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Simple numerical and theoretical insights

Louis-Vincent Bouthier * and Romain Castellani
Groupe CFL, CEMEF, Mines Paris, PSL Research University, 06904 Sophia Antipolis, France

Sébastien Manneville
ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France

and Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France

Arnaud Poulesquen
CEA, DES, ISEC, DE2D, SEAD, LCBC, Université de Montpellier,

Marcoule, 30207 Bagnols-sur-Cèze Cedex Cedex, France

Rudy Valette and Elie Hachem
Groupe CFL, CEMEF, Mines Paris, PSL Research University, 06904 Sophia Antipolis, France

(Received 30 August 2022; accepted 31 January 2023; published 23 February 2023)

Aggregation and disaggregation of clusters of attractive particles under flow are studied
from numerical and theoretical points of view. Two-dimensional molecular dynamics simu-
lations of both Couette and Poiseuille flows highlight the growth of the average steady-state
cluster size as a power law of the adhesion number, a dimensionless number that quantifies
the ratio of attractive forces to shear stress. Such a power-law scaling results from the
competition between aggregation and disaggregation processes, as already reported in
the literature. Here we rationalize this behavior through a model based on an energy
function, which minimization yields the power-law exponent in terms of the cluster fractal
dimension, in good agreement with the present simulations and with previous works.
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I. INTRODUCTION

Colloidal suspensions composed of attractive particles that aggregate into clusters when dis-
persed into a liquid medium have raised great interest for a number of decades due to their wide
range of applications, from paints and coatings to food products or construction materials [1–8]. The
large variety of attractive forces driving cluster aggregation, including van der Waals interactions,
depletion or capillary forces, combined with stabilizing repulsive forces, such as electrostatic or
steric interactions, lead to a complex phase diagram involving equilibrium liquid or phase-separated
regimes as well as out-of-equilibrium gel or glassy phases [2,3,9,10]. Beyond their phase behavior
at rest, understanding how colloidal suspensions respond to deformation and flow is pivotal for their
processing and their practical use. Thus, a huge amount of work has been devoted to the rheology
of colloidal suspensions and their structure under external mechanical solicitations [1–3,11,12]. In
particular, one key question concerns the evolution of particle clusters under shear.

Colloidal clusters generically show a ramified structure characterized by a fractal dimension D
linking the number of particles n(l ) in the cluster to its size l through n(l ) ∝ lD [13–15]. Other
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structural parameters may be identified, such as the chemical dimension related to the number
of bonds in the shortest path in a cluster [16], the connectivity, or the coordination number [17].
Since the seminal work of Weitz et al. [18,19] on diffusion-limited aggregation, a large number
of experimental studies have characterized the microscopic mechanisms underpinning cluster for-
mation at rest, either from direct visualization [20,21] or from scattering techniques [22]. In cases
where colloidal aggregation leads to the formation of a space-spanning cluster network, i.e., to a
colloidal gel, these measurements have provided key information on both the maximum cluster size
� and their fractal dimension D [23]. When shear is applied to a flocculated suspension, aggregates
break up and form a suspension of isolated clusters. The steady-state cluster size distribution is
a key observable and the dependence of � and D on the shear stress applied to the suspension
has been probed by combining light, x-ray, and neutron scattering and rheometry [24–27]. Typical
results are that (i) � decreases as a power law of the shear stress σ , � ∝ σ−m, with an exponent
m ranging from 0.2 to 0.5 [28,29], and (ii) D increases from 1.8 to 2.2 depending on the specific
aggregation mechanism to 2.4–2.7 under shear, a phenomenon known as “shear-induced cluster
densification” [24,30].

Furthermore, thanks to the growth of computational capabilities over the past decade, large-scale
numerical simulations have been developed to model suspensions, both at rest and under shear,
with up to several millions of colloidal particles [31,32], sometimes taking into account the solvent
through hydrodynamic interactions [33–37]. The model suspensions rely on various idealized two-
body interaction potentials [38], which in some cases include bending stiffness [17,39,40] or solid
friction [41–43]. One of the main advantages of numerical simulations is that they yield a complete
picture of the cluster microstructure. Another modeling approach referred to as “population balance
model” (PBM), relies on kinetic equations for “classes” of clusters of given sizes, which mimic
the competition between aggregation and disaggregation processes through the use of various
kernels [44–47]. Although some ingredients of the kernels can be theoretically predicted thanks to
Smoluchowksi equations, in practice, PBM often require a significant amount of empirical tuning
of the kernel parameters [15,48].

