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Pressure fields produced by single-bubble collapse near a corner
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Damage produced by repeated bubble collapse to neighboring rigid objects in hydraulic
systems is an important consequence of cavitation. Although bubble collapse near a single
wall has received significant attention in the past, few studies exist on the dynamics of
bubbles collapsing near a corner, i.e., two flat rigid surfaces intersecting at a right angle.
In this work we quantify the pressure fields produced by a single bubble collapsing near
two perpendicular rigid walls. Using a high-order accurate shock- and interface-capturing
method to solve the three-dimensional compressible Navier-Stokes equations for gas and
liquid flows, we simulate the dynamics of a single bubble collapsing at different initial
stand-off distances from the two walls. In contrast to a bubble collapsing near a single
wall, the collapse of bubbles within a critical stand-off distance is not symmetric about
the bisecting plane due to the interaction between the bubble and the second wall. The
second wall affects the pressure produced during the collapse in the following ways: (i)
For bubbles initially located sufficiently close to both walls, the reentrant jet produced
during collapse no longer points in the direction normal to the closest wall but at an angle
toward the corner, (ii) the part of the emitted shock with the highest amplitude propagates
in line with the jet, and (iii) the bubble migrates in that same direction during its collapse
with a dependence on the stand-off distance, consistent with predictions made using Kelvin
impulse. The location of maximum pressure along the walls is measured for the different
initial stand-off distances. Using acoustic arguments, we find a semiempirical relationship
to predict the initial stand-off distances for which the maximum pressure occurs in the
corner. We find that when the bubble is sufficiently close to equidistant from each boundary,
the maximum pressure is observed in the corner due to the water-hammer and implosion
shocks reflecting off the boundaries and intersecting in the corner. We also show that when
bubbles are initially attached to either wall the wall pressure produced can be significantly
increased compared to bubbles detached from either wall.

DOI: 10.1103/PhysRevFluids.8.023601

I. INTRODUCTION

Cavitation has long been known to cause structural damage to solids in a variety of hydrodynamic
and acoustic applications [1–4]. The central problem in cavitation-induced damage is bubble
collapse. In the idealized case of an infinite medium, a single initially spherical bubble collapses
symmetrically [5], thereby compressing its contents until the interior pressure is sufficiently high to
halt the collapse; the high pressures produced release a shock and possibly visible light [3,5–12].
When collapsing near a rigid surface, the bubble no longer maintains a spherical shape; a reentrant
jet forms and impinges upon the opposite side of the bubble, generating a water-hammer shock
[2,13–15]. Past simulations [16] show that the strength of this shock is greatest in the jet direction
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and decreases azimuthally; the maximum wall pressure is therefore along the axis of symmetry (i.e.,
the jet direction). This maximum pressure is an important predictor of damage [17].

Although there have been many experimental [2,12–15,18,19] and computational [16,20] studies
of a bubble collapsing near a single rigid flat wall, the collapse of a bubble near a corner, i.e., two
flat rigid surfaces intersecting at a right angle, has received far less interest. Such a geometry is
common in internal and external flows comprising channels, ducts, cavities, etc., which can be
represented by an infinite corner when the bubble is small compared to the geometry [21]. The
collapse of a bubble near a corner was first investigated experimentally by [22]. Using lasers
to induce cavitation bubbles and high-speed cameras to capture their dynamics, several collapse
parameters were characterized. In particular, the angle of the jet and the bubble translation were
measured. The work of Cui et al. [23] demonstrated that the bubble is primarily influenced by the
nearer of the two walls. An analytical estimate for the jet angle using potential flow was proposed in
[24] and it was shown through experiments that the jet angle can be accurately predicted by potential
flow [25]. In simulations based on potential flow theory (e.g., boundary integral or element methods)
it was found that the bubble migration toward the near wall decreases with initial stand-off distance
and that the jet velocity decreases as the initial stand-off distances decrease. Additionally, the inertial
collapse of a vapor bubble near slotted walls has been explored numerically and experimentally
[26,27].

While accurately predicting the bubble dynamics, potential-flow-based methods cannot repre-
sent compressible-flow features such as shock waves. The pressure fields, which are essential to
predicting potential damage, therefore cannot accurately be determined. Recently, shock-capturing
methods have been used to investigate shock waves produced by bubbles collapsing near a wall
[16,20,28,29], though these methods have yet to be applied to bubbles collapsing near a corner.

The objective of our work is to determine the time-dependent pressure fields produced by a
bubble collapsing near a corner. The location and magnitude of the maximum pressure produced
are not trivially determined, as the presence of the second wall deflects the direction of the reentrant
jet. As a result, the strongest part of the emitted shock no longer impinges upon the closest wall
surface at the projected bubble center on that wall, by contrast to collapse near a single wall. Using
a high-order shock- and interface-capturing method, we simulate the collapse initially located at
different stand-off distances from the two walls making up the corner. In addition to characterizing
the collapse dynamics, we develop a geometric prediction of initial stand-off distances for which the
maximum wall pressure occurs in the corner. The article is organized as follows. After a description
of the problem and methods in Sec. II, the dynamics of a detached bubble collapsing in a corner
are investigated in Sec. III. We compare our simulations to experimental results and further explore
the kinematics in Sec. III C. The wall pressure and temperature produced are analyzed in Secs. III D
and III E, respectively. Then the dynamics of a bubble initially attached to the wall are discussed in
Sec. IV. Concluding remarks are provided in Sec. V.

II. PROBLEM DESCRIPTION AND PHYSICAL MODEL

We examine the classical Rayleigh collapse [5] of an isolated bubble near two perpendicular
rigid boundaries. We assume that the bubble is initially spherical with radius Ro = 500 μm, filled
with noncondensible gas with water vapor properties. While in practice the bubble may not be
perfectly spherical and stationary at maximum expansion, experimental images show a high degree
of radial symmetry at the corresponding time and we assume any interfacial velocity is small
[22,24]. Initially, the water temperature T∞ and the bubble temperature Tb,o are 300 K. The initial
gas pressure is set to 3.55 kPa, which is the saturation pressure of water at this temperature. The
problem is initiated by instantaneously raising the liquid pressure p∞ = 3.55 kPa by �p. We set
�p/p∞ = 1400 for all simulations, which is relevant to a variety of cavitation applications [30]. As
illustrated in Fig. 1, the bubble is initially located a distance Hx from a vertical rigid wall in the y-z
plane and a distance Hz from a horizontal rigid wall in the x-y plane. The corresponding normalized
initial stand-off distances are δx = Hx/Ro and δz = Hz/Ro. As in [22], the angle between the line
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FIG. 1. Schematic of the Rayleigh collapse of a single bubble near two perpendicular rigid walls.

connecting the corner and the bubble center with the x axis is θb. Cases bisected by θb = π/4 are
symmetric about the bisecting plane. Cases in which δx > 1 and δz > 1 represent a bubble initially
detached from both walls; δx � 1 and/or δz � 1 represent a bubble initially attached to both walls;
δx � 1 and δz > 1 represent a bubble initially attached to only the y-z wall. For attached bubbles,
the gas is in direct contact with the wall surface, i.e., there is no liquid film between the bubble and
the wall; the initial bubble volume is adjusted such that the initial potential energy of the collapse
Eo = �pVo is the same as that in the detached cases. We also consider the limit of δx → ∞.

