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Impact of nonuniform ambient stratification on thermal plume dynamics
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Thermal plumes arising from localized buoyancy sources are very common in nature
and industrial settings. They have been extensively studied experimentally, theoretically,
and numerically, mostly focusing on entrainment and mixing processes in fully developed
turbulent regimes. Here, we focus on the primary instabilities of laminar plumes and their
transitions as the strength of the buoyancy source (quantified by a Rayleigh number) is
increased. Numerous prior studies in this transitional regime have reported a myriad of
disparate spatiotemporal plume characteristics. We show that this wide variety of behavior
is tied to the various ways an O(2) axisymmetric system can undergo symmetry breaking.
Our equivariant dynamical systems theory analyzing the breaking of O(2) symmetry
accounts for the spatiotemporal characteristics of the plumes we compute solving the
Navier–Stokes–Boussinesq equations. We find that the nature of the ambient stratification
plays an important role in determining how O(2) symmetry is broken with increasing
Rayleigh number, and this in turn determines the details of the plume spatiotemporal
characteristics.

DOI: 10.1103/PhysRevFluids.8.023903

I. INTRODUCTION

Plumes generated by localized buoyancy sources occur naturally in many geophysical settings
(e.g., hydrothermal plumes, plumes under ice sheets, firewhirls), as well as in industrial processes.
Most of the studies on thermal plumes have focused on the entrainment and mixing properties of
fully turbulent plumes [see, for example, the review articles 1–3]. For the most part, interpretation of
plume observations and measurements has focused on using the plume model of Morton, Taylor, and
Turner [4] and various extensions, which continue to be extensively and productively used for turbu-
lent stratified plume studies [e.g., Ref. 5]. There have been comparatively few studies addressing the
transition from steady to unsteady plume regimes, and a general understanding of these processes
is still lacking. Such models are not designed to address transition processes, they are designed
to model the mean features of fully turbulent plumes. It is a one-dimensional self-similar model
of a plume, in the limit of zero viscosity and zero diffusivity, ensemble averaged in time and the
horizontal. It models the “mean” plume while the three-dimensional unsteady (turbulent) fluctations
are lumped into an entrainment parameter (whose value is determined empirically on a case-by-case
basis). There are many aspects of transitional plumes (further detailed below) which are not acces-
sible in such models, such as time-periodic puffing (the model is steady), various three-dimensional
unsteady fluctuations (their contributions are lumped into the single entrainment parameter) and
the spontaneous generation of swirl (the model assumes an axisymmetric mean velocity with zero
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swirl). The question of how is swirl spontaneously generated in plumes is particularly pertinent in
firewhirls. Even in well-controlled axisymmetric experimental setups, intense swirl is observed in
plumes under certain conditions [6]. In natural settings, asymmetries are always present and the
swirl is viewed as being due to extraneously imposed symmetry breaking [7], while other studies
impose swirl directly at the plume source [8–10] or impose a background rotation [11,12], but
there remain many open questions regarding swirling plumes. The review article of Williams [13]
concludes that significant unknowns remain about firewhirls, and that although some governing
parameters are known, for some types of firewhirls these are not very important and the dominant
parameters remain to be discovered. It is our premise that understanding the spontaneous generation
of swirl in plumes is an important missing ingredient in a more complete physical picture of buoyant
plumes, and in this paper we highlight the role of ambient stratification on this. Most studies of
stratified plumes are idealized with a linear ambient stratification, but many natural settings have
nonlinear stratification, for example, the pycnocline in the ocean, and there are some studies that
take this into account when studying buoyant plumes from a localized source [14].

There continues to be much interest in the transition processes from a steady laminar plume
to a turbulent plume. Some relevant questions to be explored are: What are the destabilizing
mechanisms? What is the role of symmetries? What are the mechanisms responsible for the
generation of swirl? Experimental studies that focus on transition report that the first stages of
the transition involve instabilities that introduce unsteadiness and break the circular symmetry of
the plume as certain control parameters are varied, but the picture is not coherent with several
different scenarios being reported depending on the details of the setup. This is not surprising
as the breaking of circular symmetry typically results in a myriad of different dynamical states
[15]. If the primary instability of the plume results in unsteadiness while retaining the circular
symmetry, then a so-called puffing plume results. These have been observed in some experiments
and are commonly found when simulations are restricted to being axisymmetric [16–21]. Other
studies (both experimental and numerical) report on nonaxisymmetric primary instabilities leading
to so-called wobbling, meandering or buckling plumes [22–25] or swirling plumes [26–29]. The
wobbling and swirling plumes break one or other component of the circular symmetry. The
wobbling (meandering or buckling) plume has the invariance to arbitrary rotations about its axis
broken while retaining the reflection about a meridional plane. However, the swirling plume has
broken the meridional reflection, and the rotation component of the circular symmetry results in
the spontaneous generation of swirl. Subsequent instabilities lead to complex interactions, and it is
unclear if these have been fully reconciled. Part of the problem is that the various dynamic scenarios
associated with the breaking of circular symmetry depend on the parameters of the system. These
parameters include those describing the geometry and boundary conditions of the system, material
properties (viscosities and diffusivities) of the fluid, and buoyancy distributions.

Inspired by the enclosed cylinder experiments of Torrance [27,30,31], where a plume was driven
by a localized hot spot on the bottom endwall and the ambient was either of a uniform temperature
or a stable linear stratification, Lopez and Marques [32] and Marques and Lopez [33] analyzed
the transition processes in thermal plumes in an isothermal ambient and in a stratified ambient,
respectively. In Lopez and Marques [32], the ambient was not stratified and first bifurcation led to
the axisymmetric puffing plume. With increasing relative temperature of the hot spot (quantified
by the Rayleigh number), the plume collides rapidly with the top endwall, leading to complex
three-dimensional flows. However, in Marques and Lopez [33] the whole ambient was linearly
stratified, the first bifurcation was to a rotating wave state, and puffing sets in as a secondary
instability modulating the rotating wave. These two types of ambients differ in which component of
the circular symmetry breaks first. To further explore the influence of the ambient on the plume
dynamics, we consider here a partially stratified ambient, similar to that used by Ansong and
Sutherland [34], but using temperature rather than salt stratification. The study of Ansong and
Sutherland [34] examined properties of axisymmetric waves emanating from a plume impinging
upon a stratified fluid, and their idealized system was motivated by the aim to isolate the dynamics
of the mechanical oscillator effect acting within a convective storm. In this setup, the bottom half
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of the ambient is at a uniform temperature (that of the bottom endwall outside of the hot spot in its
center), and the top half of the ambient is linearly stratified with the temperature at the top being
that of the hot spot. The dynamics of plumes in this mixed ambient includes aspects from both the
isothermal and linearly stratified ambients, which are all tied to the ways that the circular symmetry
is broken.

In the present study, the choice of geometry, parameter regimes and ambient stratification is
such that the dynamics observed when the ambient is homogeneous [32] and when it is linearly
stratified [33], governed by the different ways O(2) symmetry is broken for each case, occur roughly
simultaneously with increasing Rayleigh number in the present setup. The use of equivariant dy-
namical systems theory provides new physical insight in understanding how and why the myriad of
different spatiotemporal behaviors observed by many (some are listed above) in a variety of different
circumstances come about. The dynamical systems theory is agnostic of any physical application,
yet it is able to account for the myriad of plume states and their spatiotemporal characteristics
computed from the full nonlinear Navier–Stokes–Boussinesq equations. An important result from
the present study is that the nature of the ambient has an important impact on how O(2) symmetry is
broken with increasing Rayleigh number, and that in turn has a huge impact on the spatiotemporal
characteristics of the plumes.