Strong theoretical predictions have also been derived from analytical models that relate micro-
scopic parameters, such as the interparticle bond stiffness, to macroscopic quantities, such as the
elastic modulus G′ at rest, the yield strain γy, or the dynamic viscosity η under shear [12,49,50]. In
particular, one popular model by Wessel and Ball [11] predicts that � ∝ σ−1/3 from a force balance
under the assumption that the clusters behave hydrodynamically like compact spheres. While this
model provides a correct estimate of the exponent m for various experiments [26], it does not
account for the range of exponents reported in the literature [27,51,52], most probably due to the
stringent assumption of hydrodynamically compact clusters. More refined models have considered
soft, highly deformable clusters leading to m = 1/2 rather than m = 1/3 for rigid aggregates [53].
Yet, to the best of our knowledge, there is no general theoretical framework that may describe the
behavior of colloidal clusters under an external stress.

The goal of the present paper is to propose very general theoretical arguments to predict the
steady-state size � of colloidal aggregates submitted to an external solicitation. Starting from
dimensional analysis, we show in Sec. II that the competition between cluster aggregation and
disaggregation can be captured through the minimization of an energy function. In Sec. III, we
then provide evidence for the existence of an energy minimum in simple numerical simulations.
We proceed to detail an analytical model in Sec. IV, which yields a power law for � as a function
of the adhesion number, a dimensionless number that quantifies the ratio of attractive forces to
shear stress. Finally, this model is compared to the coagulation-fragmentation approach and to
previous experimental and numerical findings in Sec. V. Conclusions and open questions are drawn
in Sec. VI.
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II. GENERAL FRAMEWORK

Before describing the general approach based on a grand-canonical free energy, we start with
simple dimensional arguments to justify that the competition between cluster aggregation led by
attractive forces and disaggregation driven by shear forces depends on a single dimensionless group,
namely the adhesion number Ad, once the attraction range is fixed. As discussed in Refs. [41,54],
attractive forces may be estimated by Ua/δ2, with U the depth of the interaction potential between
two particles, a the particle radius, and δ the range of interaction, which can be taken as the
center-to-center distance between two particles at equilibrium or as the width of the potential well.
Disaggregating forces, on the other hand, may be estimated by σa2, with σ the external stress
exerted on the clusters. One chooses here, as a distinction from the literature, to consider the stress
rather than the shear rate because (i) whenever the shear rate is involved in similar definitions, it
appears as multiplied by the solvent viscosity, therefore as a shear stress, and (ii) one is convinced
that stress drives the disaggregation, like in plasticity or fracture [55–58], rather than a kinematic
quantity. Following Ref. [54], the adhesion number is defined as the ratio of attractive forces to
disaggregating forces:

Ad = U

σaδ2
. (1)

The condition Ad � 1 implies that hydrodynamic forces dominate, while Ad � 1 indicates that
attractive forces are predominant. It is important to note that the choice of this adhesion number
contains some degree of arbitrariness. Indeed, other similar dimensionless groups may be built more
generally by replacing aδ2 by aαδ3−α , with α ∈ [0, 3], in Eq. (1). The precise choice depends on
whether one considers energies (α = 0), forces (α = 1), or stiffnesses (α = 2), i.e., energies per
unit surface, or energies per unit volume (α = 3). Finally, according to the Vaschy-Buckingham
theorem [59–61], any characteristic length that depends on U , σ , a, and δ, such as the maximum
cluster size �, may be expressed as �/a = F (Ad, δ/a). Therefore, a combination of both Ad and δ/a
is expected. Also note that the adhesion number simply corresponds to the inverse of the “Mason
number,” Mn = σa2δ/U , a dimensionless group popular in the rheology community that quantifies
the ratio of shearing forces to attractive forces [36,62,63].

In order to describe the competition between aggregation and disaggregation, we consider a
grand-canonical ensemble with a population of clusters of mass k ∈ N∗ associated to a number of
clusters nk . Each cluster of mass k has an associated energy E (k), which we seek to determine.
The number of primary particles is not fixed and is related, for each cluster mass k, to a chemical
potential αk/β with β = 1/(kBT ), with kB as the Boltzmann constant and T the temperature. Note
that the use of a canonical ensemble may seem more appropriate for a problem with a fixed
number of particles. However, the calculation of the canonical partition function leads to the use
of the complete Bell polynomials, where each variable is e−βE (k). Inverting the relation is not
straightforward, so that computing the distribution of clusters of mass k is very cumbersome within
a canonical framework. Here, thanks to the grand-canonical formulation, E (k), as well as the energy
nkE (k) associated to all clusters of mass k, may be computed rather easily. The grand-canonical
partition function reads:

	 =
∑

(nk )k∈N∗ ∈NN∗
exp

⎡
⎣−

∑
k∈N∗

(βnkE (k) − nkkαk )

⎤
⎦, (2)

=
∏

k∈N∗
[1 − e−βE (k)+kαk ]−1. (3)

The convergence of the series in Eq. (2) is guaranteed if αkk < βE (k) for all k ∈ N∗. Moreover,
it follows from Eq. (2) that the distribution of each level population nk is a geometric distribution
with a parameter e−βE (k)+kαk . Since the average number of particles 〈N〉 is related to the average
population (〈nk〉)k∈N∗ of clusters of mass k through 〈N〉 = ∑

k∈N∗ k〈nk〉, one may compute the
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average number of clusters of mass k and the standard deviation through:

〈nk〉 = −1

k

∂ ln 	

∂αk
= [eβE (k)−αkk − 1]−1, (4)

�nk = 1

k

√
∂2 ln 	

∂α2
k

=
√

〈nk〉(1 + 〈nk〉) = 1

2
csch

[
βE (k) − αkk

2

]
, (5)

which boils down to the Bose-Einstein statistics.
In practice, in an experiment or a simulation, a initial sample of (nk )k∈N∗ is chosen, which

evolves in time according to external conditions. It is clear from the above expressions that the
(nk )k∈N∗ should end up being centered around the averages (〈nk〉)k∈N∗ with a dispersion (�nk )k∈N∗ .
Therefore, a higher number of clusters of mass k also brings a higher dispersion around this value.
Since numerical simulations yield a probability distribution function f (k) for the number of cluster
of mass k, which is assumed to be equal to the average distribution 〈nk〉, i.e., f (k) = 〈nk〉, one can
find the average potential energy of the clusters and the standard deviation respectively through:

βE (k) − αkk = ln

[
1 + 1

f (k)

]
, (6)

�(βE (k) − αkk) = { f (k)[1 + f (k)]}− 1
2 = 2 sinh

[
βE (k) − αkk

2

]
, (7)

> βE (k) − αkk . (8)

III. NUMERICAL SIMULATION

A. Numerical scheme and analysis

To get some insight of the competition between aggregation and disaggregation processes, we
turn to simple molecular dynamics simulations of two-dimensional Couette and Poiseuille flows
based on the LAMMPS library [64]. We use reduced units, where the unit size is given by the
particle radius. The simulation box is of size L × h with periodic boundary conditions along the x
direction and solid boundaries along the y direction located at y = 0 and y = h. The length of the
box L is fixed to L = 620, and the width h is either 103 or 206, much larger than the particle size.
Each boundary is constituted of one layer of particles of unit size which positions are fixed and
that interact with bulk particles through a repulsive Yukawa potential ws(r) = 100e−r/r, with r the
distance between two particles and a cut-off distance r = 5 to save computation time. This choice of
a purely repulsive potential leads to some depletion of the particles at the walls but allows us to avoid
irreversible aggregation on the walls and to focus on bulk aggregation-disaggregation processes.
Finally, the interaction potential between two particles in the bulk is a classical 12-6 Lennard-Jones
potential w(r) = 4(r−12 − r−6) with a cut-off distance r = 40, again to save computation time.

First, the system is initialized with a particle surface fraction of φ = 0.12. Using a canonical
formulation, the temperature is fixed at T = 0.01. The time step is taken as �t = 0.01, which is
small enough to account realistically for temporal variations while keeping the computation time
reasonably low. Particles are distributed over a square lattice, and their initial velocities are chosen
according to a Maxwell distribution for the given temperature. The system is then let to evolve
for a duration 5000 time units in order to create the initial cluster distribution. More precisely, the
equation of motion for each particle i ∈ �1, N�, with N the total number of particle, is

d2ri

dt2
= −∂W

∂ri
[(r j ) j∈�1,N�] + Bi, (9)

W[(r j ) j∈�1,N�] =
N∑

k=1

N∑
j=k+1

w(|rk − r j |), (10)

w(r) = 4(r−12 − r−6), (11)
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with ri the position of particle i and Bi a Brownian white noise for particle i.
In a second step, a drag force F i = C(u − dri

dt ) is applied on each particle i ∈ �1, N�, with C = 1
the drag coefficient [66] and u = V y/hex for the 2D Couette flow or u = 4V (1 − y/h)y/hex for the
2D Poiseuille flow, where V is the maximum flow velocity. Here a microcanonical formulation is
used and the time step is set to �t = 0.001. The simulation is run for a duration of 1000 time units.
The equation of motion for each particle i thus reads:

d2ri

dt2
= −∂W

∂ri
[(r j ) j∈�1,N�] + F (ri )ex, (12)

F (ri ) = C

[
−dri

dt
· ex + V

ri · ey

h

{
1 2D Couette flow

4
(
1 − ri·ey

h

)
2D Poiseuille flow

]
. (13)

The parameters investigated in the present work are (V, h) ∈
{0.1, 0.3, 1, 3, 10, 30, 100} × {103, 206}. The values of the adhesion number are then
Ad ∈ {1, 2, 3, 6, 10, 20, 34, 68, 103, 206, 344, 688, 1032, 2065}. The numerical scheme used
here is a velocity Verlet algorithm [67]. The computations output are (i) the position of the particles
at each time step and (ii) the clusters to which the particles belong based on a connected-component
algorithm [68] with a distance threshold of 1.4, consistently with the literature [39,69,70].
Moreover, we checked that for thresholds ranging from 1.1 to 2.0, the distribution of neighbors
does not change, so that the results are not sensitive to the specific choice of threshold. The size of
cluster number I is quantified according to the following estimates:

(i) the radius of gyration RI
g given by

RI
g =

√
1

|P(I )|
∑

k∈P(I )

‖rk − r‖2, (14)

r = 1

|P(I )|
∑

k∈P(I )

rk, (15)

with rk the position of the particles in the cluster, P(I ) the set of particles in cluster I and |P(I )| the
number of particles in cluster I .