The compressible Navier-Stokes equations are solved in both the liquid and the gas,

∂ρ

∂t
+ ∂

∂x j
(ρu j ) = 0, (1a)

∂ (ρui )

∂t
+ ∂

∂x j
(ρuiu j + pδi j ) = ∂τi j

∂x j
, (1b)

∂E

∂t
+ ∂

∂x j
[u j (E + p)] = ∂

∂x j
(uiτi j − Qj ), (1c)

where ρ is the density, ui the velocity vector, p the pressure, E = ρe + ρuiui/2 the total energy,
e the internal energy, and δi j the identity tensor. The viscous stress tensor τi j and heat flux Qj are
given by

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
+ μB

∂uk

∂xk
δi j, Qj = −κ

∂T

∂x j
, (2)

where μ is the dynamic shear viscosity, μB is the bulk viscosity, and κ is the thermal conductivity.
To capture material interfaces between different phases, we use the five-equation multiphase model
[31] and solve the transport equations

∂ (ρ (k)α(k) )

∂t
+ ∂

∂x j
(ρ (k)α(k)u j ) = 0, (3a)

∂α(k)

∂t
+ u j

∂α(k)

∂x j
− α(k)α(k′ ) ρ (k′ )(a(k′ ) )2 − ρ (k)(a(k) )2

α(k)ρ (k′ )(a(k′ ) )2 + α(k′ )ρ (k)(a(k) )2

∂u j

∂x j
= 0, (3b)
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TABLE I. Relevant gas and liquid properties.

Coefficients Water vapor Water

μ (Pa s) 1.8531 × 10−5 8.3283 × 10−4

μB (Pa s) 1.1119 × 10−5 2.5818 × 10−3

κ (W m−1 K−1) 0.026107 0.61497
n 1.47 1.19
B (MPa) 0 702.8
b (kg m−3) 0 6.61 × 10−4

c (J kg−1 K−1) 955 3610
q (J kg−1) 2.1 × 106 −1.2 × 106

where a is the sound speed and k and k′ represent each phase α(k) = 1 − α(k′ ). As done in relevant
past studies [20,32,33], we neglect surface tension and mass transfer effects since the flow is inertia
dominated. The Noble-Abel stiffened-gas equation of state [34] closes the system

ρ(e − q) = p

n − 1
(1 − ρb) + nB

n − 1
(1 − ρb) (pressure-wise) (4a)

= ρcT + B(1 − ρb) (temperature-wise), (4b)

where q, n, b, and B are experimentally determined parameters, given in Table I. For ideal gases,
n = γ represents the specific heat ratio, c = cv is the specific heat at constant volume, and B, q, and
b are zero.

The numerical method of Beig and Johnsen [28] is used to accurately and stably represent
discontinuities in the flow. The solution is advanced in time with a third-order total variation
diminishing Runge-Kutta scheme [35] with an adaptive step size satisfying advection and diffusion
stability constraints. The spatial scheme is high-order accurate, in which a fifth-order Weighted
Essentially Non-Oscillatory (WENO) scheme [36] is used at shocks and interfaces [37] and fourth-
order central difference elsewhere; the sensor of Henry de Frahan [38] discriminates between these
regions. For stability purposes, the source term in (3b) is set to zero for the first 1000 time steps [16]
and interfaces are initially smoothed over three computational cells. The validity of this numerical
scheme was thoroughly evaluated by Beig and Johnsen [28].

Owing to the problem symmetry with respect to the x-z plane, we simulate only half of the
domain with a symmetry boundary condition along this plane. The walls are adiabatic and perfectly
reflecting with no slip. Nonreflecting boundary conditions are used along the remaining boundaries.
A uniform Cartesian grid with 192 cells per initial bubble radius is used and the largest domain
size is 8Ro × 8Ro × 4Ro. Beig and Johnsen [28] examined the convergence of the spherical case
in comparison with the Keller-Miksis [39] solution and demonstrated that the chosen resolution is
satisfactory. To understand the dependence of the bubble dynamics on the proximity of the walls,
we conduct simulations in which the stand-off distances are varied as follows: 0.25 � δx � 4.0 and
0.25 � δz � 4.0. Due to the infinite nature of the walls, the dynamics of cases with initial stand-off
distances (δx, δz ) = (a, b) are the same as those with initial stand-off distances (δx, δz ) = (b, a), so
we only simulate cases with δz � δx. As a reference, we compare our results to bubble collapse near
a single wall.

III. DETACHED BUBBLES

A. Qualitative dynamics

We start by examining the dynamics and resulting pressure fields of detached bubbles. Figures 2
and 3 show contours of (numerical) schlieren, pressure, and velocity for simulations with (δx, δz ) =
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(a)

(b)

(c)

(d)

FIG. 2. Contours of (numerical) schlieren, pressure normalized by ρl al
√

�p/ρl and velocity magnitude
normalized by

√
�p/ρl for (δx, δz ) = (1.5, 3.0). Contours are of times (a) t = 0.163, (b) t = 1.155, (c) t =

1.199, and (d) t = 1.294, normalized by the Rayleigh collapse time 0.915R0
√

ρl/�p.
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(a)

(b)

(c)

(d)

FIG. 3. Contours of (numerical) schlieren, pressure normalized by ρl al
√

�p/ρl and velocity magnitude
normalized by

√
�p/ρl for (δx, δz ) = (2.5, 3.0). Contours are of times (a) t = 0.163, (b) t = 1.102, (c) t =

1.198, and (d) t = 1.261, normalized by the Rayleigh collapse time 0.915R0
√

ρl/�p.
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(1.5, 3.0) and (δx, δz ) = (2.5, 3.0), respectively. Time is normalized by the Rayleigh collapse time
tc = 0.915R0

√
ρl/�p. These two cases are chosen to contrast the dynamics that occur when δx/δz ≈

