This simplification is
commonly performed for the convenience of the mathematical calculations and is valid only for
dilute concentration case. Same or similar simplified formulations for surface tension can be
found in [28–31], where the cases with dilute surfactant concentrations are considered. It can be
observed clearly that the thermo- and surfactant-induced Marangoni forces are decoupled after this
simplification, and the coupling effects are ignored.

III. NUMERICAL VALIDATIONS

In this section we present several numerical tests to validate our nondimensional model (8)–(12)
and the corresponding numerical method. A semi-implicit, staggered finite difference numerical
method developed in [67] is applied here for the computations. A block-structured, adaptive
multigrid (BSAM) solver [67,68] is used for the implementations.

A. Thermocapillary migration of deformable droplet with infinitely small PeT and clean interface

Thermocapillary migration of droplets was first analyzed by Young et al. [14] for the flows
with infinitesimal Marangoni number, in which the convective transport of energy can be neglected
compared to molecular transport of these quantities. The governing equations can therefore be
linearized. The dimensional terminal migration velocity (also known as YGB velocity) of a spherical
droplet with radius R in a constant temperature gradient ∇T∞ within an unbounded fluid medium
can be given as

VY GB = −∂σ̃0

∂T

2R ∇T∞
6μ1 + 9μ2

. (29)

Note that as there is no base flow imposed in the square microchannel, we choose VY GB as the
characteristic velocity for the nondimensionalization. All the other scaling and settings are the same
as in Sec. II B. For the computations, we consider a square microchannel with h = 4. We fix the
temperature field as its initial condition and ignore the surfactants by treating the concentration φ�

as zero. In addition, we assume that the surface tension is only a linear function of temperature, such
that

σ f (T ) = 1 − Ca MaT T . (30)

On all the boundaries, no-slip BCs are imposed for the velocity v, and no-flux BCs are imposed for
the phase-field functions c and μc. The physical property ratios and the corresponding nondimen-
sional parameters are given as

ζρ = 2, ζμ = 0.1, MaT = 0.2899, Re = 1, Ca = 0.2, Pec = ε/10. (31)

To compare the numerical results with the analytical solution VY GB, we calculate the migra-
tion velocity VR of the droplet after every time step with VR = ∫

�
cv · ẑ dV /

∫
�

c dV . As the
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FIG. 2. Thermocapillary migration velocity of a droplet induced by a linearly increasing temperature field
along the microchannel. The dotted lines are the nondimensional migration velocities VR with various spacing
size (�x = 8/n with n = 32, 64, 128, 256) and a fixed ε = 0.03.

thermocapillary migration is driven by the surface tension gradient, the diffuse interface needs to be
resolved carefully. We first test the convergence of the results by refining the spacing size �x with
a fixed ε. In particular, we set ε = 0.03 and use four spacing sizes �x = 8/n for the computations,
where n = 2(4+k) with k = 1, 2, 3, 4, respectively. The numerical results are shown in Fig. 2, where
we can see that the migration velocity seems to converge when n = 27 and n = 28. We then show the
convergence of the model by testing four values of ε(= 0.03, 0.06, 0.12, 0.24) with a fixed grid size
n = 27. The numerical results are shown in Fig. 3, where we observe that after an initial acceleration
phase, the migration velocity approaches the theoretical prediction of sharp-interface model, VY GB,
asymptotically. Based on these results, we choose n = 27 and ε = 0.03 for all the computations in
Sec. 5.

FIG. 3. Thermocapillary migration velocity of a droplet induced by a linearly increasing temperature field
along the microchannel. The dotted lines are the nondimensional migration velocities VR with various ε and a
fixed grid size n = 128.
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FIG. 4. The deformation of a droplet with clean interface in the square microchannel under a fully
developed Poiseuille flow with the isothermal condition. Left: Steady-state droplet profiles at the plane y = 0
with various ε. Right: The corresponding droplet surface for ε = 0.01. The capillary number is Ca = 0.1 and
viscosity ratio is ζν = 2.04.

B. Droplet motion in a square microchannel with clean interface under isothermal condition

We next validate our numerical method for simulating the motion of a droplet with clean interface
in a square microchannel under a fully developed Poiseuille flow, where the isothermal condition
is considered. The setup is the same as mentioned in Sec. II B except that a longer square domain
of size [−1.25, 1.25] × [−1.25, 1.25] × [0, 10] is considered. The droplet of radius 1 is initially
located at (0,0,1.5). The two fluids are of the following property ratios:

ζρ = 1, ζμ = 2.04. (32)

As the isothermal condition is considered, and there is no surfactant, the surface tension is assumed
to be constant over the droplet interface. Here to compare with the existing benchmark results, the
deformation D for a droplet moving along the microchannel centerline is defined as the ratio of the
droplet length lz along the z axis to the droplet length lx along the x axis, such that D = lz/lx.

We first carry out a convergence test by refining ε with a fixed grid size n. In particular, we set the
grid size [n × n × 4n] with n = 27 with ε = 0.04, 0.02, and 0.01, respectively. In Fig. 4 we show
the final droplet shapes at the plane y = 0, where it can be observed that the droplet interfaces seem
to converge as we refine ε.

FIG. 5. Time evolution of droplet deformation D with size r = 0.8 moving in a square microchannel under
a fully developed Poiseuille flow. Our results are compared with several existing numerical studies with various
capillary number Ca = 0.075, 0.1, 0.15 and a fixed viscosity ratio ζμ = 2.04. The black lines with symbols
denote the results obtained by using the boundary element method (BEM) [69], the scattered red lines denote
the result by the lattice Boltzmann method (LBM) [70], the blue solid lines denote the result by the front-
tracking method (FTM) [71], and the red solid lines denote our result.
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In Fig. 5 the time evolutions of droplet deformation are presented for various capillary numbers
Ca(= 0.075, 0.1, 0.15) with a fixed ε = 0.01. Quantitative comparisons are given between our
results and those of previous studies, including the boundary element method (BEM) [69], kattice
Boltzmann method (LBM) [70], and front-tracking method (FTM) [71]. As the droplet is suddenly
released at the centerline of the square microchannel under a fully developed Poiseuille flow, it starts
to elongate along the flow direction. Eventually, the drop shape reaches a steady state and shows
no change any longer. Excellent agreement is observed between our predictions and other works on
both transient and steady-state values of the drop deformation.

C. Interface surfactant diffusion on a stationary or moving circle

Finally, we consider the interface surfactant diffusion on a stationary and a moving circle. This
tests the validity of the diffuse-domain representation of the interface (11), and the corresponding
diffusion term.