(ii) the Feret radii in the x and y directions given by [maxk∈P(I ) rk · e]/2 − [mink∈P(I ) rk · e]/2
with e the unit vector in the x and y directions, respectively.

(iii) the half maximum chord length given by max(k,l )∈P(I )2 ‖rk − rl‖/2.
In order to infer statistical estimations, each size distribution is further weighted by the number

of particles in each cluster. Such weighting is needed because the number of clusters is not constant.
Therefore, because the total number of particles is constant, weighting by the mass of each cluster
allows one to recover the number of particles when integrating over the whole distribution. Finally,
thanks to the reduced units, U/aδ2 = 1 and the shear stress is σ = CV/h = V/h here due to C = 1
so that the adhesion number simply reads Ad = h/V . Note that, due to the specific choice of
interaction potentials and to the absence of thermal motion and hydrodynamic interactions, the
present simulations remain very crude. Thus, their aim is rather to offer a generic view of the
evolution of particulate clusters under flow that supports our theoretical approach, than to provide
a detailed, realistic picture of the interplay between flow and colloidal interactions at the particle
scale.

B. Simulation results

Figure 1 shows typical particle distributions computed after the preparation step prior to shearing
[Fig. 1(a)], and after application of shear in the Couette geometry [Fig. 1(b)], in spite of some
depletion at the walls. It appears clearly that the system starts from a space-spanning ramified
structure and evolves toward dense, isolated clusters under shear. Moreover, as shown in Fig. 1(c),
the different estimates for the cluster size yield consistent values. In the following, for the sake of
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FIG. 1. Simulated particle distributions for V = 10, h = 206, and C = 1 after the preparation step prior to
shearing (a) and at after shearing in the Couette geometry (b). Rendering using Ovito [65]. (c) Cluster detection
and various estimates of the cluster size as defined in the text for the top right particle distribution.

simplicity, we shall focus only on the weighted average of the radius of gyration to estimate the
cluster size �.

Following the general framework introduced in Sec. II, we compute the distribution of the cluster
mass and the dimensionless energy βE (k) − αkk based on Eq. (6). Figure 2 shows this energy
functional plotted against the mass k of particles within a cluster for adhesion numbers ranging from
1 to about 2000. More specifically, from our simulations, we extract a probability density function
of the steady-state cluster population in terms of sizes. This probability density function is directly
imported into Eq. (6) as f (k), which yields the dimensionless energy βE (k) − αkk. Focusing on
one particular curve, when the probability density function goes to 0, the dimensionless energy
goes to infinity, which shows that these states are impossible to access. Also, when the probability
density function is maximum, the dimensionless energy is minimum because the most probable

FIG. 2. Energy functional βE (k) − αkk computed from from Eq. (6) as a function of the number k of
particles in a cluster for (left) Couette flow and (right) Poiseuille flow. Colors correspond to the adhesion
number Ad as indicated in the legend. Results obtained from simulations performed with h = 103 or h = 206.
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FIG. 3. (a) Mass kmin of the clusters corresponding to the energy minimum and (b) cluster size � defined
as the weighted average of the radius of gyration of the clusters, as a function of the adhesion number Ad
for Couette flow (•) and Poiseuille flow (�) and for two different width h = 103 (blue) and h = 206 (orange).
Solid and dotted lines correspond to the best power-law fits respectively for the Couette and the Poiseuille flow,
and computed over Ad ∈ [2, 200]. (c) Cluster size � as a function of the equilibrium mass kmin. The black solid
line corresponds to � ∝ k1/2

min. Same symbols and colors as in (a) and (b).

size minimises the global energy functional. Looking at the small- and large-mass limits, it appears
that limk→0+ βE (k) − αkk = limk→+∞ βE (k) − αkk = +∞, which indicates that extreme masses
are not accessible to the system. Second, in all cases, there exists a global minimum of the energy
functional that shifts toward larger values of k as the adhesion number Ad is increased. As expected
intuitively, this suggests that the average cluster mass increases with Ad. Moreover, the steeper
slope ∂k[βE (k) − αkk] of the energy functional on the right side of the global minimum than on
the left side indicates that the system reaches the energy minimum more rapidly when starting from
large masses than from small masses. This confirms the intuition that disaggregation processes are
much faster than aggregation processes. Third, while the value of the global minimum energy does
not show any clear trend with Ad, there may exist several local minima in βE (k) − αkk. This means
that several metastable states may occur. These states may disappear when increasing the simulation
duration or the system size. Still, this shows that a rather polydisperse population of clusters may
be found, at least transiently. This may also be related to the dispersion in the energy minimum
illustrated previously.