1 and when δx/δz is farther from unity. As the collapse begins, a rarefaction wave propagates outward
while a transmitted shock wave converges toward the bubble center. The rarefaction wave impinges
upon the closest wall first and then the farther wall. Upon each interaction, the relevant part of the
wave is reflected back toward the bubble. Until the time when the reflected wave hits the bubble,
the bubble is unaffected by the walls, so the collapse remains spherical [16]. The interaction of the
reflected rarefactions with the bubble gives rise to a nonuniform pressure distribution around the
bubble, thus causing the interface to accelerate asymmetrically. The pressure fields resulting from
these wave dynamics can be understood as the effects of the image bubbles, whose influence is
inversely proportional to their distance from the original bubble. However, by contrast to potential
flow calculations [24] in which these effects instantaneously take place, the present simulations
account for the finite propagation speed of the waves. Following early contraction, a region of
high-pressure and high-speed liquid is visible on the far side of the bubble. A reentrant jet forms
in a direction that is normal to neither wall and subsequently impinges upon the opposite side of
the bubble. This impact generates a water-hammer shock and causes the bubble to take the shape
of a vortex ring [Figs. 2(b) and 3(b)]. The water-hammer shock subsequently interacts with the
bubble, thus causing it to collapse and emit another shock. The pressure of the resulting shocks
varies azimuthally and appears to be highest in the direction of the jet [16].

For (δx, δz ) = (2.5, 3.0), the collapse is close to symmetric as the initial location is close the
angle θb = π/4. The wave front impinging upon the closer wall interacts with the bubble slightly
before the wave front impinging upon the farther wall. This small difference in time between the two
wave fronts gives rise to an asymmetry that is visible only at late times in the collapse. Though not
shown here, a bubble initially located along the bisection plane exhibits symmetry in its collapse.
For the case with (δx, δz ) = (1.5, 3.0), the nonuniformity of the collapse is clear, particularly at the
point of the jet impact impacting the bubble wall and late times.

The topology of the bubble throughout the collapse varies significantly with different initial
stand-off distances, which dictate the jet direction. For (δx, δz ) = (2.5, 3.0), the upper and lower
portions of the bubble at the point of jet impact are visibly very similar, whereas for (δx, δz ) =
(1.5, 3.0) the upper region of the bubble is noticeably larger. Also different between these two
cases are the shock waves that intersect in the corner. For the case with (δx, δz ) = (1.5, 3.0), the
water-hammer and implosion shocks are distinct when they intersect in the corner. The substantial
distance from the corner in the case with (δx, δz ) = (2.5, 3.0) results in a single shock by the time
it impinges upon the walls. When the ratio δx/δz is small or large the dynamics of the collapse are
more similar to those near a single wall. For cases where δx ≈ δz, the reflected waves intersect the
bubble at the same time and the collapse is symmetric about θb = π/4. The observed bubble shapes
match well with those from experimental studies, and the use of simulations in the present work
affords the ability to examine the kinematics of the collapse in detail and to quantify the pressure
and temperature fields.

B. Characterization of the bubble nonspherical shape

For bubbles lying off the bisecting plane, spherical symmetry is broken when the first portion
of the reflected rarefaction front interacts with the bubble. Bubbles sufficiently far from the walls,
i.e., distances such that the instant of collapse (minimum volume) occurs before the time when the
reflected rarefaction interacts again with the bubble, remain spherical until collapse. Comparing this
time of flight with the collapse time, it follows that bubbles within the following stand-off distance
from either wall collapse nonspherically:

δcr ≈ 0.5

⎡
⎣1 +

√
ρl a2

l

�p
+

(
p∞

(γ − 1)�p

)1/3(γ−1)
⎤
⎦. (5)
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(a) (b)

FIG. 4. Outlines for (a) (δx, δz ) = (1.5, 3.0) and (b) (δx, δz ) = (2.5, 3.0) and the measurement of λ.

This yields δcr ≈ 10.5 for the driving pressure used here. All simulations, with the exception of
single-wall cases for comparison, have both δx and δz smaller than δcr and as such the dynamics are
affected by both walls.

The collapse properties are characterized by the two geometric parameters δx and δz for certain
geometrical properties (e.g., jet angle and migration angle) over a range of initial stand-off distances.
Other quantities however depend on the absolute distance from the walls; e.g., the bubble reaches
a smaller volume before the reflected rarefaction waves can return and inform the bubble of
the geometry. As such, the characterization of quantities associated with the interfacial velocity
(collapse time, jet speed, etc.) require additional information beyond the ratio δx/δz. For this purpose
we calculate the deviation from the spherical shape of the bubble ξ = πλ/P , where λ is the film
thickness and P is the perimeter of the bubble’s outline along the center plane. The film thickness is
the shortest distance between the front and back sides of the bubble at any given time, as illustrated
in Fig. 4. In the limit of a spherical collapse λ = 2R(t ) and ξ = 1 at all times during the collapse.
When the jet forms, the shortest distance between the front and back sides is at the tip of the jet.
The area of the bubble cross section in this case is always greater than that of a circle with diameter
equal to the film thickness, so for nonspherical collapse 0 � ξ � 1. For all bubbles that are initially
spherical, the film thickness decreases from 2R0 at t = 0 to zero at the point at which the jet impinges
the opposite side; we calculate the film thickness and perimeter of the bubble along the center plane
until this point in time.

To appreciate the nonspherical evolution of the bubble, outlines of the interface along the center
plane up to the point at which λ ≈ 0.05 are shown in Fig. 4 for (δx, δz ) = (1.5, 3.0) and (δx, δz ) =
(2.5, 3.0). Figure 5 shows ξ for different initial stand-off distances with λ chosen to be around 0.05,
as at this value the jet has nearly penetrated the bubble wall. A different value of λ close to zero
may be chosen to calculate ξ ; however, the resultant trend in ξ will be similar, just scaled. The
collapse is most nonspherical for the bubbles closest to the wall, as evidenced by values of ξ close
to zero. As expected from the geometry, the values of ξ are symmetric about the line δx = δz. The
data nearly collapse onto a single line when plotted versus min(δx, δz ), indicating the closest wall
has the greatest effect on the collapse. The more spherical collapses occur farthest from the corner
where the walls have the least effect. The strength of the initial rarefaction is inversely proportional
to its original distance from the bubble, so increasing δx or δz decreases its effect on the collapse.
For two cases with the same values of δx/δz, the case with the greater value of