We first consider a stationary circle of radius 1, with an initial interface surfactant concentration
given by

φ� (θ, t = 0) = 1
2 [1 − cos(θ )], (33)

where θ denotes the angle measured in the counterclockwise direction from the negative part of y
axis. The interface surfactant concentration equation can now be written in polar coordinates as

∂φ� (θ, t )

∂t
= 1

Pe� R2

∂2φ� (θ, t )

∂θ2
, (34)

with the initial condition (33) and periodic boundary condition in the θ direction. Solving Eq. (34),
we obtain

φ� (θ, t ) = 1

2

[
1 − exp

(
− t

Pe�R2

)
cos θ

]
. (35)

For the simulations, we consider a two-dimensional computational domain [−2, 2] × [−2, 2] with a
circle of radius 1 placed in the center of the domain. The initial conditions for the interface surfactant
concentration φ� and the phase-field variable c are given by Eq. (33) and the following, respectively:

c(x, y, t = 0) = 1

2

(
1 + tanh

1 −
√

x2 + y2

2
√

2ε

)
. (36)

To enable a direct comparison with the analytical solution, the surfactant concentration at the inter-
face is needed. In the present study, a staggered finite difference method is used for computations
in the present study, where the phase variable c and the interface surfactant concentration φ� are
defined at the cell center. The fluid-fluid interface �(t ), on the other hand, is represented by the
contour c = 0.5, which may not be on the cell center exactly. We first apply a marching squares
algorithm [61] to generate a set of points on the contour c = 0.5. We then use bilinear interpolation
to interpolate the grid values of φ� to these interface points, and finally compare with those of the
analytical solutions. Note that this will introduce extra uncertainties, so the absolute errors given
later may not be exact values. However, the order of convergence results should not be affected by
this.

Figure 6 shows the comparisons between the numerical solution and the analytical solution with
various Pe� at different times. Good agreement is observed. The error in the infinity norm between
the interpolated values and the exact values on the interface is given in Table I. The numerical
solution converges towards the exact solution in a second-order fashion.

We next consider the interface surfactant diffusion on a moving circle, where we set a constant
velocity field v = (2, 2). The analytical solution is the same, only translated in the computational
domain. The new computational domain is [−2, 4] × [−2, 4], which is extended to accommodate
the translation. Again, the circle of radius 1 is initially located at [0,0].
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FIG. 6. Comparisons of the numerical results (dotted colorful lines) and exact solutions (solid colorful
lines) for the interface surfactant concentration diffusion on a stationary circle in Sec. III C. The grid spacing
is h = 1/128 with ε = 0.0125. Left: φ� profiles at times t = 0.0, 0.25, 0.5, 0.75, and 1.0 for Pe� = 1. Right:
φ� profiles at time t = 1.0 for Pe� = 0.5, 1, 2, and 4.

The initial and final interface surfactant concentrations are given in Fig. 7. As shown in Table II,
the convergence rate is also second order as in the diffusion only test case. However, the errors
are slightly higher due to the additional errors caused by the advection. Note that the accuracy
order with respect to ε of our diffuse domain method will be presented in a separate paper, where
several diffuse domain interface representations will be investigated through asymptotic analysis
and numerical simulations.

IV. COUPLING EFFECTS OF THERMOCAPILLARITY AND INSOLUBLE SURFACTANTS

We now investigate the nonlinear coupling effects of thermocapillarity and insoluble surfactants
on the droplet migration in a square microchannel under a fully developed Poiseuille flow. All the
settings are described in Sec. II B. Here we set h = 4 for the square microchannel domain. The
droplet (fluid 2) is surrounded by another immiscible fluid (fluid 1) with the following physical
property ratios:

ζρ = 1.89, ζμ = 0.14, ζk = 0.47, ζhc = 0.69. (37)

Moreover, for the base case, we set the parameters as follows:

Re = 2, Ca = 0.1, Pec = ε/10, Ec = 1, M� = 1,

PeT = 5, MaT = 0.1, Ma�1 = 0.5, Ma�2 = 0.1. (38)

Note that the above setup is relevant to a system of Fluorinert FC-75 droplet in silicone
oil in a (millimetric) microchannel [72,73]. The dimensional parameters can be set as R =
8.13 (J K−1 mol−1), φ∞

� = 8.856 × 10−4 (mol m−2), T0 = 300 (K), μ1 = 864 (N s m−2), ∇T∞ =
104 (K m−1), R∗ = 0.6 × 10−2 (m), V ∗ = 5 × 10−3 (m s−1), and σT = 0.036 (N m−1 K−1). Here
we refer to [72,73] for more details about the dimensional parameters and setup.

TABLE I. Convergence test for the interface surfactant diffusion on a stationary circle at t = 1 in Sec. III C.

ε h Error in L∞ Order

0.2 1/8 1.44 × 10−2 —
0.1 1/16 4.62 × 10−3 1.64
0.05 1/32 1.10 × 10−3 2.07
0.025 1/64 2.05 × 10−4 2.42
0.0125 1/128 4.03 × 10−5 2.35
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FIG. 7. Interface surfactant concentration φ� on a moving circle at time t = 0 (right) and t = 1 (left). The
grid spacing is h = 1/128 with ε = 0.0125.

A. Thermocapillary migration of a clean droplet in a microchannel under Poiseuille flow

We first investigate how the thermal convection affects the thermocapillary migration of a clean
droplet in the microchannel under a fully developed Poiseuille flow. In Fig. 8 we show the effects
of thermal Péclet number PeT to the migration velocity. As can be observed all the droplets under
the nonisothermal condition are migrating faster than the droplet under the isothermal condition.
This is due to the thermal-induced Marangoni force that drags the droplet moving toward the hotter
region. Moreover, as we increase PeT , the terminal droplet migration velocity decreases. This is due
to the fact that the corresponding isothermal contours (see Fig. 9) become more densely distributed,
which gives rise to smaller temperature gradients along the droplet interface and therefore a smaller
thermal-induced Marangoni force.

B. Surfactant-covered droplet under Poiseuille flow

We next investigate the nonlinear coupling effects of the thermocapillarity and insoluble
surfactants.

1. Effects of the initial surfactant concentration φ0
�

We first test the effects of the initial interface surfactant concentration φ0
� on the droplet migration

velocity. Two cases, one without the nonlinear coupling term (Ma�2 = 0) and the other one with
it (Ma�2 = 0.1) in the surface tension formula (14), are compared. As can be observed from
Fig. 10(a), the droplets with clean interface under nonisothermal condition achieves the largest
terminal velocity for both cases. This is followed by the droplets covered by insoluble surfactants
where the terminal velocity decreases as φ0

� increases. The droplet with a clean interface under
an isothermal condition achieves the smallest terminal velocity. Figures 10(c)–10(e) present the
interface surfactant concentration, temperature, and surface tension, respectively, for both cases at
time t = 20. These quantities are plotted along the droplet interface as functions of angle θ on the
2D plane (x, y = 0, z), where θ is measured anticlockwise while treating the droplet center as the

TABLE II. Convergence test for the interface surfactant diffusion on a moving circle at t = 1 in Sec. III C.