II. GOVERNING EQUATIONS

Consider the flow in a circular cylinder of radius R and length L, with no-slip boundary
conditions, filled with a fluid of constant kinematic viscosity ν, thermal diffusivity κ , and coefficient
of thermal expansion α, that is driven by temperature profiles imposed on the cylinder walls. The
bottom endwall has a fixed temperature T ∗

0 , except for a disk of diameter D at its center which is
at a hotter temperature T ∗

1 . The top endwall is kept at the hot disk temperature T ∗
1 . The sidewall is

kept at the temperature T ∗
0 up to a height H and then the sidewall temperature varies linearly with

height between T ∗
0 at H and T ∗

1 at the top, resulting in a stable stratification if not for the hot spot at
the bottom.

The system is nondimensionalized using the diameter of the hot spot D as the length scale, D2/κ

as the timescale, �T ∗ = T ∗
1 − T ∗

0 as the temperature scale, and κ2ρ0/D2 as the pressure scale,
where ρ0 is the fluid density at temperature T ∗

0 . The Boussinesq approximation is implemented,
treating all fluid properties as constant except for a linear variation of density with temperature
in the gravitational buoyancy term. The nondimensional Navier–Stokes–Boussinesq governing
equations are

(∂/∂t + u · ∇)u = −∇p + Pr∇2u + PrRa T ẑ,

(∂/∂t + u · ∇)T = ∇2T, ∇ · u = 0,
(1)

where u = (u, v,w) is the velocity in cylindrical coordinates (r, θ, z) ∈ [0, ar] × [0, 2π ] × [0, az],
the corresponding vorticity vector is ω = ∇ × u = (ξ, η, ζ ), p is the reduced pressure, ẑ = (0, 0, 1)
is the unit vector in the vertical z direction and T = (T ∗ − T ∗

0 )/�T ∗ is the nondimensional
temperature, while T ∗ is the dimensional temperature. The nondimensional parameters are:

Rayleigh number: Ra = αgD3�T ∗/κν,

Prandtl number: Pr = ν/κ,

radial aspect ratio: ar = R/D,

axial aspect ratio: az = L/D,

stratification level: as = H/D,

(2)

where g is the acceleration due to gravity. Often, a Grashof number is used instead of the Rayleigh
number, but these are related by Gr = Ra/Pr. In the present study, the Prandtl number is fixed
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FIG. 1. Schematic of the cylindrical container with a hot spot at the center of the bottom endwall. The
geometric parameters are ar = 2, az = 4, as = 2. Shown are isosurfaces of helicity density for a plume at
Ra = 3 × 106; the isosurface levels are he = ±1.1 × 104.

at Pr = 7, which is the value for water nominally at room temperature. We use a Rayleigh number
based on the hot spot diameter D, as is typically done in natural convection problems due to localized
heating [27], rather than a dimension of the container. Another useful quantity is the helicity density,
he = u · ω, the scalar product of the velocity and vorticity fields.

The boundary conditions for velocity at the cylinder walls are no-slip, u = 0. The temperature is
imposed at the walls as

top z = az : T = 1,

sidewall r = ar : T = Ts(z) =
{

0 z ∈ [0, as],
(z − as)/(az − as) z ∈ [as, az],

bottom z = 0 : T = Tb(r) =
{

1 r ∈ [0, 1/2),
0 r ∈ (1/2, ar].

(3)

Tb(r) is discontinuous at r = 1/2, and Ts has a discontinuous z derivative at z = as. To improve the
spectral convergence of the numerical scheme, and also to mimic real boundary conditions where
there are no discontinuities, we have regularized the temperature profiles at the walls:

Tb(r) = 0.5[1 − tanh cb(r − 0.5)], r ∈ [0, ar], (4)

dTs(z)/dz = 0.5(az − as)−1[1 + tanh cs(z − as)], z ∈ [0, az]. (5)

The parameters cb and cs fix the width of the regularization regions. We have chosen cb = 11.1 and
cs = cb ar/az, for which there are a reasonable number of collocation points over the regularization
interval. This choice coincides with the hot spot regularization used in Lopez and Marques [32] and
Marques and Lopez [33]. The schematic of the setup in Fig. 1 also includes plots of the regularized
wall temperature profiles used.
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The fluid density is given by ρ∗(z∗) = ρ0[1 − α(T ∗(z∗) − T ∗
0 )]. In the absence of the hot spot,

the governing equations admit a solution with u = 0 and a stable temperature stratification T (z) =
Ts(z). In the region where the stratification is linear, z ∈ [as, az], the fluid can support internal gravity
waves. The buoyancy frequency in the initially linearly stratified upper region is

N =
√

− g

ρ0

dρ∗

dz∗ =
√

αg�T ∗

(L−H )
, (6)

which can be nondimensionalized by the thermal timescale to define a buoyancy number

RN = ND2

κ
=

√
PrRa

(az−as)
. (7)

Frequencies of states computed using the thermal timescale can be converted to the buoyancy
timescale by dividing by RN ; the arcsin of such frequencies determines the inclination with respect
to gravity of the internal waves in regions of constant N .

A. Numerical technique

The same spectral collocation method that was used in Lopez and Marques [32] and Marques
and Lopez [33] is used here. It employs a second-order time-splitting method together with a
Galerkin–Fourier expansion in θ and Chebyshev collocation in r and z. The expansions for the
velocity components and temperature (u, v,w, T ) are given by the real part of

F (r, θ, z, t ) =
2nr+1∑
m=0

nz∑
n=0

nθ /2−1∑
k=−nθ /2

Fmnk (t )
m(r/ar )
n(2z/az − 1)eikθ , (8)

where F is any of u, v, w, or T , and 
 j is the jth Chebyshev polynomial. Using the prescription in
Fornberg [35], the coefficients are such that umnk = vmnk = 0 for k + m even and wmnk = Tmnk = 0
for k + m odd. In this way, there are no collocation points on the axis (thereby avoiding the polar
coordinate singularity at the axis), and the governing equations are solved in the physical domain.
The combinations u± = u ± iv are used to decouple the linear diffusion terms in the momentum
equations. Then, for each Fourier mode, the resulting Helmholtz equations for u+, u−, w, and T
are solved using a diagonalization technique in r and z. The code has been extensively tested and
verified in a wide variety of enclosed cylinder flows, and in particular our prior related studies
of plumes [32,33]. For the parameter regimes considered in the present study, nr = nz = 150
Chebyshev modes in the radial and axial directions and nθ = 36 azimuthal Fourier modes are used,
along with time step δt = 10−6.

B. Symmetries

The governing equations and boundary conditions have circular O(2) symmetry, that is, they
are invariant under arbitrary rotations around the cylinder axis and reflections about meridional
planes. The actions of the rotations and reflections on the velocity, temperature, vorticity and helicity
density, he = u · ω, are

Rα:[u, v,w, T, ξ , η, ζ , he](r, θ, z, t )�→[u, v,w, T, ξ , η, ζ , he](r, θ−α, z, t ),

K0:[u, v,w, T, ξ , η, ζ , he](r, θ, z, t )�→[u,−v,w, T,−ξ, η,−ζ ,−he](r,−θ, z, t ),
(9)

where α is an arbitrary angle. Rα is the rotation by angle α about the cylinder axis; rotations generate
the group SO(2). K0 is the reflection about the meridional plane θ = 0; the reflection about any other
meridional plane θ = α is obtained by combining K0 with the rotation Rα , i.e., Kα = K0Rα . Since
K2

0 is the identity, it generates the group Z2. Rα and K0 do not commute (K0 Rα = R−α K0), and
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together they generate the group O(2) = SO(2) � Z2 (semidirect product) acting on the periodic
azimuthal θ -direction; see Marques and Lopez [33] for more details.