Figures 3(a) and 3(b) respectively show the “equilibrium mass” kmin of the clusters corresponding
to the energy minimum, i.e., kmin = arg mink∈R+ [βE (k) − αkk], and the cluster size �/a taken as the
weighted average of their radius of gyration plotted against the adhesion number Ad. For both
observables, a power-law regime is identified over almost two decades in adhesion numbers. The
exponents inferred from power-law fits for Ad ∈ [2, 200] are reported in Table I. For Ad � 100,
a saturation is observed in kmin together with large variations, for both the Couette and Poiseuille
flows. This behavior is most probably linked to finite-size effects as the average cluster size becomes
comparable or larger than the system width h. Consistently with Fig. 3(a), the cluster size � increases
as a power law of Ad [Fig. 3(b)]. There, although the data for � do not show such a strong saturation
as for kmin, significant deviations from power-law behavior are still observed for Ad � 100.

Moreover, the exponents for the dependence of � with Ad seem to depend significantly on the
geometry, with values 0.35 and 0.57 for the Couette flow and 0.27 and 0.48 for the Poiseuille flow,
respectively for h = 103 and h = 206 (see Table I). Similarly, the corresponding exponents for kmin,
namely 0.4 and 0.9 for Couette flow and 0.5 and 1.0 for Poiseuille flow, also differ for the two
values of h. At this stage, the reason for such an influence of h in the simple two-dimensional
simulations remains unclear, and future work should focus on more realistic interaction potentials
and three-dimensional geometries.

Still, it is interesting to note that �/a and kmin are not expected to have the same power-law
behavior with the adhesion number because of their intrinsic relationship. More specifically,
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TABLE I. Exponents and prefactors of the power-law fits in Fig. 3 for the different geometries, widths, and
sizes � and kmin.

Geometry h Variable Exponent Prefactor

Couette 103 �/a 0.346 ± 0.009 6.1 ± 0.2
Couette 103 kmin 0.4 ± 0.4 400 ± 700
Couette 206 �/a 0.57 ± 0.03 3.5 ± 0.4
Couette 206 kmin 0.9 ± 0.1 60 ± 30
Poiseuille 103 �/a 0.271 ± 0.007 6.1 ± 0.2
Poiseuille 103 kmin 0.5 ± 0.1 170 ± 70
Poiseuille 206 �/a 0.48 ± 0.03 3.9 ± 0.5
Poiseuille 206 kmin 1.0 ± 0.1 40 ± 20

considering the framework of fractal clusters, the number of particles in a cluster k is related to the
geometrical size l through k = (l/a)D with D the fractal dimension. In the two-dimensional case,
D should fall into the range [1, 2]. Figure 3(c) shows that �/a ∝ k1/2

min, which is compatible with a
fractal dimension D  2, i.e., with almost dense aggregates in two dimensions geometries. The fact
that very compact aggregates are obtained in the simulations is confirmed visually by looking at
Fig. 1(b). Another confirmation comes from the ratio of the exponent for kmin and that for �/a in
Table I, which is also found to be close to 2 (except for the Couette flow with h = 103 but the scatter
of the kmin data in this latter case makes it difficult to conclude).

IV. PROPOSITION OF MODEL

A. Description of the disaggregation and reaggregation processes

The precise internal structure of the aggregates is really complex and depends on many different
parameters including the volume fraction, the nature of the interparticle forces and of the solvent,
temperature, and chemical environment. Hence, we shall consider the aggregates as a continuum
without further internal details. We consider a suspension of particles of size a that interact through
an attractive potential so that they gather into aggregates as sketched in Fig. 4. Following a statistical
approach as in Refs. [48,71–74], we assume that there exists a distribution f (t, l, a,U, δ, σ ) giving
the population of aggregates of size l at time t made of particles of size a interacting through

1

2

3

4

5

1

5

2

3 4

FIG. 4. Sketch of the disaggregation and reaggregation processes under a uniform external stress σ . The
numbers represent different sizes of aggregates with different levels of energy. The aggregates are disaggregat-
ing and reaggregating according to the stress solicitation. Transition from state 1 to states 2 and 4 corresponds
to a “fragile” rupture, while transition from state 1 to state 3 is an “erosion” process.
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a pair potential U over a distance δ under a stress solicitation σ . Such a distribution may be
computed through a coagulation-fragmentation equation as in Refs. [48,71,74]. Yet, this approach
requires to identify coagulation kernels and fragmentation coefficients, which involves much effort
for theoretical and/or numerical validation. Without ignoring the power of such tools, we aim at a
simpler approach through the present statistical approach.