ε h Error in L∞ Order

0.2 1/8 1.50 × 10−2 —
0.1 1/16 5.30 × 10−3 1.64
0.05 1/32 2.00 × 10−3 2.07
0.025 1/64 4.45 × 10−4 2.42
0.0125 1/128 4.03 × 10−5 2.35
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FIG. 8. Evolution of migration velocities for droplets under a fully developed Poiseuille flow with non-
isothermal condition of various PeT (black lines) and isothermal condition (solid blue). A linearly increasing
temperature field is initially imposed along the flow direction for the nonisothermal case.

origin with θ = π/2 representing the droplet front and θ = 3π/2 for the droplet rear. For the sake
of simplicity, we show these quantities by subtracting their mean values over the droplet interface.

It can be observed that the thermal-induced Marangoni force accelerates the droplet migration
while the surfactant retards the migration, which indicates that the surfactant-induced Marangoni
force always opposes the thermal-induced Marangoni force. Although the retardation becomes
stronger as we increase φ0

� , the thermal-induced Marangoni force always dominates the surfactant-
induced Marangoni force. In addition, the surfactant introduces stabilization effect for both cases,
where as long as the droplet is covered by surfactant, the migration velocity would reach its (quasi)
steady state faster than that of the droplet with clean interface. This stabilization effect becomes
stronger as we increase φ0

� .
Two other interesting scenarios can be observed while comparing the cases with and without the

nonlinear coupling term. First, the nonlinear coupling term introduces an extra acceleration effect
to the droplet migration at an early stage. As can be observed from Fig. 10(b), when the nonlinear
coupling term appears (Ma�2 = 0.1) in the surface tension, all the velocities of droplets covered
by surfactants are initially larger than that of the droplet with a clean interface. In addition, the
initial acceleration effects become stronger as we increase φ0

� . As discussed under Eqs. (26) and
(27), with a larger φ0

� , the surface tension becomes more sensitive to the temperature, leading to a
stronger thermal-induced Marangoni force that accelerates the droplet at an early stage. On the other
hand, when the nonlinear coupling term disappears (Ma�2 = 0), the velocities of droplets covered by
surfactants are always lower than that of the droplet with clean interface, which is due to the fact that
the extra acceleration effects are missing, and the retardation is induced by the surfactant. Second,
the terminal migration velocities slightly decrease for any Ma�2 > 0 as time passes, whereas for
Ma�2 = 0, the terminal velocities stay steady. This is due to the effects of the nonlinear coupling
term that is discussed under Eq. (27). As the droplet migrates upward with the base flow, the overall

FIG. 9. Isotherms for the droplets migrating under a fully developed Poiseuille flow with nonisothermal
condition of various PeT at time t = 20. The numerical results at the 2D slice (x, y = 0, z) are shown here.
The colored lines stand for the isotherms, and the black solid line stands for the droplet interface. The contour
c = 0.5 is used as an approximation for the droplet interface.
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FIG. 10. Droplets covered by insoluble surfactants migrate under a fully developed Poiseuille flow with a
nonisothermal condition. The results for two cases, one without the nonlinear coupling term (Ma�2 = 0 left)
and the other with it (Ma�2 = 0.1 right), with various initial interface surfactant concentrations φ0

� up to (at)
time t = 20 are presented. (a) Evolution of migration velocities of droplets covered by surfactant (black lines), a
droplet with clean interface under a nonisothermal condition (red solid line), and a droplet with clean interface
under an isothermal condition (blue line), respectively. (b) Zoom in of (a). (c)–(e) The interface surfactant
concentration, temperature, and surface tension along the droplet interface, respectively. These quantities are
plotted as the functions of an angle θ in the 2D plane (x, y = 0, z) at time t = 20. Here the angle θ is obtained
anticlockwise while treating the droplet center as the origin, where θ = π/2 stands for the droplet front, and
θ = 3π/2 stands for the droplet rear. For simplicity, all quantities in (c)–(e) are subtracted by their mean values
over the interface.
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temperature around the droplet keeps increasing. The surfactant-induced Marangoni force becomes
stronger comparing to the thermal-induced Marangoni force, which decreases the migration velocity
gradually. Therefore, we term it the quasi-steady-state velocity for the case with nonlinear coupling
term Ma�2 > 0.

2. Effects of the Péclet number Pe�

We next examine the effects of the interface surfactant Péclet number Pe� . Figure 11 shows the
numerical results for various Pe� at time t = 20 with low surfactant concentration (φ0

� = 0.2) and
high surfactant concentration (φ0

� = 0.8), respectively. It can be observed that the terminal migration
velocity decreases as we increase Pe�; this is because a weaker diffusion (larger Pe�) increases
the variation of the surfactant along the droplet interface. As indicated in the previous section, the
surfactant-induced Marangoni force always opposes the thermal-induced Marangoni force, there-
fore the higher surfactant gradient along the droplet interface would in turn keep the surface tension
more uniform along the droplet interface, and eventually weakens the thermal-induced Marangoni
force and thus reduces the migration velocity. Moreover, comparing the two cases in Fig. 11(b),
we observe that for an initially higher surfactant concentration (φ0

� = 0.8), the variations of the
droplet migration velocities are much larger in the initial stage, and the velocities reach their
quasi-steady states much faster than that of low surfactant concentration (φ0

� = 0.2). In addition, the
surfactant-induced retardations are more obvious for the high surfactant concentration case, where
the terminal migration velocity with Pe� = 8 becomes even lower than that of a clean interface
under isothermal condition. This further reveals that the thermal-induced and surfactant-induced
Marangoni forces are more competitive under high surfactant concentration.

3. Effect of the surfactant Marangoni number Ma�2

Finally, we examine the effect of the nonlinear coupling term Ma�2 T ln(1 − φ� ) that appears in
the surface tension. In Fig. 12 we show the numerical results for various Ma�2 with low (φ0

� = 0.2)
and high (φ0

� = 0.8) surfactant concentrations, respectively, at time t = 20. It can be observed that
for both low- and high-concentration cases, when the coupling term appears in the surface tension
(Ma�2 > 0), the initial migration velocities are always larger than that of the droplet with a clean
interface, and meanwhile the initial acceleration effect is much stronger in high concentration case.
This indicates that this term strengthens the thermal-induced Marangoni force at the early stage,
which becomes larger with a higher surfactant concentration. Moreover, the accelerating period
is much shorter for a higher surfactant concentration. After the acceleration stage, the velocities
decrease for both cases and eventually become lower than that of the droplet with a clean interface.
In addition, for the high-concentration case, the velocity variations are much stronger in the initial
period, where the velocities reach their quasi-steady state much faster than those cases with low
concentration. This indicates that the nonlinear coupling term would also strengthen the surfactant-
induced Marangoni force that opposes the thermal-induced Marangoni force, which becomes larger
as we increase φ0

� . On the other hand, when this term disappears, the migration velocities are always
lower than that of clean interface and reach their steady state after a short period. For both cases,
the terminal migration velocities increase as Ma�2 increases.