Axisymmetric solutions to (1) may be either SO(2) or O(2) invariant. The velocity of an
axisymmetric solution, for which ∂/∂θ = 0, may be decomposed into its meridional and azimuthal
components,

u(r, z, t ) = (u, 0,w) + (0, v, 0). (10)

If v = 0, then u is purely meridional and O(2) invariant, whereas if the azimuthal component v is
nonzero, then u is swirling and only SO(2) invariant. The vorticity for an axisymmetric u can also
be decomposed into its meridional and azimuthal components

ω = (ξ, 0, ζ ) + (0, η, 0), (11)

where the azimuthal component η = ∂u/∂z − ∂w/∂r only depends on the meridional components
of velocity, and the meridional components rξ = −∂ (rv)/∂z and rζ = ∂ (rv)/∂r only depend
on the azimuthal component of velocity. If v = 0, i.e., u is O(2) invariant, then the meridional
component of ω is zero, and so the velocity and vorticity are orthogonal and the helicity density
he = (u, 0,w)·(0, η, 0) = 0, whereas for SO(2) invariant solutions, he �= 0. Solutions which are
not axisymmetric (∂/∂θ �= 0) have broken Rα (with α �= 0). If such solutions retain Kβ invariance
(for a specific β), then their helicity is zero, He = 0. The helicity is the volume integral of the
helicity density, a convenient measure of the swirl of the solution considered:

He =
∫
D

he dV . (12)

However, even when the helicity He is zero, the L2 norm of the helicity density, ‖he‖2, may be
nonzero, where

‖he‖2 =
[∫

D
he2 dV

]1/2

. (13)

Careful consideration of the symmetries of the computed flows is found to be essential in
disentangling the myriad of coexisting flow states.

III. THE O(2)-SYMMETRIC STEADY BASIC STATE

The basic states when the ambient temperature is either uniform or linearly stratified have been
described over several ranges of the governing parameters in Lopez and Marques [32] and Marques
and Lopez [33]. In this section, we simply compare the basic states in a single geometry with aspect
ratios ar = 2 and az = 4, and also fix Pr = 7 and Ra = 2.5 × 105. Under these conditions, basic
states are stable in the three different ambient conditions: (i) uniform with T (ar, z) = 1 and as = az,
(ii) mixed with as = az/2, and (iii) linearly stratified with T (ar, z) = z and as = 0 in Eq. (3). In the
three cases, ar = 2 and az = 4. Figure 2 shows the isotherms in a meridional plane and isosurfaces
of the azimuthal component of vorticity (the only nonzero component of vorticity in the O(2)-
symmetric basic states), for the three cases. Near the hot spot on the bottom, all three plumes are
very similar, but they vary significantly with height above the hot spot due to the differences in the
ambient conditions. With the isothermal ambient, the plume flows all the way to the top endwall,
whereas for the other two stratified conditions, the plume only extends to approximately the neutral
buoyancy level, which is higher above the hot spot in the mixed case than it is in the linearly stratified
ambient case. How the plume interacts with the top endwall or the neutral buoyancy level greatly
affects its stability and subsequent nonlinear dynamics. The mixed ambient case shows dynamic
aspects from both of the other two cases, and these are explored in the following sections.
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(a) (b) (c)

FIG. 2. Basic states corresponding to different ambient temperature profiles, as indicated, at Ra =
2.5 × 105. On the left for each case are the isotherms in the entire meridional plane (i.e., the two planes
(r, z) ∈ [0, 2] × [0, 4] with θ = 0 and π ); the contour levels are equispaced between T = 0 (yellow) and T = 1
(red), with white corresponding to T = 0.5. On the right are azimuthal vorticity isosurfaces at η = ±2 × 103;
the gray circles at the top and bottom are drawn at the half radius of the cylinder.

IV. THE O(2)-SYMMETRIC PUFFING PLUME, P0

From now on, we only consider the mixed ambient state with as = 2. The basic state loses stabil-
ity via a supercritical Hopf bifurcation to an O(2)-symmetric puffing plume at Ra ≈ 2.022 × 106.
Figure 3(a) shows how the oscillation amplitude of the bifurcating limit cycle varies with Ra, using
the standard deviation of the kinetic energy, STD[E ], as a measure of the oscillation amplitude, where
the kinetic energy is

E = 1

2

∫
D

u · u dV . (14)

Figure 3(b) shows how its frequency, the puffing frequency, rescaled using the buoyancy timescale,
has very little variation with Ra: ω0/RN ≈ 1.48.

None of the spatial symmetries are broken at the Hopf bifurcation, so the bifurcated state is an
O(2)-symmetric periodic solution. The instability mechanism is the emission of puffs of warm fluid
from the hot spot, so we call these solutions O(2)-symmetric puffing plumes, P0. The generation
of the puffs is essentially the same as that described in Lopez and Marques [32] for the primary
instability of the localized plume in a nonstratified ambient as their generation is at the base of the
hot spot, which is in the lower nonstratified ambient irrespective of the stratification of the upper
ambient. The difference in the present problem is that when the puff reaches the neutral buoyancy
level it overshoots slightly and bounces back. In the bounce-back process, the azimuthal vorticity
of the puff (the only nonzero component of vorticity for an O(2)-symmetric state) changes sign. As
the next puff approaches the neutral buoyancy level, it collides with the remnants of the previous
puff that is still sinking, absorbing it, and then the process repeats. This can be clearly seen in Fig. 4,

(a) (b)

FIG. 3. Variations with Ra of (a) the standard deviation of the kinetic energy, STD[E ], and (b) frequency,
ω0/RN , of the O(2)-symmetric periodic puffing plumes, P0.
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FIG. 4. Snapshots of the the azimuthal vorticity, η, of the O(2)-symmetric puffing plume, P0, at Ra =
2.60 × 106 over one puffing period, τ0 = 2π/ω0, with ω0/RN ≈ 1.48. The isosurface levels are η = 104 (red)
and η = −8 × 103 (yellow). The black circle is the hot spot, and the gray circles are on the top and bottom lids
at midradius.

showing snapshots of the azimuthal vorticity, η, of P0 at Ra = 2.60 × 106 over a puffing period τ0 =
2π/ω0 ≈ 0.00142, with ω0/RN ≈ 1.48. Close inspection of the snapshot at 5τ0/6 shows evidence
of a wavy disturbance along the plume. These are reminiscent of the short-lived internal waves
on thermal plumes reported by Vincent et al. [36], but may also be due to marginal resolution of
the solution associated with the large local vertical temperature gradients following the collision
between the current puff and the receding prior puff. In Appendix A, the puffing plume at Ra =
2.60 × 106 with the current spatial and temporal resolution is compared with that using twice the
resolution. While the current resolution is marginal, it is in the converged regime.

V. INSTABILITY OF THE O(2)-SYMMETRIC PUFFING PLUME

The axisymmetric puffing plume P0 loses stability at Rac ≈ 2.62 × 106 via a symmetry-breaking
bifurcation, and the bifurcating flows have nonzero helicity density. In Fig. 5, the time-average of the
L2 norm of the helicity density, 〈‖he‖2〉, is used as a measure of the state’s amplitude to illustrate
the bifurcation diagram. The puffing plume P0 continues to exist beyond its instability. We shall
see as we analyze the various bifurcating states shown in Fig. 5 that P0 continues to influence the
dynamics, acting as a pacemaker with all bifurcating states inheriting the puffing frequency ω0, with
ω0 ≈ 1.48RN over the range of Ra shown in the figure.