We start by imposing the conservation of the total number of particles N , which reads:

N =
∫ +∞

0
n

(
l

a

)
f (t, l, a,U, δ, σ ) dl = const, (16)

where n(l/a) denotes the number of particles per cluster of relative size l/a. The average size of the
aggregates is thus given by:

l (t, a,U, δ, σ ) = a

N

∫ +∞

0
n

(
l

a

)
l

a
f (t, l, a,U, δ, σ ) dl. (17)

From a statistical point of view, and assuming that the aggregates are submitted to a uniform external
stress σ far from any boundary, aggregates should evolve from one state to another as sketched in
Fig. 4. If the stress is sufficiently large to break some initial aggregate (state 1), then a disaggregation
occurs either due to “fragile” rupture into two pieces of similar sizes (bottom part of Fig. 4, state 4) or
due to “erosion,” where small pieces detach from the initial aggregate (top part of Fig. 4, states 2 and
3). If the larger pieces can still be broken down (states 2 and 4), then the process continues. However,
if the pieces become too small (state 3), then the interparticle attraction dominates and reaggregation
occurs. In the process, the aggregates progressively decrease their global energy, until a minimum
is reached at long times t → +∞. Therefore, the steady state (state 5) eventually corresponds to the
optimum of all possible sizes, which results from a dynamical equilibrium between disaggregation
and reaggregation processes. More formally, when a steady state is reached, the average aggregate
size � is given by

�(a,U, δ, σ ) = lim
t→+∞ l (t, a,U, δ, σ ). (18)

In practice, since t remains finite, we note that the longer the final time, the smaller the spread of the
distribution around the steady-state size. An additional comment is that, keeping the previous set of
variables for the distribution f , an equivalent form using the Vaschy-Buckingham theorem [59–61]
is found by replacing f (t, l, a,U, δ, σ )dl with f̃ (l/a, Ad, δ/a)d (l/a), where t can be discarded
based on unit independence. Time becomes relevant, however, when the viscosity η of the suspend-
ing liquid or any other time-related quantity is considered.

B. Analytical formulation of the model

Let us consider a suspension of particles of diameter a gathered in aggregates. The bond between
each particle involves an energy U and an interparticle distance of separation δ. The system is
submitted to a uniform stress σ . One aims at estimating the steady-state size of stable aggregates
� as a function of a, U , δ, and σ . Following Eggersdorfer et al. [42], for a dense aggregate of
size l , the applied mechanical energy per unit area is σ l . However, aggregates are not completely
dense and one should more generally account for their fractal nature. As already introduced above
in Sec. III B, the number of particles in an aggregate of size l is proportional to (l/a)D with D the
fractal dimension of the clusters. Each particle in the aggregates contributes to the overall energy per
unit surface. As if they were in parallel, the mechanical energy per unit surface should be weighted
by the number of particles in an aggregate because there is fluid flowing inside the aggregates, which
interferes with each particle. Hence, on the one hand, the mechanical energy per unit of effective
surface of the aggregate M(l ) is proportional to σa(l/a)D+1. On the other hand, if one isolates an
aggregate of size l , then the energy per unit surface liberated due to broken bonds E is E (l ) = Uδ−2,
which is independent of the size l [54]. Indeed, considering an intermolecular potential w(d ), with
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d the intermolecular distance, one can compute the interparticle potential per unit area through:

W (d ) = 2π�2
∫ +∞

d

∫ +∞

y

∫ +∞

0
rw(

√
r2 + z2) drdzdy, (19)

where � is the molecular density inside a particle. Defining δ as the distance that satisfies W ′(δ) =
0, or equivalently δ = arg mind∈R∗+ W (d ) [75], and the energy U = δ2W (δ), E (l ) = Uδ−2 indeed
corresponds to the energy per unit surface liberated due to broken bonds. This energy is independent
of the size of the aggregate because one may assume that, on the boundary of the aggregate, the
number of particles per unit surface does not depend on l and is only related to the structure, which
is assumed to be fixed in steady state. Finally, the steady-state size � corresponds to the size for
which the mechanical energy balances that due to broken bonds, i.e., M(�) = E (�), which leads to:

�

a
=

(
U

σaδ2

) 1
1+D

= Ad
1

1+D . (20)

The same result can be obtained by minimizing the total energy E (l ) = l2[M(l ) − E (l )]. Another
way to consider this concept is to relate it to Eggersdorfer et al. [42]. Indeed, on the one hand, if
a stress σ is applied on a cluster of size l with (l/a)D particles of size a, then one may assume
that the stress is shared in parallel on all particles, which gives a force Fmin = σa2. On the other
hand, if the stress is focused on one single particle, then there is a force Fmax = σ l2. Taking the
geometrical average of these two extremes leads to Favg = √

FminFmax = σ la. This average force
should be summed over the whole chain with (l/a)D elements, which reads Ftot = σ la(l/a)D =
σa2(l/a)1+D. Finally, the bearable force between two particles is Ua/δ2. Therefore, the link breaks
when σa2(�/a)1+D = Ua/δ2, leading to �/a = Ad