Again, the terminal migration velocities slightly decrease for any Ma�2 > 0 as time passes,
whereas for Ma�2 = 0, the terminal velocities stay steady. See the discussion in Sec. IV B 1.
Finally, we show the terminal velocities at time t = 20 vs Pe� and Ma�2 in Figs. 13(a) and 13(b),
respectively. It can be observed that as we increase Ma�2, the terminal velocities also increase for
all the values of φ0

� , which, again, indicates that the surface tension becomes more sensitive to the
temperature as we increase φ0

� . Moreover, the terminal velocities for the high concentration case
are always lower than those for the low concentration case, indicating that the surfactant-induced
Marangoni force becomes stronger as we increase φ0

� , which would in turn lower the effects of the
thermal-induced Marangoni force, and thus reduces the terminal velocities.
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FIG. 11. Droplets covered by insoluble surfactants migrate under a fully developed Poiseuille flow with
a nonisothermal condition. The results for two cases, one with low surfactant concentration (φ0

� = 0.2 left)
and one with high concentration (φ0

� = 0.8 right), with various Pe� up to (at) time t = 20 are presented.
(a) Evolution of migration velocities of droplets covered by surfactant (black lines), a droplet with a clean
interface under a nonisothermal condition (red solid line) and a droplet with a clean interface under an
isothermal condition (blue line). (b) Zoom in of (a). (c)–(e) Interface surfactant concentration, temperature.
and surface tension along the droplet interface, respectively. These quantities are plotted as the functions of an
angle θ in the 2D plane (x, y = 0, z) at time t = 20. The angle θ is obtained anticlockwise while treating the
droplet center as the origin, where θ = π/2 stands for the droplet front, and θ = 3π/2 stands for the droplet
rear. For simplicity, all quantities in (c–e) are subtracted by their mean values over the interface.
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FIG. 12. Droplets covered by insoluble surfactants migrate under a fully developed Poiseuille flow with a
nonisothermal condition. The results for two cases, one with low surfactant concentration (φ0

� = 0.2 left) and
one with high concentration (φ0

� = 0.8 right), with various Ma�2 at time t = 20 are presented. (a) Evolution
of migration velocities of a droplets with a clean interface under nonisothermal condition (red solid line) and
droplets covered by surfactant (black lines), respectively. (b) Zoom in of (a).

V. CONCLUSION

In this study we present a three-dimensional numerical study for the nonlinear coupling effects
of the thermocapillarity and insoluble surfactants on droplet migration in a square microchannel
under a fully developed Poiseuille flow. A thermodynamically consistent diffuse-domain model
is developed for simulating the two-phase flows with the coupling of thermocapillary effects and
soluble and insoluble surfactants. As the temperature and surfactants are introduced to the internal
energy, entropy, and free energy for the two-phase flows, the model recovers the classical Langmuir
equation of state for the surface tension, introducing a nonlinear coupling term of surfactant concen-
tration and temperature, which allows us to investigate the case with high surfactant concentration.

The model is based on a diffuse interface framework, which can capture the evolution of the
fluid-fluid interface and surfactant concentration easily and accurately. Three numerical tests are
carried out to validate our model and the numerical methods. In the first numerical test, we simulate

FIG. 13. Terminal velocities at time t = 20 for various initial surfactant concentration φ0
� vs (a) the

interface surfactant Péclet number Pe� and (b) the surfactant Marangoni number Ma�2 of the nonlinear
coupling term.
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the thermocapillary migration in the microchannel where the droplet migration is induced only
by the temperature gradient. The numerical results show that our phase-field model for two phase
flows converges to the sharp-interface model asymptotically. In the second test, we simulate the
motion of a droplet with clean interface in a square microchannel under a fully developed Poiseuille
flow, where the isothermal condition is considered. The result shows that the evolution of the droplet
deformation agrees well with those from several existing numerical methods, including BEM, LBM,
and FTM. In the last test, we consider the interface surfactant diffusion on a stationary and a moving
circle, respectively, which validates the diffuse-domain representation for the interface surfactant
equation. Comparing to the analytical solution on the sharp interface, we show that our diffuse-
domain representation converges to the sharp-interface model, achieving a second-order accuracy
with respect to the diffuse interface thickness ε.

Finally, we numerically investigate the nonlinear coupling effects of thermocapillarity and insol-
uble surfactants on droplet migration in a square microchannel under a fully developed Poiseuille
flow. We find that the surfactant-induced Marangoni force always opposes the thermal-induced
Marangoni force, where the surfactant-covered droplet always migrates slower than that without
surfactant. The retardation to the migration velocity is stronger as we increase the initial surfactant
concentration φ0

� . In addition, the surfactant has a stabilization effect subsequently, where as long
as the droplet is covered by surfactant, the migration velocity would reach its (quasi) steady state
faster than that of the droplet with a clean interface. The stabilization effect also becomes stronger
as we increase φ0

� .
Moreover, we find that the appearance of the nonlinear coupling term Ma�2T log(1 − φ� ) in

the surface tension introduces extra effects to the droplet migration. First, it introduces an extra
acceleration effect to the droplet migration at early stage. As long as the nonlinear coupling term
appears (Ma�2 > 0), the initial velocity of a surfactant-covered droplet is larger than that without a
surfactant. However, when the nonlinear coupling term disappears (Ma�2 = 0), the initial velocity
of a surfactant-covered droplet is always smaller than that with clean interface. Second, with the
appearance of this term (Ma�2 > 0), the terminal migration velocity of the surfactant-covered
droplet decreases gradually as time passes, leading to a a quasi-steady state, whereas without
this term (Ma�2 = 0) the terminal velocity of a surfactant-covered droplet stays steady. This is
due to the fact that as the droplet migrates upward with the base flow, the overall temperature
around the droplet increases. The extra surfactant-induced Marangoni force is introduced by this
nonlinear coupling term, which becomes stronger as temperature increases and thus weakens the
thermal-induced Marangoni force and decreases the migration velocity gradually.

In future work, we intend to explore the effect of solubility of the surfactant by considering
the soluble surfactants. We also plan to investigate the convergence for our diffuse-domain model
through the asymptotic analysis and more numerical simulations.
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APPENDIX A: MODEL DERIVATIONS

Here we show the derivations of our model equations, where we use a phase-field model for
simulating the two-phase flows, and a diffuse domain model for the insoluble surfactants on the
fluid-fluid interface. The model derivations are done by following a thermodynamically consistent
framework that ensures the conservation laws of the system.