FIG. 5. Bifurcation diagram in terms of the time-averaged L2 norm of the helicity density, 〈‖he‖2〉, which
is zero for the puffing plume P0. The dynamics associated with the bifurcating quasiperiodic plume states K1,
K2, R1, and R2 and the more complicated spatiotemporal plumes MR, P1, and P2 are described in the text.
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FIG. 6. Bifurcated quasiperiodic state K1 at Ra = 2.64 × 106. The first row shows snapshots of helicity
density isosurfaces at levels he = ±105 equispaced in time over a puffing period τ0; the gray circles at the top
and bottom are drawn at the half radius of the cylinder. See movie 1 in the Supplemental Material [37] for an
animation of this state over approximately nine puffing periods. The second row shows temperature contours
in the central half of the meridional plane corresponding to the K reflection symmetry, strobed every puffing
period, covering a little over one period of ω1.

A. The K1 wobbling puffing plume

The state bifurcating from P0 is quasiperiodic, with two frequencies, the puffing frequency ω0 ≈
1.48RN and a new frequency ω1 ≈ 0.170RN , acquired at the Neimark–Sacker bifurcation. They are
incommensurate, with a ratio ω0/ω1 ≈ 8.68. With increasing Ra, this ratio varies only very slightly.
In general, with parameter variations Neimark–Sacker bifurcations may lead to synchronization,
where the frequency of the unstable limit cycle and the new frequency introduced at the bifurcation
become a rational ratio p/q over an interval of the parameter (for example, Ra in our case). These
synchronisation (resonance) tongues are only dynamically important when the integers p and q are
smaller than 5, leading to the so-called strong resonances [38] which have been found to be relevant
in some fluid dynamics problems [39]. When p and q are large, the synchronisation tongues are
very narrow and the synchronized flows are almost indistinguishable from quasiperiodic solutions.
In the range of parameters in our study, no synchronisation tongues with small p and q were found.

The structure of the helicity density of the bifurcated quasiperiodic plume is shown in the first
row of Fig. 6, which depicts eight snapshots of the helicity density isosurfaces at Ra = 2.64 × 106,
equispaced over a puffing period τ0. Supplemental movie 1 [37] animates this state over approxi-
mately nine puffing periods. The solution clearly has a meridional symmetry plane, therefore the K
reflection Z2-symmetry is preserved whilst the R rotation SO(2)-symmetry is broken. We shall call
these K-invariant quasiperiodic states K1 plumes. A flow which is Kβ reflection symmetric about a
meridional plane θ = β satisfies

[u, v,w, T ](r, θ, z, t )=Kβ [u, v,w, T ](r, θ, z, t )= [u,−v,w, T ](r, 2β − θ, z, t ). (15)

Consequently, K1 plumes have zero helicity, He = 0, while their helicity density is nonzero, he �= 0.
The K1 solution branch actually consists of a whole circle of solutions, distinguished by the angle

of the meridional symmetry plane β; any of the K1 states can be obtained from another by applying
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the rotation Rα with an appropriate choice of α. The helicity density of a K1 plume consists of two
vertically oriented regions with opposite signs of helicity density either side of the reflection plane.
These change sign and intensity as they rise along the plume with the puff. The puff wobbles in the
reflection plane as it overshoots the neutral buoyancy level, as is evident in the second row of Fig. 6
showing isotherms in the meridional plane θ = β, corresponding to the plume’s Kβ symmetry plane.
These isotherms are snapshots that have been strobed once every puffing period τ0, covering slightly
more than one period τ1 (the ratio of the frequencies is close to nine, ω0/ω1 ≈ 8.68). These strobes
show that as the plume overshoots the neutral buoyancy level, its tip undergoes lateral oscillations
about the symmetry plane, while the bottom part of the plume shows very little variation, indicating
that the flow in the bottom half is essentially τ0-periodic (see movie 1 [37]). The amplitude of the
oscillations is small as the K1 plume considered is very near the bifurcation point. The behavior
is reminiscent of the meandering observed in studies of other thermal plumes that preserve the
K-reflection symmetry [22,32].

B. The R1 rotating puffing plume

The wobble in the K1 plume increases with Ra, and very shortly after onset at Ra ≈ 2.62 × 106,
K1 becomes unstable at Ra ≈ 2.65 × 106. The K symmetry is broken at this bifurcation. The
breaking of the reflection symmetry results in flows with nonzero He, and swirl is spontaneously
generated. It is straightforward to enforce the K0 symmetry numerically, and we have continued the
unstable K1 plumes out to Ra ≈ 2.78 × 106 (details are provided in Sec. V C).

A quantitative measure of the extent to which the K symmetry is broken is

S = min
β

‖Kβu − u‖2

‖u‖2
. (16)

The angle β is the angle which results in the smallest value of S, and is used to define the meridional
plane that best approximates a reflection plane. This meridional plane will be called the S plane. If
u is reflection-symmetric about the S plane θ = β, then Kβu = u and S = 0. For small S, Kβu ≈ u.
Since Kβ is an isometry (i.e., it preserves norms) we have that ‖Kβu‖2 = ‖u‖2, and 0 � S � 2.

When K1 loses stability at Ra ≈ 2.65 × 106, the flow evolves to a new state R1 with broken K
symmetry. R1 remains stable up to Ra ≈ 2.8 × 106 and down to Ra ≈ 2.64 × 106, so there is a
small region of hysteresis in Ra where both K1 and R1 are stable. R1 is also quasiperiodic, and its
two fundamental frequencies are also denoted ω0 and ω1. The values of these two frequencies for
the two states are virtually indistinguishable numerically. For both K1 and R1, ω0 is the underlying
puffing frequency, but ω1 has very different dynamics associated with it for the two states. For K1

this frequency is the slow wobble of the puff in the S plane, whereas the R1 plume spontaneously
attains swirl and this frequency is associated with the rotation.

At Ra = 2.70 × 106, roughly in the middle of the R1 branch, the R1 plume has the structure
depicted in Fig. 7, covering a puffing period with nine equispaced in time snapshots of helicity
density isosurfaces. Axial vorticity (associated with the swirl) is concentrated in the region where
the puffs collide with the neutral buoyancy level, while the azimuthal vorticity is strongest in the
rising plume near the hot spot on the bottom endwall, as in the basic state. Helicity density is evenly
distributed along the plume, and shows a spiralling helical structure with azimuthal wave number
m = 1. The flow structure at times 0 and τ0 (separated by a puffing period) are identical, differing
only in a finite rotation around the cylinder axis. Supplemental movie 2 [37] animates the flow
over approximately 16 puffing periods. The movie also includes a view of the plume from above,
showing how the S plane (indicated by a black line) rotates nonuniformly.

Figure 8 shows time series of β, the angle of the S plane, the meridional plane producing the best
approximation to a K-reflection symmetry plane, along with time series of the symmetry parameter
S and of the helicity He, for R1 at Ra = 2.70 × 106. The S plane rotates nonuniformly in the
negative azimuthal direction, with a mean angular velocity around the cylinder axis given by the
slope of the fitted regression line drawn in red in Fig. 8(c). This mean rotation is -0.1667, which
is almost identical to −ω1/RN = −0.16674. The rotation is not uniform, as is evident from the
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FIG. 7. Snapshots of the helicity density of R1 at Ra = 2.70 × 106 over approximately one puffing period
τ0 = 2π/ω0 = 1.382 × 10−3. The isolevels are he = ±2 × 105; the gray circles at the top and bottom are
drawn at the half radius of the cylinder. Supplemental movie 2 [37] animates the flow over approximately 16
puffing periods.

figure and movie 2 [37]; there are periodic pulses during which the rotation reverses sign slightly
for a short time. These pulses occur periodically with period 2π/ω0 ≈ 4.25RN , corresponding to the
underlying puffing period τ0. The helicity, He, oscillates about a mean 〈He〉 ≈ −14.0, corresponding
to the mean retrograde rotation of the plume. The helicity is slightly positive during a part of the
puffing period, corresponding to the times during which the rising puff and the receding prior puff
collide near the neutral buoyancy level. At other times, associated with the formation and rise of the
puff from the hot spot, He is strongly negative and the symmetry measure S is largest, suggesting
that swirl is generated near the hot spot when a new puff is formed and starts to rise.