√
δ2

x + δ2
z collapses

more spherically for the same reason. The strength of all subsequent waves that interact between
the bubble and the walls decreases in magnitude while still contributing to the asymmetric collapse
by modifying the driving pressure and acceleration of the interface. When δx �= δz, the nonspherical
dynamics are most affected by the waves reflected off the closest wall, until the wave reflected off
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FIG. 5. Nonsphericity ξ vs (a) min(δx, δz ) and (b) initial stand-off distances. Blue diamonds denote δx =
1.25, red squares δx = 1.5, green deltas δx = 2.0, orange gradients δx = 2.5, teal right triangles δx = 3.0, and
purple left triangles δx = 4.0. Corner cases are closed and single-wall cases are open.

the other wall returns. At this point, the collapse becomes more nonspherical due to the enhanced
interactions of the additional sinks. The dynamics of two bubbles with the same values of δx/δz,
but different values of δx and δz are distinct because of the different reflected rarefaction strengths
and because the bubble-wave interactions begin at different points in the collapses. Those bubbles
initially closest to the corner experience the least spherical collapses because the asymmetry is
imparted on the bubble interface earliest in the collapse. For a given δx, increasing δz decreases the
deviation from spherical shape until the point at which δz > δcr , in which case the dynamics are
those of a bubble near a single wall, as the rarefaction reflected off the additional wall does not
reach the bubble before it collapses.

The increased nonsphericity due to the bubble-wall interactions affects key collapse quantities.
The minimum volume Vmin and collapse time tcollapse (time to minimum volume) are shown in
Figs. 6 and 7, respectively, for different initial stand-off distances. The minimum bubble volume
is a measure of the strength of the emitted shock; a smaller minimum volume gives rise to a
higher bubble pressure and thus stronger emitted shock. Holding either stand-off distance constant
and increasing the other leads to a smaller minimum volume. This behavior is consistent with
collapse near a single wall, where the minimum volume achieved at collapse is smaller for bubbles
increasingly far from the wall, because their collapse is more spherical. As with ξ the data collapse

FIG. 6. Minimum volumes vs (a) min(δx, δz ) and (b) initial stand-off distances. Blue diamonds denote
δx = 1.25, red squares δx = 1.5, green deltas δx = 2.0, orange gradients δx = 2.5, teal right triangles δx = 3.0,
and purple left triangles δx = 4.0. Corner cases are closed and single-wall cases are open.
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FIG. 7. Collapse times scaled by the Rayleigh collapse time vs (a) min(δx, δz ) and (b) initial stand-off
distances. Blue diamonds denote δx = 1.25, red squares δx = 1.5, green deltas δx = 2.0, orange gradients δx =
2.5, teal right triangles δx = 3.0, purple left triangles δx = 4.0, and gray circles other single-wall cases. Corner
cases are closed and single-wall cases are open.

when Vmin is plotted against min(δx, δz ). For a given δx however, the minimum volume is larger in the
cases near a corner than those near a single wall. These larger minimum volumes can be explained
by the dynamics leading to more intricate bubble morphologies of the collapses when compared to
those near a single wall, which results in less effective focusing of the liquid kinetic energy. The
impact of this decreased focus can also be seen in the longer collapse times for bubbles near a
corner than those in collapse near a single wall. The increased collapse time is a consequence of the
two additional image sinks, whose induced velocity reduces the inward interfacial velocity. Bubbles
initially closest to the wall have the longest collapse times because the initially emitted rarefaction
wave reduces the local driving pressure sooner in the collapse than in the case of bubbles located
farther away from the wall; a lower driving pressure slows down the dynamics and thus give rise
to a longer collapse time [5]. Under the influence of both walls making up the corner, this effect is
increased as the second wall reflects an additional portion of the initial rarefaction wave that then
returns to the bubble and further decreases the pressure field, although to a lesser degree than the
portion of the wave that returns from the closest wall. This behavior is supported by the observation
that bubbles collapsing near a corner have longer collapse times than a bubble collapsing near a
single wall. For all cases near the corner, the collapse time is notably longer than the Rayleigh
collapse time for these reasons.

C. Bubble kinematics and dynamics

The kinematics and dynamics of bubbles collapsing near a corner have been the focus of past
experimental studies [22–24], so we use this section to validate our results and examine specific
features of the collapse. As illustrated in Figs. 2 and 3, the direction of the reentrant jet formed in
bubble collapse near a corner is dependent on the initial stand-off distances from the two walls;
additionally, the part of the emitted shock with the highest amplitude appears to propagate in the
direction of the jet. In cases where the bubble is sufficiently far from the second wall (δz > δcr),
the jet is perpendicular to the closest wall. However, for bubbles sufficiently close to both walls
[(δx, δz ) < δcr], the jet points in a direction that is not at the closest initial location along either wall,
but somewhere in between, which is one of the ways in which the shock wave dynamics are affected
by the presence of the second wall.

To calculate the jet angle, we define the jet tip as the point along the interface on the far side of
the bubble that is closest to the interface on the far side, once the bubble starts to involute, i.e., is no
longer purely concave. The jet angle as a function of time is then calculated as the angle between jet
positions at successive time steps. The jet angle is averaged over the interval starting from the time
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π
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FIG. 8. Jet angle θ j as a function of (a) the ratio of the initial stand-off distances δx/δz, with red diamonds
denoting direct simulations, green circles experimental data from [22], blue triangles experimental data from
[24], black line [arctan(δx/δz )] Eq. (6), and gray dashed line (arccos[Im(�uj )/|�uj |]) Eq. (8), and (b) initial
stand-off distances, with blue diamonds denoting δx = 1.25, red squares δx = 1.5, green deltas δx = 2.0, orange
gradients δx = 2.5, teal right triangles δx = 3.0, purple left triangles δx = 4.0, and gray circles other single-wall
cases. Corner cases are closed and single-wall cases are open.

at which the jet is first detected and the time at which the jet impacts the far side of the bubble; the
angle is nearly constant throughout this interval. For a range of initial stand-off distances similar to
ours, experimental data were found to obey the power law [22]

θ j = π

2
(δx/δz )m ≈ arctan(δx/δz ), m = 0.981 ± 0.035, (6)

where m is a parameter fit to experimental results. Another measure of jet angle is from Tagawa and
Peters [24], who used potential flow to determine the jet angle based on the jet velocity �u j ,

�uj

C
= eiθb − ei(2π−θb)

[1 − cos(2θb)]3/2
+

g−1∑
k=1

(
eiθb − ei(2πk/g−θb)

[1 − cos(2θb − 2πk/g)]3/2
+ eiθb − ei(2πk/g+θb)

[1 − cos(2πk/g)]3/2

)
, (7)

where C = p/(π
√

128R2
0), g is the integer index of the corner geometry, p is the sink strength, and

g = 2 describes two perpendicular walls. From Eq. (7) the jet angle is

θ j = arccos[Im(�u j )/|�u j |]. (8)

Figure 8 shows the jet angle as a function of δx/δz, comparing our numerical simulations to the
experimental data from [22,24], as well as to theoretical results from Eqs. (6) and (8). Our simulation
results fit well within the bounds of the error bars of Brujan et al. [22] and Tagawa and Peters [24]
and follow trends similar to those proposed in each, respectively. For most of the δx/δz range under
consideration, the models provide upper and lower bounds to the experimental and simulations data.
This agreement indicates that our simulations also accurate represent the jet dynamics governed by
interactions between the bubble and its images as described by potential flow theory.