1. Mass conservation for the surfactants of sharp-interface model

We start by considering the sharp-interface model for insoluble surfactants. Consider a domain
� ⊂ R3 with a fluid-fluid interface �(t ), where the interior of the interface, �1(t ) ⊂ �, is of fluid
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1, the exterior, �2(t ) ⊂ �, is of fluid 2, and ∂� is the solid boundary. As derived by [74], the mass
conservation of interface surfactants for a sharp-interface model yields

∂tφ� + v · ∇φ� + φ�∇� · v = −∇� · qφ�
on �(t ), (A1)

where φ� is the interface surfactant concentrations on �(t ), v is the velocity field, ∇� = ∇ −
n� (n� · ∇) is the surface gradient operator, and n� is the external unit normal of � pointing from
fluid 1 to fluid 2, and qφ�

is the corresponding molecular flux.

2. Phase-field method for two-phase flows

For simulating the two-phase incompressible fluid flows, we apply the phase-field method by
treating the two fluids as one mixture with variable properties. The fluid-fluid interface �(t ) is then
extended into an interfacial region with finite thickness, and a phase variable c is defined over
the entire domain � to characterize the two fluids, which takes a different constant for each fluid
component and changes continuously and rapidly across the interfacial region. Here we employ the
volume fraction c of fluid 1 as the phase variable and define the following variable density for the
mixture:

ρ(c) = ρ1c + ρ2(1 − c), (A2)

where ρi is constant density for the ith incompressible fluid component. The variable density ρ then
yields the mass conservation:

∂tρ + ∇ · (vρ) = 0, (A3)

where v stands for the mass averaged velocity. Here we refer to [46] for the detailed definition of v

and the corresponding derivations. Moreover, we define the following function to characterize the
fluid-fluid interface �(t ):

δ(c,∇c) = η

(
h(c) + ε

|∇c|2
2

)
= η

(
c2(1 − c)2

4ε
+ ε

|∇c|2
2

)
, (A4)

where δ(c · ∇c) is the Cahn-Hilliard-type free energy density for �(t ), h(c) the double-well free
energy, and ε a small parameter characterizing the thickness of the interfacial region. In addition,
η = 6

√
2 is the ratio parameter that relates the surface tension of the sharp-interface model to that

of the phase-field model [46,64]. For simplicity, we use the shorter notations ρ and δ in the present
paper.

Following the diffuse-domain formulations in [61], the original sharp-interface interface surfac-
tant Eq. (A1) is then extended from �(t ) to � by coupling with δ, such that

D(δφ� )

Dt
= −δφ�∇ · v − ∇ · (δqφ�

). (A5)

3. Internal energy, entropy, and free energy

As the thermocapillary effects and insoluble surfactants are considered simultaneously, we expect
that the free energy of the fluid-fluid interface depends on both the temperature field T and interface
surfactant concentration φ� . Following the framework by [46], the internal energy, entropy, and free
energy densities for the two-phase incompressible fluid can be given by

û(s, ρ, c,∇c, φ� ) = u(s, ρ) + δγu(φ� ), (A6)

ŝ(T, ρ, c,∇c, φ� ) = s(T, ρ) + δγs(φ� ), (A7)

f̂ (T, ρ, c,∇c, φ� ) = f (T, ρ) + δγ f (φ�, T ). (A8)
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Here u, s, and f are the classical parts [46] that can be defined as

u = ρchc(T − T0), (A9)

s = ρchc ln

(
T

T0

)
, (A10)

f = ρchc(T − T0) − ρchcT ln

(
T

T0

)
, (A11)

where u0 is the reference internal energy corresponding to reference temperature T0, and chc is the
heat capacity. Here we assume that T > T0, γu, γs, and γ f are the corresponding energy, entropy,
and free energy for the fluid-fluid interface. Moreover, we denote the following thermodynamic
relations:

f̂ = û − T ŝ,

f = u − T s,

γ f (φ�, T ) = γu(φ� ) − T γs(φ� ). (A12)

In particular, we specify these terms to recover the classical Langmuir equation of state:

γu(φ� ) = σ̃0|T =T0 + μγ φ� − T0
∂σ̃0

∂T
= σ0 + μγ φ� − T0

∂σ̃0

∂T
, (A13)

γs(φ� ) = −∂σ̃0

∂T
− R

[
φ� ln

φ�

φ∞
�

+ (φ∞
� − φ� ) ln

(
1 − φ�

φ∞
�

)]
, (A14)

γ f (φ�, T ) = γu(φ� ) − T γs(φ� )

= σ0 + μγ φ� + ∂σ̃0

∂T
(T − T0) + RT

[
φ� ln

φ�

φ∞
�

+ (φ∞
� − φ� ) ln

(
1 − φ�

φ∞
�

)]
, (A15)

where σ̃0 is the surface tension of the surfactant-free interface, σ0 = σ̃0|T =T0 is the reference
surface tension corresponding to T0, ∂σ̃0/∂T (< 0) is a constant representing for the derivative
of the surfactant-free surface tension σ0 with respect to temperature, μγ is the standard chemical
potentials, φ∞

� the surfactant concentrations at saturation on the fluid-fluid interface, and R is the
gas constant. Note that the above definitions are obtained by following the derivation framework
that was introduced in [75], where the surface tension and surface chemical potential were obtained
by using the surface free energy (A15). The surface tension σ f (φ�, T ) is then obtained through the
Legendre transform of γ f (φ�, T ), such that

σ f (φ�, T ) = γ f (φ�, T ) − ∂γ f (φ�, T )

∂φ�

φ� = σ0 + ∂σ̃0

∂T
(T − T0) + RT φ∞

� ln

(
1 − φ�

φ∞
�

)
. (A16)

Here the surface tension depends on both the temperature field and interface surfactant concentration
in a nonlinear coupling way, which not only consists of a classical linear part for thermocapillary
effects, but also recovers the Langmuir equation of state for the surface tension under nonisothermal
condition. Moreover, our derivation for (A16) recovers the result obtained by [76], which also con-
siders the nonlinear coupling effects of thermocapillarity and surfactants to the droplet migration.
In their work the temperature-dependent part of the surface tension, ∂σ̃0

∂T (T − T0), is derived by
expanding the surfactant-free surface tension σ0 at the reference temperature T0.