As the mean helicity, 〈He〉, of the R1 plume is nonzero, the reflected plume (its K conjugate)
rotates about the axis in the opposite direction, so there are two branches of quasiperiodic R1

plumes that are symmetry related by a K reflection. R1 is a quasiperiodic solution, and when its two
frequencies are incommensurate (as is the case), it densely fills a two-torus. Applying the rotation
symmetry Rα to R1 results in a different solution, but it also lies on the same torus. So, the torus as
a set is Rα-invariant, and the torus is the union of all the individual solutions of type R1 obtained
by applying Rα . An individual R1 is not Rα-invariant (it is not pointwise invariant), but lives on an
R-invariant two-dimensional torus (which is setwise invariant). For more details see Marques and
Lopez [40] and Lopez and Marques [41]. The R1 plumes have rising puffs that are not axisymmetric

(a)

(b)

(c)

FIG. 8. Time series of (a) the helicity He, (b) the symmetry parameter S, and (c) the S-plane angle β, for
R1 at Ra = 2.70 × 104. The symbols correspond to the 16 snapshots shown in Fig. 7.
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(a)

(b)

(c)

FIG. 9. (a) Bifurcation diagram restricted to the K0-invariant subspace, and (b, c) frequencies of the K0

subspace restricted plumes.

and are rotating (i.e., spiralling); the one depicted in Fig. 7 has a left-handed orientation, and the
K-conjugate plume has a right-handed orientation.

What makes the bifurcation sequence involving P0, K1, and R1 interesting is the presence of
the O(2) symmetry. In Appendix B, we briefly describe the dynamical systems theory of a Hopf
bifurcation from a steady state breaking O(2) symmetry. Those results also apply to Neimark–
Sacker bifurcations from a periodic solution breaking O(2) symmetry [42]. These considerations
are useful in unraveling the interconnections between the axisymmetric puffing plume P0, the two
K-conjugate swirling R1 plumes, and the circle of K-invariant wobbling K1 plumes.

C. Plumes in the K-invariant subspace

At Ra ≈ 2.805 × 106, the R1 plume suddenly loses stability. The K1 plume however, is already
unstable for Ra � 2.65 × 106, but by restricting the simulations to the K-invariant subspace, it is
stable in that subspace out to Ra ≈ 2.78 × 106. In this subsection, we explore the dynamics in the
K0 subspace, in which the S reflection plane is fixed at θ = 0◦. Figure 9 is the bifurcation diagram in
this subspace, and should be compared to the bifurcation diagram in the full space shown in Fig. 5.

For 2.81 × 106 � Ra � 2.94 × 106, simulations in the K0 subspace with a broad range of initial
conditions settle onto a plume state that is very similar to K1, which we simply call K2. It is also
quasiperiodic, with one frequency corresponding to the puffing frequency ω0 ≈ 1.48RN . Figure 9(b)
is a plot of ω0/RN for K1 and K2, showing that ω0/RN is continuous across the two plumes and varies
very slowly with Ra; this is simply the frequency of the axisymmetric puffing plume P0. The other
frequency in K2 is ω2, associated with the wobbling in the symmetry plane θ = 0◦. The wobbles in
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(a)

(b) (c)

(d) (e)

FIG. 10. (a) Time series of the L2 norm of the helicity, ‖he‖2, for K3 at Ra = 2.95 × 106. The four red
symbols indicate the times corresponding to the snapshots of the helicity density isosurfaces in panels (b–e),
shown from two perspectives rotated by 90◦ and a top view. The isolevels are he = ±4 × 105; the gray circles at
the top and bottom are drawn at the half radius of the cylinder. Supplemental movie 3 [37] shows an animation
over the time in panel (a).

K2 are of the same type as in K1 described earlier, but with a slightly lower frequency; see Fig. 9(c).
For a small interval in Ra, near Ra ≈ 2.80 × 106, there is a plume with three incommensurate
frequencies, consisting of ω0, ω1 and ω2; this is a mixed mode of K1 and K2 and we refer to it as MK .
It is also a puffing plume with a wobble in its symmetry plane, but now the frequency of the wobble
is slowly modulated with the beat frequency corresponding to the difference |ω1 − ω2| ≈ 0.04RN .

For Ra � 2.94 × 106, K2 is no longer stable and the flow evolves to yet another plume with a
wobble in the symmetry plane, called K3. This plume extends to larger Ra (we only report up to
Ra = 3 × 106 here), and down to Ra ≈ 2.75 × 106, so that it coexists with K1, K2, and MK . The
K3 plumes have a slightly (approximately 1%) higher ω0 and their second frequency ω3 ≈ 0.1RN is
smaller than those of K1 and K2 (see Fig. 9). A time series of the L2 norm of the helicity density,
‖he‖2, for K3 at Ra = 2.95 × 106 is shown in Fig. 10(a). The time series shows oscillations at the
puffing frequency ω0 that are modulated. From Fig. 9, ω0/ω3 ≈ 14.9 but the modulation frequency
in the time series is 0.5 ω3. This is due to ‖he‖2 being a squared quantity. The snapshots of he
isosurfaces shown in Figs. 10(b)–10(e) are equispaced over one half modulation period, covering
approximately 8 puffing periods. They show a large anvil-like structure near the neutral buoyancy
level that is aligned with the symmetry plane; the anvil tilts one way over these 8 puffing periods,
and then tilts back over the next 8 puffing periods. Supplemental movie 3 [37] shows an animation
over approximately 80 puffing periods [the length of the time series in Fig. 10(a)]. As ω0 and ω3 are
not commensurate, the plume never repeats its structure, but the combined effects of the puffing and
the anvil tilting are well illustrated.
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(a)

(b)

FIG. 11. Frequencies of R1, R2, MR, P1, and P2.

D. The R2 rotating puffing plume

Returning to the full space, the dynamics is considerably more complicated. The K1, K2, and K3

plumes at a given point in parameter space consist of whole circles of such plumes, parameterized
by the orientation of their symmetry plane θ = β. The restriction to the K0 symmetry subspace
considered above selected exactly one plume with β = 0◦. In the full space, K1 is unstable for
Ra � 2.65 × 106, K2 is stable from its emergence at Ra ≈ 2.81 × 106 and loses stability at Ra ≈
2.84 × 106, and the whole of the K3 branch is unstable. With the K-plumes being unstable in the
full space over a considerable range of Ra, in this subsection we explore what states are stable in
this range of Ra.

As noted earlier, the R1 plume is stable for 2.64 × 106 � Ra � 2.805 × 106. For 2.82 × 106 �
Ra � 2.90 × 106 there is another branch of rotating puffing plumes, which we call R2. These have
the same dynamics as R1, but their frequency ω2 is lower; see Fig. 11.