Over the course of the collapse, the bubble migrates toward both walls to varying degrees. We
calculate the volumetric centroid of the bubble by taking moments of the volume fraction field,
throughout the collapse. Bubbles with one of δx or δz greater than δcr follow a straight line toward
the closest wall. Bubbles with initial stand-off distances such that they are affected by both walls
follow trajectories somewhere in between. One method of characterizing the trajectory is utilized
by Brujan et al. [22], who quantified the general direction of the bubble motion with a parameter
defined as the migration angle θmig, measured between the initial centroid location and the location
at collapse. Figure 9 compares this migration angle between our simulations, Brujan’s experiments,
and Eqs. (6) and (8). Again, the agreement between simulations and experiments is reasonable;
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FIG. 9. Bubble migration angle θ j as a function of (a) the ratio of the initial stand-off distances δx/δz, with
red diamonds denoting direct simulations, green circles experimental data from [22], black line [arctan(δx/δz )]
Eq. (6), and gray dashed line (arccos[Im(�uj )/|�uj |]) Eq. (8), and (b) initial stand-off distances, with blue
diamonds denoting δx = 1.25, red squares δx = 1.5, green deltas δx = 2.0, orange gradients δx = 2.5, teal
right triangles δx = 3.0, purple left triangles δx = 4.0, and gray circles other single-wall cases. Corner cases
are closed and single-wall cases are open.

discrepancies may be explained by the deviation in angle between the first and subsequent collapses
in [22]. Our numerical simulations agree well with the potential flow model from [24], while the
experiments show better agreement with Eq. (6), which was developed based on these experiments.

The location of the bubble centroid at collapse is important as it is a good approximation of the
origin of the shock emitted upon collapse. Figure 10(a) shows the distance min(δxc, δzc) between
of the bubble centroid at collapse and the near wall, where δxc and δzc are the normalized x and z
positions of the bubble centroid at the point of collapse.

While the centroid positions at collapse are very similar for collapse near a corner and collapse
near a single wall, the latter are systematically closer to the wall than the former. The difference
in centroid locations between the single wall and corner cases is largest near the corner and
monotonically decreases as min(δx, δz ) increases. In other words, the location of the bubble at
collapse is slightly farther from the wall in collapse near a corner due to the effect of the second
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FIG. 10. (a) Plot of min(δxc, δzc ) vs min(δx, δz ), with blue diamonds denoting δx = 1.25, red squares δx =
1.5, green deltas δx = 2.0, orange gradients δx = 2.5, teal right triangles δx = 3.0, and purple left triangles
δx = 4.0. Corner cases are closed and single-wall cases are open. (b) Migration from initial stand-off distances
to collapse location vs initial stand-off distance, with red circles denoting �xm vs δx and blue squares �zm vs
δz. The black dashed curve is a direct fit of �xm and �zm to aζ 3/5 + b, with a ≈ 1.9 and b ≈ −0.06.
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FIG. 11. Maximum jet speed vs (a) min(δx, δz ) and (b) initial stand-off distances. Blue diamonds denote
δx = 1.25, red squares δx = 1.5, green deltas δx = 2.0, orange gradients δx = 2.5, teal right triangles δx = 3.0,
and purple left triangles δx = 4.0. Corner cases are closed and single-wall cases are open.

wall. This behavior is consistent with the trend in the maximum wall pressure observed in the next
section, in that the difference between the maximum wall pressure in the single-wall and corner
cases decreases with increasing min(δx, δz ).

The distance traveled from the initial position is calculated as (�xm,�zm) = (δx − δxc, δz − δzc).
This motion is important when predicting impact loads as the centroid location at collapse is a
reasonable measure of the location where the shock is released. Figure 10(b) shows the distance
traveled in each direction, measured from the initial stand-off distances to the position at collapse.

Bubbles that are initially farthest from either wall experience the smallest change in the position
of their centroids until the collapse. The changes in distance in x and in z follow a similar trend.
Supponen et al. [40] defined an anisotropy parameter ζ = 0.195(δ/R0)−2, which is a dimensionless
version of the Kelvin impulse and showed that it can be used to predict the dynamics of bubbles
collapsing near a single rigid wall. They further suggested that for strong jets the displacement
of the centroid scales with ζ 3/5 when the bubble location is the point where the jet impacts the
opposite side (ζ > 0.1 is considered strong; present simulations have 0.5856 � ζ � 0.0572). Our
simulations exhibit a similar dependence of the migration distance on the stand-off distance, which
can be seen as the fit curve in Fig. 10(b). The bubble centroid at collapse can be then predicted
by δ jc = δ j − aζ

3/5
j − b, where j = x, z. The necessity to scale and add a constant to ζ 3/5 is likely

due to different measurements of the bubble centroids and to the effects of the second wall. With
the introduction of a constant scaling and offset to account for the different physics in the corner
compared to near a single wall, the Kelvin impulse accurately predicts the migration behavior
observed in each direction. The motion toward both walls is a key difference in the dynamics
between those of collapse near a single wall.

The speed of the jet is indicative of the strength of the water-hammer shock produced upon
impact with the opposite side of the bubble, as its pressure scales as ρl al |u j |, where ρl is the liquid
density, al is the sound speed in the liquid, and |u j | is the velocity magnitude [41]. Figure 11 shows
the maximum jet speed for different initial stand-off distances. The results are consistent with our
observations of minimum volume and collapse time, with the fastest jets occurring farthest from
the corner and the slowest occurring closest. Based on the observation that nonsphericity increases
as bubbles start their collapse closer to the walls, the maximum jet speed by the deviation from
spherical shape indicates that more spherical collapses give rise to increased speeds. Additionally,
when affected by two walls, the jet speeds are not as high as those achieved in collapse near a single
wall, consistent with the fact that the velocity is reduced due to the flow induced by the additional
two image sources. As such, the water-hammer pressure is lower for bubble collapse near a corner
than near a single wall.
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FIG. 12. Time history of wall pressure at the location of the maximum wall pressure (red solid line), at the
corner (green dash-dotted line), (x, y, z) = (δx, 0, 0) (gray dash–double-dotted line), and (x, y, z) = (0, 0, δz )
(blue dashed line) for (a) (δx, δz ) = (1.5, 3.0) and (b) (δx, δz ) = (2.5, 3.0).