4. Conservation laws

We next define the physical quantities and the corresponding conservation laws for the two-phase
fluid flows. Suppose the two-fluid fills in a domain �, we then take an arbitrary material volume
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V (t ) ∈ � that moves with the mixture, and define the total mass M, volume of single fluid C,
momentum P, energy E , and entropy S as follows:

M =
∫

V (t )
ρ dV, (A17)

C =
∫

V (t )
c dV, (A18)

P =
∫

V (t )
ρv dV, (A19)

E =
∫

V (t )

1

2
ρ|v|2 + û dV, (A20)

S =
∫

V (t )
ŝ dV, (A21)

where ρ is defined in Eq. (A2), v the mass averaged velocity of the mixture [56,64], and û and ŝ are
energy and entropy densities defined in Eqs. (A6) and (A7). The corresponding conservation laws
can be given by

dM

dt
= 0, (A22)

dC

dt
=

∫
∂V (t )

−qC · n dA, (A23)

dP
dt

=
∫

∂V (t )
m · n dA, (A24)

dE

dt
=

∫
∂V (t )

v · m · n − qE · n − qnc
E · n dA, (A25)

dS

dt
=

∫
∂V (t )

−qE

T
· n − qnc

S · n dA +
∫

V (t )
Sgen dV (Sgen � 0). (A26)

Here Eq. (A22) represents the mass conservation of the mixture within V (t ), and Eq. (A23) stands
for the volume conservation of a single fluid (here for fluid 1), where qC is the volume flux of fluid
1 through the boundary ∂V (t ) with the external unit normal n of the volume V (t ). The momentum
conservation (A24) states that the rate of change in total momentum equals the surface forces m
acting on the volume boundary (here we ignore the body force). The energy conservation (A25)
states that the change in total energy equals the rate of work done by the forces m on the boundary
plus the energy flux (including the classical qE and nonclassical qnc

E internal energy flux) through
the boundary ∂V (t ). The entropy conservation Eq. (A26) states that the rate of change of entropy in
V (t ) during the process equals the net entropy transfer through the boundary (including the classical
qE/T and nonclassical qnc

S entropy flux) plus the local entropy generation Sgen. Based on the second
law of thermodynamics, the local entropy generation is nonnegative (Sgen � 0) for a dissipative
system (or, say, for an irreversible process), which is the key to the thermodynamically consistent
framework [46] that we used for the derivations.

5. Entropy generation

Substituting the definitions (A17)–(A21) into the conservation laws (A22)–(A26), and using the
thermodynamic relations, we obtain the entropy generation of the system∫

V (t )
Sgen dV =

∫
V (t )

∇ ·
[

− 1

T

(
qnc

E − f nc
E

) + qnc
S + ηεσs(φ� )

Dc

Dt
∇c

]
+ (

qnc
E − f nc

E

) · ∇ 1

T

+ 1

T
τ : ∇v − 1

T
∇μc · qC + ∇ 1

T
· qE − δ

T

∂2γ f

∂φ2
�

∇φ� · qφ�
dV. (A27)
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Here we refer to Appendixes B and C for the detailed derivations. To ensure Sgen � 0, we specify
the unknown terms, including qC , qE , qnc

E , qnc
S , m, τ, and qφ�

(see Appendix C 2), such that we show
the nonnegativity of the entropy generation of our system equations:∫

V (t )
Sgen dV =

∫
V (t )

k
|∇T |2
|T |2 + 1

T
mc|∇μc|2 + 1

T
τ : ∇v + 1

T
δ
∂2γ f

∂φ2
�

mφ�
|∇φ�|2 dV � 0. (A28)

6. Model equations

We next substitute all these terms into the conservation laws (A22)–(A25) to obtain the model
equations. Together with the interface surfactant (A5), the diffuse interface model for the two-phase
flows with thermocapillary effects and insoluble surfactants is given by

ρvt + ρv · ∇v = ∇ · m, (A29)

∇ · v = ∇ · (αmc∇μc), (A30)

ct + ∇ · (vc) = ∇ · (mc∇μc), (A31)

(δφ� )t + ∇ · (vδφ� ) = ∇ · (mφ�
δ∇φ� ), (A32)

[ρchc(T − T0)]t + ∇ · [vρchc(T − T0)] = ∇ · [k∇(T − T0)] + hs, (A33)

where

m = σ f (φ�, T )[δI − ηε(∇c ⊗ ∇c)] − p̃I + τ − pI, (A34)

σ f (φ�, T ) = σ0 + ∂σ̃ /∂T (T − T0) + RT φ∞
� ln(1 − φ�/φ∞

� ), (A35)

τ = μ(∇v + ∇vT ) − 2μ(∇ · v)I/3, (A36)

μc = ησ0μ0 + αp, (A37)

μ0 = h′(c) − ε�c, (A38)

mc =
√

c2(1 − c)2 + ε. (A39)

Here v is the velocity for the mixture, m the general stress tensor, σ f (φ�, T ) the surface tension, φ�

the interface surfactant concentration, δ(c · ∇c) the Cahn-Hilliard type free energy density for the
fluid-fluid interface, and ε a small parameter characterizing the thickness of the interfacial region,
η = 6

√
2 the ratio parameter that relates the surface tension of the sharp-interface model to that of

the phase-field model, p the pressure, α = (ρ2 − ρ1)/ρ2, mc and μc are the degenerate mobility and
chemical potential for the phase field, respectively, and the scalars p̃ and hs are given by Eqs. (C9)
and (C27), respectively. Moreover, the variable properties for the two-phase flows are defined as

� = �1c + �2(1 − c), (A40)

where � stands for the variable density ρ, viscosity μ, heat capacity chc, and heat conductivity
k, respectively, and �i is the corresponding constant properties, ρi, μi, chci, ki, of the ith fluid. In
addition, the following BCs can be imposed:

v = vb, T = Tb, n · ∇c = n · ∇μc = n · ∇φ� = 0 on ∂�. (A41)

Again, the system equations (A29)–(A33) satisfy the nonnegativity of the entropy generation Sgen �
0 (A28).

024001-23



ZHENLIN GUO

APPENDIX B: CONSERVATION LAWS

1. Mass and volume conservation

Substituting Eq. (A17) into Eq. (A22), and using the definition of variable density ρ (A2), we
obtain the mass conservation∫

V (t )

Dρ

Dt
dV =

∫
V (t )

dρ

dc

Dc

Dt
dV =

∫
V (t )

(ρ1 − ρ2)
Dc

Dt
dV =

∫
V (t )

−ρ∇ · v dV. (B1)

Substituting Eq. (A18) into Eq. (A23), we obtain the volume conservation∫
V (t )

Dc

Dt
dV =

∫
V (t )

−c∇ · v − ∇ · qC dV. (B2)

Substituting Eq. (B1) into Eq. (B2), we obtain∫
V (t )

∇ · v dV =
∫

V (t )
−α∇ · qC dV db9 (B3)

or equivalently ∫
V (t )

Dc

Dt
dV =

∫
V (t )

(
−c + 1

α

)
∇ · v dV, (B4)

where α = (ρ2 − ρ1)/ρ2. Note that the velocity v for the binary incompressible fluid is not
incompressible due to the variable density along the interfacial region, which is termed as the
quasi-incompressibility [56]. This formulation is obtained by following the mass conservation of
both the mixture and the single fluid simultaneously.