1
1+D as in Eq. (20). Equation (20) also agrees with

Eq. (18) through the Vaschy-Buckingham theorem [59–61]. Indeed, Eq. (18) may be rewritten as:

�

a
= G

(
Ad,

δ

a

)
. (21)

Adding that U/δ2 provides all the information about the interaction potential, one has ∂δ/aG = 0
and thus

�

a
= G(Ad), (22)

consistently with Eq. (20). Note that this model may show some limitations especially in the case
of very loose aggregates, e.g., fibers or linear chains of adhesive spheres of length l , for which
the hydrodynamic stress grows as l3 due to the transmission of stresses by lubrication forces. This
would bring an evolution of the hydrodynamic energy as l5, or of the hydrodynamic force as l4,
which are, to our knowledge, not reported in the literature.

V. DISCUSSION

In this section, we discuss the theoretical approach and numerical results in light of the literature.
We start by comparing the model with the classical coagulation-fragmentation approach. Then,
the power-law scaling predicted for the cluster size, � ∝ Ad1/(1+D), is confronted to the present
simulations and to previous experimental results.

A. Comparison with a coagulation-fragmentation model

The model proposed above in Sec. IV may be compared to the coagulation-fragmentation
approach introduced in the literature in the late 1980s [76] and subsequently enriched over the
years, e.g., through the population balance models [46–48,71]. In such an approach, the probability
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density function f of clusters of size x at time t obeys the following dynamical equation:

∂ f

∂t
(t, x, •) = 1

2

∫ x

0
K (y, x − y, •) f (t, y, •) f (t, x − y, •) dy

− 1

2

∫ x

0
F (y, x − y, •) f (t, x, •) dy −

∫ +∞

0
K (x, y, •) f (t, x, •) f (t, y, •) dy

+
∫ +∞

0
F (x, y, •) f (t, x + y, •) dy, (23)

with • = (a,U, δ, σ ), K the aggregation kernel and F the fragmentation kernel. Considering the
long-term behavior, it can be shown that f takes the general form [48,71,76]:

f (t, x, •) = 1

s2(t, •)
ϕ

[
x

s(t, •)
, •

]
, (24)

where s and ϕ are two functions that depend only on time and size, respectively, and such that∫
R+

xϕ(x, •) dx = N , the fixed total number of particles. The function s corresponds to the average
mass of the clusters according to the distribution f . It can be related to a size through the cluster
fractal dimension D by s ∝ lD. Then, integrating the previous expression over the size as in Eq. (17),
one computes the steady-state average size as:

l (t, •) = as
1
D (t, •), (25)

with

lim
t→+∞ s(t, •) =

[
N

A(•)

B(•)

] 1
α+2−λ

, (26)

A(•) =
∫∫

R2+
xyϕ(x, •)ϕ(y, •)K (x, y, •) dxdy, (27)

B(•) =
∫∫

R2+
xyϕ(x + y, •)F (x, y, •) dxdy, (28)

where λ and α are the respective homogeneity coefficients of K and F [77], assuming α + 2 > λ. It
follows from Eqs. (18), (25), and (26) that

�

a
=

[
N

A(•)

B(•)

] 1
D(α+2−λ)

. (29)

Finally, identifying with Eq. (20), one gets

U

σaδ2
=

[
N

A(•)

B(•)

] 1+D
D(α+2−λ)

. (30)

Most of the physical quantities appear as multiplicative factors, in the sense that, for example, the
coagulation kernel K is usually built with a factor U/η with η the viscosity of the fluid and no other
dependence on physical quantities besides the variables x and y. Therefore, the ratio NA(•)/B(•)
can be considered as the product of a dimensionless number built in a similar manner as the adhesion
number and another factor that depends only on the shape of respective kernels without involving
any additional physical parameter. Therefore, in order to keep Eq. (30) true in general, one should
impose that the exponent is 1, which leads to

1 = D(α + 1 − λ) . (31)

This is an important result which, to our knowledge, has not been reported in the literature
before. Indeed, Eq. (31) allows one to relate the first mechanical approach to population balance
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FIG. 5. Power-law exponent β in �/a = Adβ as a function of the fractal dimension D of the aggregates
extracted from Refs. [11,26–29,41–43,51,52,84–90] (•) and compared to the model prediction β = (1 + D)−1

(solid line).

models, where the homogeneity coefficients may seem disconnected from physical and measurable
quantities. This result also emphasizes the fact that the adhesion number is a correct measure of the
relative importance of aggregation versus disaggregation.