At Ra = 2.85 × 106, roughly in the middle of the R2 branch, the R2 plume has the structure
depicted in Fig. 12, showing six snapshots of the helicity density isosurfaces over one puffing period.
The helicity density is evenly distributed along the plume, and shows a spiralling helical structure
with azimuthal wave number m = 1. The R2 plume is similar to the R1 plume, but more intense
(larger ‖he‖2). However, the puff that emerges periodically from the hot spot is spiralling, whereas
for R1 it is not spiralling and has an approximate K symmetry (see Fig. 7). At times separated by a
puffing period, the R2 structure is identical, but rotated about the cylinder axis. Figure 13 shows time
series of He, S, and β for R2 at Ra = 2.85 × 106. The S plane rotates nonuniformly in the negative
azimuthal direction, with a mean angular velocity around the cylinder axis given by the slope of
the fitted regression line drawn in red in Fig. 13(c). This mean rotation is −0.1207, which is very
close to −ω2/RN = −0.1193. Supplemental movie 4 [37] animates the flow over approximately
12 puffing periods, showing two perspective views of helicity density isosurfaces. The view from
the top includes a line traversing the axis showing the orientation of the S plane, illustrating the
modulated rotation of the plume. The helicity He oscillates about a mean value 〈He〉 ≈ −154.7,
corresponding to the retrograde rotation of the plume. The helicity is slightly positive and S is
maximal during a part of the puffing period when the rising puff collides with the prior receding
puff, as was the case for the R1 plumes. Overall, S is larger (by approximately a factor of 5) for R2

compared to R1; this is a consequence of the swirl in the R2 puff as it emerges from the hot spot.
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FIG. 12. Snapshots of the helicity density of R2 at Ra = 2.85 × 106 over approximately one puffing period.
The isolevels are he = ±2 × 105; the gray circles at the top and bottom are drawn at the half radius of the
cylinder. Supplemental movie 4 [37] animates the flow over approximately 12 puffing periods.

In between the R1 and R2 branches, for 2.805 × 106 � Ra � 2.81 × 106, there is a mixed mode
of R1 and R2, called MR, but it is more complicated than the mixed mode MK described earlier in the
K0 subspace. The added complication stems from the fact that R1 and R2 each have two parities as a
result of the broken K symmetry; each pair consists of a plume that rotates in the positive and another
rotating in the negative azimuthal direction. Which parity is realized depends on initial conditions.
The mixed mode MR is hence a mixed mode between R1, KR1, R2, and KR2, and the resulting plume
has frequencies ω0 (from the underlying puffing), ±ω1, and ±ω2 (the signs ± signify rotation in the
positive and negative azimuthal directions). Figures 14(a) and 14(b) show time series of he and S
for a MR plume at Ra = 2.805 × 106. Clearly evident is a low-frequency beating corresponding to
ω1 − ω2. Figure 14(c) shows the time series of β, the S-plane angle. This angle varies irregularly
in time; there are relatively long stretches of time (several puffing periods) during which the mean
rotation is in one sense, with sudden switches to the other sense of rotation. During these intervals,
the mean slopes of ∂β/∂t are approximately ±ω1/RN and ±ω2/RN .

(a)

(b)

(c)

FIG. 13. Time series of (a) the helicity He, (b) the symmetry parameter S, and (c) the S-plane angle β, of
R2 at Ra = 2.85 × 106. The symbols correspond to the 6 snapshots shown in Fig. 12.
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(a)

(b)

(c)

FIG. 14. Time series of (a) the helicity He, (b) the symmetry parameter S, and (c) the S-plane angle β, for
the mixed mode MR at Ra = 2.805 × 106. The three red points correspond to the snapshots shown in Fig. 15.

The reversals in the mean sense of rotation are not correlated with the beat frequency. Sup-
plemental movie 5 [37] animates the mixed mode MR at Ra = 2.805 × 106 over the time interval
313.3 � tRN � 469.9, corresponding to approximately one beat period, illustrating the complex
dynamics. In the movie, the helicity density isosurfaces are shown from two perspective views.
In the view from the top, the S plane is indicated by a line drawn through the axis; its irregular
orientation as reported from the time series is well illustrated. Three snapshots from the movie are
shown in Fig. 15, corresponding to the times indicated by red symbols in the time series in Fig. 14.
The first of these snapshots shows a phase where MR resembles R1, with the plume structure as it

(a) (b) (c)

(d) (e) (f)

FIG. 15. Snapshots of helicity density isosurfaces, he = ±105, of the mixed mode MR at Ra = 2.805 × 106,
at times (a) tRN = 318.812, (b) tRN = 335.732, and (c) tRN = 450.567, corresponding to the red symbols in
the time series in Fig. 14; the gray circles at the top and bottom are drawn at the half radius of the cylinder, and
(d, e, f) show closeups of the time series of β in the neighbourhoods of these times. Supplemental movie 5 [37]
animates this case over the time interval tRN ∈ (313.3, 469.9).
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(a)

(b)

(c)

FIG. 16. Time series of (a) the symmetry parameter S, (b) the S-plane angle β, and (c) helicity He of P1 at
Ra = 2.77 × 106. The two red points correspond to the snapshots shown in Fig. 17.

leaves the hot spot having a well-defined S plane and ∂β/∂t ≈ 0, whereas the other two snapshots
show phases where MR resembles R2 with the plume structure as it leaves the hot spot having a
positive spiral and ∂β/∂t > 0 in one and a negative spiral and ∂β/∂t < 0 in the other.

E. Pulse-wave plumes P1 and P2

For Ra � 2.9 × 106, all of the plumes described so far are unstable. Any initial condition for
larger Ra evolves to one of the upper branch states labeled P1 and P2 in Figs. 5 and 11. Using that
state as an initial condition for smaller and larger Ra, the solution branches P1 and P2 are mapped
out. These are also quasiperiodic states with two incommensurate frequencies. As with the other
unsteady plumes, one of the frequencies corresponds to the puffing frequency ω0, although this is
slightly larger than that in the rotating plumes R1 and R2, which are stable and coexist with P1 and
P2 for a range of Ra, as shown in Fig. 9. Figure 17 shows a pair of snapshots of helicity density for
a P1 plume at Ra = 2.77 × 106. It has many features in common with the K3 plume (compare with
Fig. 10), in particular the large anvil at the neutral buoyancy level. P1 also has an approximate K
symmetry, most obvious in the lower part of the plume as it rises from the hot spot, and the symmetry

(a) (b)

FIG. 17. Snapshots of helicity density isosurfaces, he = ±4.5 × 105, of P1 at Ra = 2.77 × 106, shown
from two perspectives rotated by 90◦ and a top view, at two times: (a) tRN = 467 during which He < 0 and
(b) tRN = 622.6 with He > 0; the gray circles at the top and bottom are drawn at the half radius of the cylinder.
Supplemental movie 6 [37] animates this case over the extent tRN ∈ (467, 622.9) of the time series shown in
Fig. 16.
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(a)

(b)

(c)

FIG. 18. Time series of (a) the symmetry parameter S, (b) the S-plane angle β, and (c) helicity He of the
pulse-wave P2 at Ra = 2.93 × 106. The two red points correspond to the snapshots shown in Fig. 19.

is broken most strongly as it approaches the neutral buoyancy level and in the anvil region. However,
P1 does not have an S plane at a fixed azimuthal angle and its helicity He is nonzero. Figure 16 shows
time series of the symmetry measure S, the angle of the S plane β, and the helicity He. These are
strongly modulated. These time series are quite informative; S spikes every puffing period as the
puff reaches the neutral buoyancy level, and there is a larger spike (or two) approximately every
6 or 7 puffing periods. These larger spikes in S are associated with a reorientation of the S plane
between β ≈ 66.62◦ and 76.66◦. During the time intervals with β ≈ 66.62◦, the helicity is positive
and during the intervals with β ≈ 76.66◦ it is negative. This modulation period defines ω3, which is
shown in Fig. 11(b). It is virtually the same as ω3 for the K3 plumes shown in Fig. 9(c). However,
for K3 plumes ω3 is associated with the wobbling of the anvil in the S plane, which remain at a
fixed angle, whereas for the P1 plumes ω3 is associated with the S planes pulsing between different
angles β. Supplemental movie 6 [37] animates the helicity density over a time interval in tRN of
150, which covers approximately five of these pulses.