2. Momentum and energy conservation

Substituting Eq. (A19) into Eq. (A24), we obtain the momentum conservation∫
V (t )

ρ
Dv

Dt
dV =

∫
V (t )

∇ · m dV. (B5)

Substituting Eq. (A20) into Eq. (A25), we obtain the energy conservation∫
V (t )

ρ
Dv

Dt
· v + Dû

Dt
+ û∇ · v dV =

∫
V (t )

∇ · (m · v) − ∇ · qE − ∇ · qnc
E dV. (B6)

Multiplying Eq. (B5) by v, and substituting into Eq. (B6), we obtain∫
V (t )

Dû

Dt
+ û∇ · v dV =

∫
V (t )

∇ · (m · v) − ∇ · m · v − ∇ · qE − ∇ · qnc
E dV. (B7)

With the help of the identities (A6) and

∇ · (m · v) = ∇ · m · v + m : ∇v, ∇ · v = I:∇v, (B8)

Eq. (B7) can be simplified as∫
V (t )

Du

Dt
+ D

Dt
[δγu(φ� )] dV =

∫
V (t )

(m − ûI):∇v − ∇ · (
qE + qnc

E

)
dV. (B9)

Further calculation gives∫
V (t )

D

Dt
[δγu(φ� )] dV =

∫
V (t )

γu(φ� )
Dδ

Dt
+ δγ ′

u(φ� )
Dφ�

Dt
dV

=
∫

V (t )
σu(φ� )

Dδ

Dt
+ γ ′

u(φ� )
D(δφ� )

Dt
dV, (B10)
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∫
V (t )

σu(φ� )
Dδ

Dt
=

∫
V (t )

η(σu(φ� )μ0 − ε∇σu(φ� ) · ∇c)
Dc

Dt

+ ∇ ·
[
ηεσu(φ� )

Dc

Dt
∇c

]
− ηεσu(φ� )(∇c ⊗ ∇c):∇v dV, (B11)

σu(φ� ) =γu(φ� ) − γ ′
u(φ� )φ�, (B12)

μ0 =h′(c) − ε�c. (B13)

Substituting Eqs. (B10)–(B13) into Eq. (B9), and introducing a constant surface tension σ0, we
rewrite the energy conservation as∫

V (t )

Du

Dt
dV =

∫
V (t )

[
m + ηεσu(φ� )(∇c ⊗ ∇c) − ûI

]
:∇v − ∇ ·

[
qE + qnc

E + ηεσu(φ� )
Dc

Dt
∇c

]

− (λu + ησ0μ0)
Dc

Dt
− γ ′

u(φ� )
D(δφ� )

Dt
dV, (B14)

where

λu = η[σu(φ� ) − σ0]μ0 − ηε∇σu(φ� ) · ∇c. (B15)

3. Entropy conservation

Substituting Eq. (A21) into Eq. (A26), and using the definition of ŝ (A7) and the identity (B8),
we obtain the entropy conservation∫

V (t )

Ds

Dt
+ D

Dt
(δγs(φ� )) dV =

∫
V (t )

−∇ ·
(

qE

T

)
− ∇ · qnc

S − ŝI:∇v + Sgen dV. (B16)

We then follow the steps of Eqs. (B10)–(B13) to rewrite the entropy conservation as∫
V (t )

Ds

Dt
dV =

∫
V (t )

[ηεσs(φ� )(∇c ⊗ ∇c) − ŝI]:∇v − ∇ ·
[

qE

T
+ qnc

S + ηεσs(φ� )
Dc

Dt
∇c

]

− λs
Dc

Dt
− γ ′

s (φ� )
D(δφ� )

Dt
+ Sgen dV, (B17)

where we denote

σs(φ� ) = γs(φ� ) − γ ′
s (φ� )φ�, (B18)

λs = ησs(φ� )μ0 − ηε∇σs(φ� ) · ∇c. (B19)

APPENDIX C: ENTROPY GENERATION

1. Derivation of the entropy generation

Here we show the derivations for the entropy generation (A27). By applying the thermodynamic
relation Du

Dt = T Ds
Dt , we rewrite Eq. (B14) to obtain∫

V (t )

Ds

Dt
dV =

∫
V (t )

1

T
[m + ηεσu(φ� )(∇c ⊗ ∇c) − ûI]:∇v − 1

T
∇ · (

qE + qnc
E

)

− 1

T
(λu + ησ0μ0)

Dc

Dt
− 1

T
∇ ·

[
ηεσu(φ� )

Dc

Dt
∇c

]
− 1

T
γ ′

u(φ� )
D(δφ� )

Dt
dV, (C1)
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where both sides are divided by T . Substituting Eq. (B17) into the above, we obtain∫
V (t )

Sgen dV =
∫

V (t )

1

T
{m + ηε[σu(φ� ) − T σs(φ� )](∇c ⊗ ∇c) − (û − T ŝ)I}:∇v

− 1

T
∇ ·

[
qE + qnc

E + ηεσu(φ� )
Dc

Dt
∇c

]
+ ∇ ·

[
qE

T
+ qnc

S + ηεσs(φ� )
Dc

Dt
∇c

]

− 1

T
(λu − T λs + ησ0μ0)

Dc

Dt
− 1

T
[γ ′

u(φ� ) − T γ ′
s (φ� )]

D(δφ� )

Dt
dV. (C2)

We now define the surface tension as the Legendre transform of γ f (φ�, T )

σ f (φ�, T ) = σu(φ� ) − T σs(φ� )

= [γu(φ� ) − T γs(φ� )] − [γ ′
u(φ� ) − T γ ′

s (φ� )]φ�

= γ f (φ�, T ) − ∂γ f (φ�, T )

∂φ�

φ�. (C3)

With the help of the definitions (A12), (B4), (B8), and (C3) and the following:

∂γ f (φ�, T )

∂φ�

= γ ′
u(φ� ) − T γ ′

s (φ� ), (C4)

λ f = λu − T λs = η[σ f (φ�, T ) − σ0]μ0 − ηε
∂σ f

∂φ�

∇φ� · ∇c, (C5)

û − T ŝ = δγ f (φ�, T ) + f (T, ρ), (C6)

we rewrite Eq. (C2) as∫
V (t )

Sgen dV =
∫

V (t )

1

T
[m + ηεσ f (φ� )(∇c ⊗ ∇c) − γ f (φ�, T )δI − f (T, ρ)I]:∇v

− 1

T
∇ ·

[
qE + qnc

E + ηεσu(φ� )
Dc

Dt
∇c

]
+ ∇ ·

[
qE

T
+ qnc

S + ηεσs(φ� )
Dc

Dt
∇c

]

− 1

T
(λ f + ησ0μ0)

Dc

Dt
− 1

T

∂γ f

∂φ�

D(δφ� )

Dt
dV. (C7)

Substituting Eqs. (A5) and (B3) into (C7), we obtain∫
V (t )

Sgen dV

=
∫

V (t )

1

T
[m + ηεσ f (φ�, T )(∇c ⊗ ∇c) − σ f (φ�, T )δI + p̃I]∇v − δ

T

∂2γ f

∂φ2
�

∇φ� · qφ�

+ ∇ ·
{

− qnc
E

T
+ qnc

S − ηε

[
1

T
σu(φ� ) − σs(φ� )