D. Wall pressure

The maximum pressure produced by a collapsing bubble along a wall is the quantity char-
acterizing impact loads in cavitation erosion. If only δx or δz is greater than δcr , the problem
corresponds to collapse near a single wall, in which case the maximum pressure decreases with
increasing initial stand-off distance [16,20]. In the present work, all cases near the corner have
initial stand-off distances within δcr . Since the dynamics are affected by both walls, the pressure
produced by collapse near a corner is different than that near a single wall in the following ways: (i)
The maximum reentrant jet velocity is affected by the proximity of the second wall, (ii) the part of
the emitted shock with the highest amplitude propagates in the direction of the jet, which no longer
points toward the nearest wall but is deflected toward the corner, and (iii) the location of the bubble
centroid at collapse is attracted toward the second wall. For bubbles whose collapse is affected by
both walls, the maximum pressure is unlikely to be produced at the location along the wall closest to
the initial bubble position, as would be the case in collapse near a single wall. To better understand
these effects at play, Fig. 12 shows the time history of the wall pressure at (x, y, z) = (δx, 0, 0),
(x, y, z) = (0, 0, δz ), the pressure at the corner, and the maximum wall pressure over the course of
the simulation, for two sets of stand-off distances. Interpreting the data in conjunction with Figs. 2
and 3, the wall pressure initially decreases due to the rarefaction reflecting off the closest wall and
then does not change significantly until the water-hammer shock and implosion shock interact with
the closest wall, which causes a rapid increase in the pressure. For the case (δx, δz ) = (1.5, 3.0),
the maximum wall pressure is achieved by this process, though at a location along the wall closer
to the corner. A similar phenomenon occurs along the farther wall, though the peak pressure is
lower. The time delay between the water-hammer and implosion shocks can be seen in the first
peak of Fig. 12(a), with the maximum occurring only after the implosion shock impinges upon
the wall. In the case (δx, δz ) = (2.5, 3.0), the portion of the shock front reflecting off the closest
wall and that reflecting off the farther wall intersect close to the corner, thereby giving rise to
the highest pressure at that location, even if the shocks do not exactly intersect there. In this
case, there is no delay between the water-hammer and implosion shocks in this case, as expected
from Fig. 3.

The above observations suggest that there are geometrical configurations for which the pressure
generated in the corner is higher than that produced along either wall. Despite the complex bubble
morphologies and shock dynamics in these collapses, acoustic arguments can be used to predict the
initial stand-off distances for which the maximum wall pressure is higher in the corner than along
either wall. In the case of δx > δcr and δz > δcr , the collapse is spherical and the shock pressure is

023601-14



PRESSURE FIELDS PRODUCED BY SINGLE-BUBBLE …

0 1 2 3 4 5
0

1

2

3

4

5

δx

δ z
0.0

1.3

δ z
p
/δ

z

FIG. 13. Location of maximum wall pressure δzp/δz. The gray region shows pr � 1.

given by

ps(r)

p∞
=

[
γ −1/(γ−1)

(
6γ 2 p∞

ρl a2
l

)1/(2γ−1)
]−(γ−0.38)(

�p

p∞

)(γ−0.38)/(2γ−1)( r

R0

)−1.13

, (9)

where γ is the polytropic index and r is the radius of the radially propagating shock wave [16]. We
assume that the shock pressure scales in the same way for collapse in a corner. Neglecting bubble
migration during collapse and assuming the jet impacts the bubble wall at the centroid, the distance
from the bubble to the wall in the direction of travel of the jet and the distance from the bubble
to the corner are Lw = δx/ cos θ j and Lc = √

δ2
x + δ2

z , respectively. The pressures at the wall and
corner, given the shock pressure is greatest in line with the jet [16], are then pw = 2pbcL−1.13

w and
pc = 4pbcL−1.13

c , where pbc is the shock pressure immediately after the collapse. The coefficients 2
and 4 come from the image bubbles doubling and quadrupling the shock pressure at the wall and
corner, respectively, and the power of −1.13 is based on underwater explosion scalings [42]. The
ratio of pressures at the wall and corner is then

pc

pw

= 2

(
Lc

Lw

)−1.13

= 2

(
δx

cos θ j

√
δ2

x + δ2
z

)1.13

. (10)

All of the constants divide out such that the ratio of pressures depends only on the initial stand-off
distances. This result directly predicts the initial stand-off distances for which the maximum pres-
sure occurs directly in the corner. As observed in experiments [22] and in the present simulations, the
bubble migrates during its collapse due to the presence of the walls. Given that the shock emitted
upon collapse decays as it propagates outward, closer proximity to the wall(s) at the instant of
collapse results in higher pressures than if that same shock had been released at the initial centroid
location. The degree of motion toward each wall is straightforward to calculate as described in
Sec. III C. As such, we replace δx and δz with δxc = δx − �xm and δzc = δz − �zm to find

pr = 2

(
δxc

cos θ j

√
δ2

xc + δ2
zc

)1.13

≈ 2

⎛
⎜⎝ δx − aζ 3/5

x − b

cos θ j

√(
δx − aζ

3/5
x − b

)2 + (
δz − aζ

3/5
z − b

)2

⎞
⎟⎠

1.13

. (11)

This semiempirical expression predicts the region in δx-δz space for which the pressure in the corner
exceeds that on either wall, taking into consideration the motion of the bubble centroid. The jet
angle can be predicted using only the initial stand-off distances with Eq. (6) or (8). Comparing this
expression to our simulation results, the wall location δzp at which the maximum pressure is achieved
is shown in Fig. 13. The region of initial stand-off distances where Eq. (11) predicts pr � 1, i.e.,
the maximum pressure occurs in the corner, is shown in gray. The maximum pressure is achieved
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FIG. 14. Maximum wall pressure vs (a) min(δx, δz ) and ξ (inset) and (b) initial stand-off distances. Blue
diamonds denote δx = 1.25, red squares δx = 1.5, green deltas δx = 2.0, orange gradients δx = 2.5, teal right
triangles δx = 3.0, and purple left triangles δx = 4.0. Corner cases are closed and single-wall cases are open.

in the corner for cases that lie along the δx = δz line due to the double reflection of the shock at that
location, as well as for those cases within a certain range of this line. In all other cases, the maximum
pressure occurs within 0.5Ro from the closest initial wall location, in the direction of the corner,
consistent with the jet angle. Overall, the agreement between our simulations and our theoretical
model (11) is good, indicating that the location of the maximum wall pressure near a corner is
well described using these shock interactions. If the desired effect is to reduce damage in a corner
of a component undergoing repeated cavitation, this result suggests that a design that minimizes
nucleation sites with δx/δz ≈ 1 is desirable. Conversely, if high pressure in the corner is desirable
(as may be the case for ultrasonic cleaners) then maximizing nucleation sites with δx/δz ≈ 1 would
be optimal.