We note that aggregation kernels are pretty well covered, either in terms of theoretical solu-
tions [48,71,78,79] with simple sums or products or in terms of a physical construction, e.g.,
based on collisions, thermal fluctuations, and diffusion [80,81]. Fragmentation kernels, however, are
more poorly controlled, in the sense that some theoretical solutions impose some strong conditions
on these kernels without much physical justification [46–48,71], so that the expressions of the
fragmentation kernels remain mostly empirical or semiempirical [82,83]. Therefore, although the
use of coagulation-fragmentation equations is well established, relating some of the main terms to
physical phenomena, such as the interaction potential and the flow stresses, is an important step yet
to be fully achieved.

B. Comparison with simulations and experiments

Relating the model proposed in Sec. IV to the simulations of Sec. III, we expect the exponents
in Table I to be linked to the fractal dimension respectively by 1/(1 + D) for the steady-state size
�, and D/(1 + D) for the equilibrium mass kmin. The broad variability of the exponents does not
allow us to properly extract a fractal dimension from the simulations. Nevertheless, as discussed
above in Sec. III B, the shear-induced clusters are almost dense, so that we may assume a fractal
dimension D close to 2. Such a compactness most probably results from the specific interaction
potential, i.e., a 12-6 Lennard-Jones potential, which is a central-force potential and is likely to
lead to clusters with dropletlike shapes. We note that D = 2 would be consistent with the exponent
β = (1 + D)−1 = 1/3 expected for � as a function of Ad, at least in the smaller geometry, since
Table I reports exponents of 0.35 and 0.27 for h = 103.

Moreover, the results may be compared to the recent three-dimensional simulations under simple
shear flow by Ruan et al. [43], which also report rather dense shear-induced clusters at steady state.
Focusing both on the cluster size and on the average number of particles in a cluster as in the present
work, the authors extract the cluster fractal dimension D and show that �/a scales as a power law
of the shear stress. The exponents β for � reported in Ref. [43] are replotted as a function of D as
blue circles in Fig. 5 and show good agreement with the prediction β = (1 + D)−1. Note that this
is also consistent with the empirical expression proposed in Ref. [43], namely β = S/(S + 〈D〉),
where 〈D〉 denotes the average cluster fractal dimension, and the fitting parameter S is found to be
close to 1.
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TABLE II. Experimental parameters and measurements of the aggregate size from the literature. �exp is the
direct measurement of the aggregate size, while �th is the aggregate size estimated using Eq. (20) based on the
parameters defined in the text and reported in the references of the first column.

Source [36,91–93] [21,94–96]

�exp (nm) 500 60
a (nm) 150 6.5
U/kBT 20 60
σ (MPa) 0.1 2
δ (Å) 7 2
D 2.6 1.88
�th (nm) 300 55

On the experimental side, a number of works have reported results assessing the size of aggre-
gates under the application of a mechanical stress. However, only a handful of papers explicitly
state the values of the various parameters a, U , σ , δ, and D. Table II and Fig. 5 gather a selection
of such previous works. First, Table II shows that Eq. (20) predicts a typical cluster size �th which
is of the same order as the experimental size �exp. All the parameters fall into commonly known
ranges and justify that the previous approach may be a good proxy to evaluate the most stable
cluster size. Second, Fig. 5 probes the sensitivity of �/a with the adhesion number Ad by plotting
the power-law exponent β in �/a = Adβ as a function of D. Except for a few points that lie far from
the average estimation, most exponents are gathered along the prediction of Eq. (20), consistently
with the numerical results of Ref. [43], which provides strong support for the approach described in
Sec. IV.

Finally, Fig. 6 provides a sensitivity study of the value of � on the different parameters of Eq. (20)
based on Table II. It is clear that the most critical parameters are D and δ as expected from Eq. (20).
Therefore, particular attention must be considered to assess accurately these parameters. Yet when
one of these two parameters are unknown, the model can be used to estimate D or δ with good
accuracy based on measurements of �.

VI. CONCLUSION

We have investigated simple two-dimensional numerical simulations and proposed a theoretical
description of aggregation and disaggregation processes in colloidal dispersions under shear. We
have shown that the classically reported power-law increase of the average cluster size with the
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FIG. 6. Sensitivity study of � predicted by Eq. (20) on relative variations of the different control parameters
around the values listed in the first line of Table II except for the fractal dimension, which is varied from 1 to 3.
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adhesion number can be rationalized through a dynamical balance of energy between aggregation
and disaggregation. More precisely, a statistical physics approach allowed us to make a link between
the distribution of clusters size and an overall energy potential that translates the competition
between aggregation and disaggregation processes. An increase in the adhesion induces a shift
toward higher cluster sizes, and the algebraic dependence of the power-law exponent with the cluster
fractal dimension predicted by our approach is the salient prediction of our model. We have also
proposed a link between this exponent and the homogeneity coefficients of the (dis)-aggregation
kernels in classical population balance models. Still, one should remain careful about a direct
inference of one simple general formula as provided here, since many additional parameters may be
involved in the size selection, including time through aging phenomena, spatial confinement, and
individual cluster dynamics.
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