Although the P2 plumes have very similar time series of S, β, and He as the P1 plumes (compare
Figs. 16 and 18) they have very different spatiotemporal characteristics. Figure 19 shows a pair of

(a) (b)

FIG. 19. Snapshots of helicity density isosurfaces, he = ±3.0 × 105, of P2 at Ra = 2.93 × 106, shown
from one perspective and a top view, at two times: (a) tRN = 479.55 during which He < 0 and (b) tRN =
526.31 with He > 0; the gray circles at the top and bottom are drawn at the half radius of the cylinder.
Supplemental movie 7 [37] animates this plume over the extent tRN ∈ (462, 628) of the time series shown
in Fig. 18.
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snapshots of the helicity density of P2 at Ra = 2.93 × 106 approximately one pulse period apart.
The most striking difference with P1 (Fig. 17) is that the plume is twisted as it leaves the hot spot,
much like what is the case with the rotating puffing plumes (compare with R2 in Fig. 12). As such,
there is no approximate reflection plane and the symmetry parameter S is an order of magnitude
larger than it is for P1. Like with P1, the time series of S for P2 also shows spikes every puffing
period, indicating that the plume breaks K symmetry more strongly as the puff reaches the neutral
buoyancy level, as well as one or two much larger spikes every seven or eight puffs. During the seven
or eight puffing periods between the larger spikes, the helicity is of one sign and then undergoes a
pulse changing sign. Although the S plane is no longer meaningful in terms of an approximate K
symmetry, the minimizing angle β is still illustrative. The angle β, on average, decreases whilst He
is positive and increases whilst He is negative. Supplemental movie 7 [37] animates helicity density
of this plume over a couple of these pulses reversals.

VI. CONCLUSIONS

The initial goal of the present study was to find an ambient stratification distribution in which
a localized plume displays competition between puffing, wobbling, and swirling dynamics as the
Rayleigh number, Ra, is increased. In a uniform ambient, the first bifucation with increasing Ra
retains the spatial symmetries of the system [O(2) symmetry—invariance to rotations and reflections
about the plume axis], but introduces a temporal periodicity as a localized puff at the base of the
plume periodically forms and then rises. With increasing Ra, the puff rises faster and its collision
with the top leads to a myriad of symmetry-breaking instabilities and the dynamics become very
complicated. For the most part, the symmetry-broken plume retains a meridional symmetry plane
and the puffs wobble in this plane while they rise, and the complications come about as the wobbling
puffs break up following their collisions with the top.

In a linearly stratified ambient, if the stratification is sufficiently strong, then vertical motions
tend to be suppressed and so the plume tries to rise but is twisted; the strong stratification leads to
a breaking of the rotation symmetry (invariance to rotations about the plume axis), at which point
swirl is spontaneously generated. The periodic puffs appear as a secondary instability leading to a
modulated swirling plume.

In the present problem, with a mixed ambient, the plume also undergoes symmetry breaking
bifurcations that are a blend of those found in the other two scenarios. As in the uniform ambient
case, the primary instability with increasing Ra is the axisymmetric puffing instability. The puffing
mode persists throughout all the subsequent instabilities, acting as a pacemaker for the dynamics.
Both the wobbling and swirling instability mechanisms come into play almost simultaneously
with further increases in Ra, resulting in an interesting sequence of bifurcations involving mode
competition and hysteresis. The first set of symmetry breaking dynamics can be well described
using normal form theory for the breaking of O(2) symmetry of equilibria applied to maps; this is
due to the symmetric state being a limit cycle, the puffing plume. The plume states involved have
relatively low intensity, quantified by their helicity. Over a considerable range of Ra, there coexists
a disjoint set of more intense plume states with much larger helicity.

The more intense “upper branch” plume states also have dynamics associated with O(2) sym-
metry breaking, such as pulse waves resulting from the breaking of O(2) symmetry of steady state
[43], but the normal form theory for these does not work as well. The normal form reduced system
of equations has additional symmetries which result in heteroclinic cycles which are replaced by
the pulse waves in the fully nonlinear setting. Nevertheless, the pulse plumes we have described
have much in common with the pulse waves. These solutions manifest a variety of behaviors: the
meridional symmetry plane of the wobbling plumes is partially broken, resulting in an approximate
S plane whose meridional orientation either oscillates about some fixed azimuthal angle, pulses
between two distinct azimuthal angles, or quasiuniformly drifts in azimuth indicating a clear signal
of the influence of the spontaneous generation of swirl. These behaviors alternate with varying
degrees of relative dominance as Ra is increased, resulting in many of the complex solutions found.

023903-19



FRANCISCO MARQUES AND JUAN M. LOPEZ

FIG. 20. Time series of the temperature at the center of the cylindrical domain, Tp, for P0 at Ra =
2.6 × 104, computed with the spatial and temporal resolutions as indicated.
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APPENDIX A: RESOLUTION TEST

Here, we compare the axisymmetric puffing plume P0 at Ra = 2.6 × 104 computed with the
resolution used throughout the rest of the paper (Chebyshev polynomials of degrees 150 in both r
and z, and time step δt = 10−6) to that computed with twice the resolution (Chebyshev polynomials
of degrees 300 in both r and z, and time step δt = 5 × 10−7).

Figure 20 shows the evolution over two puffing periods of the temperature at the center of the
cylindrical domain using the two resolutions considered. The large spikes in the figure correspond
to the arrival of the rising puff to the center of the domain; the time between these spikes (the
puffing period) is unaffected by the resolution used, but the small ripples which are evident either
side of the large spikes are diminished with the increased resolution. Figure 21 shows isotherms at
two instants of the puffing period τ0, corresponding to minimal and maximal ripples near the axis.
At the resolution used throughout the paper (nr = nz = 150, δt = 10−6), ripples are not present at
times near t = 0.00024, while they are clearly noticeable at t = 00092. Supplementary movie 8
[37] animates this P0 plume computed with the two resolution over one puffing period. The ripples
are evidently due to the resolution used. Nevertheless, the solution at the lower resolution is in
the asymptotically converged regime, and these small ripples do not affect the dynamics of the
results. In particular, the puffing period, which is the pacesetter for all the dynamics reported, is
unaffected by the change in resolution, nor is the overall structure of the plume. The marginality
of the resolution is borne out in Fig. 22, which shows the L2 norm of the spectral coefficients of

(a) (b)

FIG. 21. Isotherms of P0 at two different instants in a puffing period τ0 ≈ 0.00142: (a) at t = 0.00024 ≈
0.169τ0 corresponds to minimal oscillations near the axis and (b) at t = 0.00092 ≈ 0.648τ0 corresponds
corresponds to maximal oscillations; isotherms are shown using the different resolutions as indicated. Sup-
plementary movie 8 [37] animates the isotherms at both resolutions over one puffing period.
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FIG. 22. Spectral convergence of P0 at Ra = 2.6 × 104, at the two times used in Fig. 21.

the velocity modulus |u|, in the radial and axial directions, for solutions with the two resolutions at
the two times used in Fig. 21. The convergence is better when the ripples near the axis are absent
(t = 0.00024). Nevertheless, at all times, and even with the lower resolution, the spectral coefficients
decay by at least three orders of magnitude. As such, the results presented in the paper use the
lower marginal resolution, which makes the study affordable; doubling the resolution increases the
computation time by well over an order of magnitude. Whether the ripples are purely a numerical
artifact is not completely clear, as there is a physical mechanism for their presence, and they have
been observed in similar problems as reported by Vincent et al. [36]. However, the fact that the
amplitude and period of the ripples are halved by doubling the resolution suggests a numerical
origin of these oscillations.