The maximum wall pressure itself is a key quantity of interest in cavitation damage. Figure 14
shows the maximum wall pressures for different initial stand-off distances. The highest wall
pressures occur for collapse closest to the walls, as expected. The maximum wall pressure decreases
quickly with initial stand-off distance for collapse both near a corner and near a single wall because
of the decay of the emitted shock with propagation distance. When parametrized by ξ , the pressures
produced by collapse near a single wall are consistently higher than those produced by collapse
near two walls. This follows from (i) the decreased jet speeds for collapse near a corner, which
result in a lower water-hammer pressure, and (ii) the larger minimum volumes of collapse near a
corner, which result in a weaker implosion shock. These two differences in the dynamics are a direct
consequence of the second wall making up the corners. Those cases for which the wall pressures are
higher for collapse near a corner than for collapse near a single wall are cases where the reflected
shocks intersect at the corner. The difference between the pressures in collapse near a corner and
collapse near a single wall decreases with increasing distance from the walls as the effect on the
walls becomes small. The asymmetry of the collapse due to the second wall generally manifests in
less effective focusing of the energy in the collapse, leading to weaker shocks and therefore lower
wall pressures than those produced in collapse near a single wall. It follows that the presence of the
second wall is generally expected to decrease the damage potential of bubble collapse compared to
collapse near a single wall.

E. Wall temperatures

Certain materials may be sensitive to temperatures produced during the bubble collapse [4], in
which case the maximum wall temperature is an important quantity of interest. As illustrated in
[16], bubble collapse near a single wall can increase the wall temperature via two mechanisms:
(i) As it reflects off the wall, the shock emitted upon collapse raises the temperature of the water
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FIG. 15. Maximum wall temperature (UHMWPE) vs (a) min(δx, δz ) and (b) initial stand-off distances.
Blue diamonds denote δx = 1.25, red squares δx = 1.5, green deltas δx = 2.0, orange gradients δx = 2.5, teal
right triangles δx = 3.0, and purple left triangles δx = 4.0. Corner cases are closed and single-wall cases are
open.

adjacent to the wall for a short period, and (ii) bubbles sufficiently close to the wall come into close
proximity to the wall at collapse, at which point their contents can reach a high temperature and
lead to heat conduction to the wall. The resulting wall temperature can be calculated by solving
the corresponding heat conduction problem. Though both mechanisms are short lived, the relatively
large temperature difference can give rise to significant changes in wall temperatures. The maximum
wall temperature achieved during collapse near a corner is shown in Fig. 15 for different initial
stand-off distances assuming properties corresponding to ultrahigh-molecular-weight polyethylene
(UHMWPE) as it is relevant to applications of interest [28]. Most cases follow mechanism (i), with
the shock wave impingement creating a transient increase in the wall temperature. Bubbles initially
closest to one or both walls (i.e., with the smallest ratio δx/δz) follow mechanism (ii), whereby
the bubble comes in contact with the wall. The importance of contact is visible by considering the
cases with δx = 1.25 and increasing δz; the wall temperature increases despite the maximum wall
temperature of all cases considered occurring for δx = δz = 1.25.

Though not shown here for conciseness, the locations of the maximum wall temperatures exhibit
a behavior similar to the locations of the maximum wall pressures. Cases for which δx/δz is close to
unity experience the maximum wall temperature directly in, or very close to, the corner. Other cases
give rise to the maximum wall temperature along the wall, away from the corner. Equation (11)
can also be used to determine initial stand-off distances for which the maximum wall temperature
occurs in the corner rather than along the wall. Initial stand-off distances for which the maximum
temperature occurs in the corner exactly match those for which the maximum pressure occurs in the
corner.

The temperatures calculated here do not however reach the melting point of the wall and thus
significant damage is unlikely caused as a direct result of the heat produced; instead, experimentally
observed damage is likely primarily due to increased wall pressure. This finding is consistent with
that of Beig et al. [16] for UHMWPE. Despite the inability of a single bubble to reach melting
temperatures, repeated collapses may transfer sufficient heat to cause damage. Materials with lower
melting temperatures may also be susceptible to melting.

IV. ATTACHED BUBBLES

Bubbles attached to a rigid surface have been shown to produce high pressures [1] as the reentrant
jet directly impinges upon the surface. Additionally, given the direct contact of the hot gas at
minimum volume, high wall temperatures may be produced. Although the contact line dynamics
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FIG. 16. Contours of (numerical) schlieren, pressure normalized by ρl al
√

�p/ρl and velocity magnitude
normalized by the characteristic interfacial speed

√
�p/ρl for (δx, δz ) = (0.75, 1.25) at (a) t = 1.387 and

(b) t = 1.607.

cannot be represented in the present numerical framework, we assume like Trummler et al. [27] that
their effect is negligible given the present interest in inertia-dominated collapse.

Figures 16 and 17 show contours of numerical schlieren, pressure, and velocity magnitude
for simulations with (δx, δz ) = (0.75, 1.25) and (δx, δz ) = (0.25, 0.75). The bubble is immediately
aware of the wall(s) to which it is attached. A reentrant jet develops, again at an angle that is
not normal to the attached wall, and penetrates the bubble. The jet directly impinges upon the
wall, thereby generating an intricate set of shocks that further interact with the bubble. In the
(δx, δz ) = (0.75, 1.25) case, the bubble appears to take a toroidal shape with one part attached to the
wall, while for (0.25, 0.75) the bubble converges toward the corner and eventually detaches from
one side after the shock is generated.

As compared to collapse of a bubble initially detached from the walls, the shock waves produced
by collapse of a bubble initially attached to one or both walls are more numerous and complex. This
is a consequence of the impact of the reentrant jet on the wall, which reflects the generated shock
back into the portions of the bubble attached to the wall. This reflected shock propagates through
the bubble and impinges upon the air-water interface of the bubble wall and generates a reflected
rarefaction which returns to the wall and further contributes to the number of waves present in
the flow field. The direct impact of the reentrant jet on the wall produces high pressures along the
wall, and the strength of the shock does not decay significantly as they travel to the walls due to
their proximity to the walls. As such, the wall pressures produced by collapse of a bubble initially
attached to one or both walls are expected to be higher than those produced by collapse of a bubble
initially detached from both walls.