]
Dc

Dt
∇c + 1

T
ησ0μ0qC + δ

T

∂γ f

∂φ�

qφ�

}

+
[

qE + qnc
E + ηεσu(φ� )

Dc

Dt
∇c − ησ0μ0qC − δ

∂γ f

∂φ�

qφ�

]
· ∇ 1

T
− 1

T
∇(ησ0μ0) · qC dV,

(C8)

where we define

p̃ = p̃2 +
[(

c − 1

α

)
λ f + ησ0μ0c

]
= − f (T, ρ) + δ

∂γ f

∂φ�

φ�

[(
c − 1

α

)
λ f + ησ0μ0c

]
, (C9)

p̃2 = − f (T, ρ) + δ
∂γ f

∂φ�

φ�. (C10)
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For the first term of (C8), we denote the general stress tensor by m = m0 + τ, in which τ is the
deviatoric stress tensor with zero trace, and m0 is the unknown part to be defined later. Moreover,
we define Dv = ∇v − (∇ · v)I/3 as the deviatoric part of ∇v and substitute into the last term of
Eq. (C8) to obtain

1

T
[m + ηεσ f (φ�, T )(∇c ⊗ ∇c) − σ f (φ�, T )δI + p̃I]:∇v

= 1

T
[m0 + ηεσ f (φ�, T )(∇c ⊗ ∇c) − σ f (φ�, T )δI + p̃I]:Dv + 1

T
τ:∇v

− 1

3T
[m0 + ηεσ f (φ�, T )(∇c ⊗ ∇c) − σ f (φ�, T )δI + p̃I]:I∇ · v

= 1

T
[m0 + ηεσ f (φ�, T )(∇c ⊗ ∇c) − σ f (φ�, T )δI + p̃I]:Dv + 1

T
τ:∇v

− 1

3T
[tr m0 + ηεσ f (φ�, T )|∇c|2 − 3σ f (φ�, T )δ + 3p̃]∇ · v. (C11)

Defining the pressure p by

−p = 1
3 tr m = − 1

3 [tr m0 + ηεσ f (φ�, T )|∇c|2 − 3σ f (φ�, T )δ + 3p̃], (C12)

such that

−pI = m0 + ηεσ f (φ�, T )(∇c ⊗ ∇c) − σ f (φ�, T )δI + p̃I, (C13)

m = −pI − ηεσ f (φ�, T )(∇c ⊗ ∇c) + σ f (φ�, T )δI − p̃I + τ. (C14)

By applying the identity (B3), Eq. (C11) can be further rewritten as

1

T
[m + ηεσ f (φ�, T )(∇c ⊗ ∇c) − σ f (φ�, T )δI + p̃I]:∇v

= 1

T
[m0 + τ + ηεσ f (φ�, T )(∇c ⊗ ∇c) − σ f (φ�, T )δI + p̃I]:∇v

= 1

T
pI : Dv + 1

T
τ:∇v − 1

T
p∇ · v

= 1

T
τ:∇v + 1

T
αp∇ · qC

= 1

T
τ:∇v + ∇ ·

(
1

T
αpqC

)
− 1

T
qC · ∇(αp) − αpqC · ∇ 1

T
. (C15)

Substituting Eq. (C15) into Eq. (C8), we obtain the entropy generation (A27)∫
V (t )

Sgen dV =
∫

V (t )
∇ ·

[
− 1

T

(
qnc

E − f nc
E

) + qnc
S + ηεσs(φ� )

Dc

Dt
∇c

]
+ (

qnc
E − f nc

E

) · ∇ 1

T

+ 1

T
τ : ∇v − 1

T
∇μc · qC + ∇ 1

T
· qE − δ

T

∂2γ f

∂φ2
�

∇φ� · P · qφ�
dV, (C16)

where we define

f nc
E = −ηεσu(φ� )

Dc

Dt
∇c + μcqC + δ

∂γ f

∂φ�

P · qφ�
, (C17)

μc = ησ0μ0 + αp. (C18)
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2. Specification of the fluxes

To ensure Sgen � 0 in Eq. (C16), we specify all the unknowns, qC , qE , qnc
E , and qnc

S as the
following:

qC = −mc∇μc, (C19)

qE = −k∇(T − T0), (C20)

qnc
E = −ηεσu(φ� )

Dc

Dt
∇c + μcqC + ∂γ f

∂φ�

δqφ�
, (C21)

qnc
S = −ηεσs(φ� )

Dc

Dt
∇c, (C22)

m = −pI − ηεσ f (φ�, T )(∇c ⊗ ∇c) + σ f (φ�, T )δI − p̃I + τ, (C23)

τ = μ(∇v + ∇vT ) − 2

3
μ(∇ · v)I, (C24)

qφ�
= −mφ�

∇φ�, (C25)

where mc is the degenerate mobility for the phase field function, μC is the chemical potential, p̃ is
given in (C9), and k is the heat conduction coefficient. The surfactant flux qφ�

is obtained by using
the following properties obtained from Eq. (A15):

∂γ f (φ�, T )

∂φ�

= μλ + RT ln
φ�

φ∞
� − φ�

,
∂2γ f (φ�, T )

∂φ2
�

= RT
φ∞

�

φ� (φ∞
� − φ� )

> 0, (C26)

where mφ�
is the diffusion coefficient. This gives Fick’s law for diffusion flux.

Substituting the above unknown terms into Eq. (C16), we obtain the nonnegativity of the entropy
generation (A28). In addition, substituting the above unknown terms into Eq. (A25) leads to the
energy equation (A33), where the term hs is defined as

hs = [m + ηεσu(φ� )(∇c ⊗ ∇c) − uncI]:∇v − ∇ ·
[

qnc
E + ηεσu(φ� )

Dc

Dt
∇c

]

− (λu + ησ0μ0)
Dc

Dt
− γ ′

u(φ� )
D(δφ� )

Dt
. (C27)

APPENDIX D: SPECIFICATION FOR UNKNOWN TERMS

Nondimensional fluxes

The terms that appeared in the nondimensional system equations (8)–(12) are given as

p̃ = − 1

Ec
f (T, ρ) + 1

We
δ
∂γ f

∂φ�

φ� + η

We
μ0c +

(
c − 1

α

)
λ f , (D1)

λ f = η

We
(σ f − 1)μ0 − ηε

We

∂σ f

∂φ�

∇φ� · ∇c, (D2)

hs =
[

m + 1

We
ηεσu(φ� )(∇c ⊗ ∇c) − uncI

]
:∇v −

(
λu + η

We
μ0

)
Dc

Dt

+∇ ·
(

1

Pec
mcμc∇μc + 1

M�Pe�

δ
∂γ f

∂φ�

P · ∇φ�

)
− 1

M�

γ ′
u(φ� )

D(δφ� )

Dt
, (D3)

λu = η

We
[σu(φ� ) − σ0]μ0 − ηε

We
∇σu(φ� ) · ∇c. (D4)
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