APPENDIX B: BIFURCATIONS BREAKING O(2) SYMMETRY: NORMAL FORMS

According to Crawford and Knobloch [15] and Knobloch [44], a Hopf bifurcation from a steady
state that breaks O(2) = SO(2) � Z2 symmetry can result in either standing or rotating waves. Due
to the Z2 reflection symmetry, there are two rotating waves with opposite sense of rotation. So, there
are three different solutions that bifurcate simultaneously, and which one is observed depends on
the specifics of the problem and the initial conditions. The normal form, at low order and assuming
nondegeneracy conditions, is

ṙ1 = r1
(
μ − ar2

1 − br2
2

)
,

ṙ2 = r2
(
μ − ar2

2 − br2
1

)
,

φ̇1 = φ̇2 = ω,

(B1)

where μ is the bifurcation parameter and μ = 0 is its critical value for the bifurcation. The center
manifold has codimension four, with complex amplitudes r1eiφ1 and r2eiφ2 . The phase dynamics is
trivial and decouples from the amplitude dynamics, which is two-dimensional. The nondegeneracy
conditions are a �= 0 and a ± b �= 0. The normal form has four fixed points,

Q0 : (r1, r2) = (0, 0),

Q1 : (r1, r2) = (
√

μ/a, 0),

Q2 : (r1, r2) = (0,
√

μ/a),

Q3 : (r1, r2) = [
√

μ/(a + b),
√

μ/(a + b)].

(B2)

Strictly speaking, since the phases φ1 and φ2 have the same frequency ω, Q1, Q2, and Q3 are periodic
orbits, and Q0 is a true fixed point. It is only in the restricted two-dimensional normal form for the
amplitude equations of r1 and r2 that they are all fixed points. If the bifurcation is supercritical, so
that the three periodic solutions Q1, Q2, and Q3 exist for μ > 0, then a > 0 and a + b > 0.
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(a) (b)

FIG. 23. Bifurcation diagrams of the supercritical Hopf bifurcation breaking O(2) symmetry associated
with the normal form (B1) for cases (a) a > b and (b) a < b, and the corresponding phase portraits. The blue
(red) curves and symbols represent stable (unstable) solutions.

The actions of the rotation symmetry Rα , that generates the SO(2) group, and the reflection
symmetry Kβ , that generates the Z2 group, on the normal form are

Rα : [r1, r2, φ1, φ2] �→ [r1, r2, φ1 + mα, φ2 − mα],

Kβ : [r1, r2, φ1, φ2] �→ [r2, r1, φ2 − 2mβ, φ1 + 2mβ].
(B3)

The action of K0 is simple, K0 : [r1, r2, φ1, φ2] �→ [r2, r1, φ2, φ1]. The integer m specifies the action
of O(2) on the bifurcating solution; it corresponds to the azimuthal wave number. The state Q0 is
O(2) invariant, it is stable for μ < 0 and unstable for μ > 0. Q1 and Q2 are rotating waves, i.e.,
advancing in time is the same as applying a rotation:

φ1(t ) = φ1(0) + ωt = Rωt/m φ1(0),

φ2(t ) = φ2(0) − ωt = R−ωt/m φ2(0).
(B4)

Therefore, Q1(t ) = Rωt/mQ1(0) and Q2(t ) = R−ωt/mQ2(0). Q1 and Q2 rotate in opposite senses,
and K0 transforms one into the other, K0 Q1 = Q2, so they are K0-conjugate states. Q1 and Q2 have
a space-time symmetry consisting of simultaneously rotating and advancing in time, so as a set each
orbit is SO(2) invariant. Q3 is K0-symmetric, K0 Q3 = Q3. It is a superposition of the rotating waves
Q1 and Q2; i.e., it is a standing wave. The analysis of the stability of the bifurcated solutions for
a > b gives that Q1 and Q2 are unstable and Q3 is stable, whereas for a < b, Q1 and Q2 are stable
and Q3 is unstable. These results are summarized in the bifurcation diagram shown in Fig. 23, which
also shows phase portraits before (μ < 0) and after (μ > 0) the bifurcation.

When the nondegeneracy conditions are not fulfilled, i.e., when some of the inequalities, a �= 0
and a ± b �= 0, are close to equality, higher order terms must be included in the normal form re-
sulting in additional bifurcations and solution branches near the Hopf bifurcation point. Golubitsky
and Roberts [45] and Crawford and Knobloch [46] have analyzed in great detail all the possible
additional bifurcation scenarios. Here, we only mention one of these, with a ≈ b, that corresponds
to the localized plume problem under consideration. In this case, the stability of the three bifurcating
solutions is not easy to determine, and additional bifurcations take place when higher order terms
are considered. Following Crawford and Knobloch [46], the normal form is now

ṙ1 = r1
[
μ − (1 + ε)r2

1 − (1 − ε)r2
2 − 2r2

2

(
r2

1 − r2
2

)]
,

ṙ2 = r2
[
μ − (1 + ε)r2

2 − (1 − ε)r2
1 + 2r2

1

(
r2

1 − r2
2

)]
,

(B5)
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(a)

(b) (c) (d) (e)

FIG. 24. (a) Bifurcation diagram of the degenerate Hopf bifurcation breaking O(2) symmetry associated
with the normal form (B5) and a ≈ b. The blue (red) curves and symbols represent stable (unstable) solutions.
The phase portraits over the ranges I–IV of μ are in panels (b–e).

where ε is a small but fixed positive parameter, and the fifth order terms are needed for the normal
form to be persistent, i.e., so that the dynamics do not change qualitatively under arbitrary small
perturbations of the equations. The bifurcation diagram and associated phase portraits are shown in
Fig. 24. What is new in this configuration is that the stability properties of the rotating and standing
wave branches of solutions are switched at some μ > 0. This happens through a new family of
two-tori solutions that bifurcate from Q3 at a Z2 symmetry-breaking bifurcation, spawning a pair
of Z2 conjugate two-tori states, Q4 and Q5, to lower μ (i.e., the Neimark–Sacker bifurcations are
subcritical). The Q4 and Q5 solution branches terminate on Q1 and Q2 at supercritical Neimark–
Sacker bifurcations rendering Q1 and Q2 stable for increasing μ. Over the range of μ in between
the two Neimark–Sacker bifurcations, the Q1, Q2, and Q3 are all stable. This hysteretic range of μ

is ε(1 − ε) � μ � ε, and the values of the amplitudes ri of Q4 and Q5 are

r2
1 = 1

2 (ε ± √
ε − μ), r2

2 = 1
2 (ε ∓ √

ε − μ), (B6)

with the + sign corresponding to Q4 and the − sign to Q5.
So far, the discussion has been focused on the Hopf bifurcation of fixed points of an ordinary

differential equation (ODE) that breaks O(2) symmetry. In the localized plume problem under
consideration, the first Hopf bifurcation preserves O(2), resulting in the periodic puffing state P0,
and it is the second bifurcation that breaks O(2) symmetry. The bifurcations of a periodic solution
can be analyzed using a Poincaré section, so that the limit cycle P0 becomes a fixed point of the
Poincaré map. Crawford and Knobloch [42] have explored the symmetry-breaking bifurcations
in maps with O(2) symmetry, showing that all the results obtained for the ODE also apply to
maps. In moving from the Poincaré map to the underlying partial differential equation (PDE)
Navier–Stokes–Boussinesq system (1), Q0 is the O(2)-invariant periodic puffing plume P0, Q1, and
Q2 are the quasiperiodic R1, and Q3 is the quasiperiodic K1. The dynamics and stability properties
are the same as in the ODE (B1) case, provided the nondegeneracy conditions (a �= 0 and a ± b �= 0)
are fulfilled and provided there are no resonances between the frequencies of the two-tori solution,
which is precisely what happens in the plume problem under consideration. The bifurcation diagram
for the degenerate Hopf bifurcation in Fig. 24 captures the dynamics near the Neimark–Sacker
bifurcation of the puffing plume in the full system (1), shown in Fig. 5.
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