Conversely, the strong effects of the wall are expected to reduce the intensity of collapse for
attached bubbles. Figure 18 shows the collapse times for different values of δz. The collapse times
decrease with increasing δz and are slower than in the detached case, as expected due to the more
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FIG. 17. Contours of (numerical) schlieren, pressure normalized by ρl al
√

�p/ρl and velocity magnitude
normalized by the characteristic interfacial speed

√
�p/ρl for (δx, δz ) = (0.25, 0.75) at (a) t = 1.319 and

(b) t = 1.493.

rapid reduction in driving pressure following wave reflection off the wall. The lack of a strong
dependence on δx indicates that the collapse time depends most on the shock reflecting off the
far wall. As previously discussed, a longer collapse time implies a less violent collapse, which is
consequential for the jet speed and maximum wall pressure.

The jet angles point almost directly toward the corner for small δz and decrease with increasing
δz. Consistent with the collapse times, the data do not show variability with δx; they also approach
the expected value of θ j = 0 as δz is increased toward δcr . The jet angle of bubbles initially attached
to one or either wall does not appear to follow (6) or (8), which implies potential flow does not
accurately approximate the collapse dynamics, likely due to the significant compressibility effects.

The ambivalence toward δx in both the collapse time and jet angle of the attached cases
(particularly those attached to only one wall) is likely because the initial rarefaction travels normal
to the bubble surface, so the effect of the wall is not experienced by the bubble interface until the
radially converging transmitted shock wave reflects off the walls and returns to the bubble interface.
The rarefaction returning from the far wall breaks the axisymmetry and nonuniformly changes the
driving pressure around the bubble, hence the strong dependence on δz.

Consistent with the collapse times, the jet speeds are lowest for collapse closest to the corner.
While for each value of δx the jet speed does not increase monotonically with increasing distance
from the corner, the jet speeds are generally increasing. The maximum jet speed depends on the local
dynamics, which is complex due to the wave-interface interactions, such that their dependence on δx

is not straightforward and we observe this nonmonotonic behavior. As for fully detached bubbles,
the jet speeds are lower than in collapse near a single wall. Compared to the jet speeds observed
for fully detached bubbles, the jet speeds observed here are generally lower, again suggesting that
the collapse of bubbles initially attached to either wall are less violent than their initially detached
counterparts.
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FIG. 18. (a) Collapse time, (b) jet speed, (c) jet angle, and (d) maximum wall pressure vs δz. Blue diamonds
denote δx = 0.25, green squares δx = 0.5, and red deltas δx = 0.75. Corner cases are closed and single-wall
cases are open.

The maximum wall pressure occurs where the jet impinges upon the wall and is thus dependent
on the jet angle. The resulting maximum wall pressure depends on two competing factors: On one
hand, the jet speeds are lower for attached bubbles than for detached bubbles, so the water-hammer
pressure is expected to be lower; on the other hand, the bubble is closer, if not touching the wall,
such that the wall experiences the full effect of the jet impact.

There are two regions of behavior for each δx value. For δx = 0.25 and 0.75, when δz < 2 there
is no clear trend in the pressure. The same is noted for δx = 0.5 and δz < 1.25, and similar to
the maximum jet speed, in these cases the dynamics are governed by the complex shock-interface
interactions and characterization is not straightforward. For δx = 0.25 and 0.75, when 2 � δz � δc,
and for δx = 0.5, when 1.25 � δz � δc, we observe a monotonic decrease in the maximum wall
pressure with increasing δz. The maximum wall pressure appears to converge to the limiting case of
bubble collapse near a single wall for δx = 0.75; however, collapse near a single wall with δx = 0.5
shows a substantially higher pressure. This behavior results from a faster reentrant jet which causes a
strong water hammer. We expect that as δz approaches δcr the maximum wall pressures for δx = 0.5
and 0.25 increase to match those in collapse near a single wall.

V. CONCLUSION

In this article we conducted high-resolution numerical simulations of Rayleigh collapse of a gas
bubble near a corner for varying initial stand-off distances to understand the role of the second
(perpendicular) wall in Rayleigh collapse near a single wall. We were particularly interested in the
maximum pressure produced along the wall and the phenomena governing it, as this quantity is the
most consequential hydrodynamic metric for cavitation erosion.
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Compared to collapse near a single wall, a bubble is affected by the second wall only if it is within
a critical distance from the wall based on the time it takes for the initially released rarefaction to
reflect back to the bubble. This reflected rarefaction wave alters the pressure distribution around the
bubble, thereby modifying the pressure field by reducing it locally and giving rise to an asymmetric
distribution. In the case of collapse near a corner, the different parts of the rarefaction interact
with the bubble at different times depending on the initial stand-off distance. This reflection off
the second wall communicates the presence of the extra image sinks and breaks the axisymmetry
of the converging flow, leading to a deflection of the reentrant jet toward the corner. As such, the
angle of the jet can be parametrized solely by the ratio of stand-off distances. Other key collapse
properties (e.g., collapse time, minimum volume, and maximum jet speed) can also be described
by a single parameter, the deviation from spherical shape of the bubble, which can be related to
the Kelvin impulse. Overall, the presence of the second wall inhibits the collapse, i.e., collapse
times are slower, minimum volumes are larger, and jet speeds are slower when the bubble collapses
in a corner compared to collapse near a single wall. These dynamics lead to shock emission with
properties different from those observed in collapse near a single wall, in the following ways: (i)
The maximum reentrant jet speed (and thus water-hammer shock magnitude) is reduced by the
proximity to the second wall, (ii) the highest magnitude along the emitted shock front is in the
direction of the jet and thus not in the direction normal to either wall, and (iii) the migration of
the bubble toward the closest wall is hindered by the second wall such that the bubble collapses
farther from the closest wall than in collapse near a single wall. The combination of these effects
leads to, in general, wall pressures that are lower than it would in the case of collapse near a single
wall. An additional difference is that the second wall causes an additional reflected shock, which
interacts with the shock reflected off the original wall. A consequence is the doubling of pressure
in the corner and enhanced wall pressure. Using theoretical arguments, we developed expressions
for the maximum wall pressure produced by bubble collapse near a corner and determine which
initial stand-off distances lead to higher pressures in the corner than along the closest wall. We also
considered heat transfer during this process, as well as the collapse of attached bubbles.

This work sets the stage for studies in more intricate geometries, as well as collapse of a larger
number of bubbles. In such situations, bubbles may form along rigid surfaces, such that contact line
dynamics may need to be investigated.
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