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The time-dependent oscillating convection leading to the formation of reverse flowing
cells is a special phenomenon induced by viscoelasticity in the Rayleigh-Bénard convec-
tion (RBC). The causes and the evolution of this overstability problem have not yet been
investigated in-depth. Numerical simulations of the viscoelastic Rayleigh-Bénard convec-
tion (VRBC) have been conducted in this work with viscoelastic working fluids abiding
by the nonlinear Phan-Thien-Tanner (PTT) constitutive structure in two-dimensional cav-
ities. To understand the impact of the nonlinearity and the rheological parameters on the
mechanism of the regular reverse flow numerical simulations have been performed over
the range of β = (0.1, 0.2) (where β = μs/μ0, μs is the solvent viscosity, μ0 = μs + μp

is sum of solvent viscosity μs and polymer viscosity μp) and Weissenberg number
(We ∈ [0.075, 0.25]), using an in-house finite-difference code. The remaining constitutive
parameters of the (PTT) fluid representing elongational and slippage characteristics of the
fluid were kept fixed at ε = 0.1 and ξ = 0.05, respectively. A viscoelastic kinetic-energy
budget method was used to analyze the energy transport in this time-dependent reverse flow
process. An original parametric analysis is developed to gain an insight into the dynamics
of the reversal flow observed recently in our work, Zheng et al. [Phys. Rev. Fluids 7, 023301
(2022)], as well as observed by Park and Ryu [Rheol. Acta 41, 427 (2002)] and Lappa and
Boaro [J. Fluid Mech. 904, A2 (2020)]. The emergence of the reversal convection can
be explained by the transfer of potential energy between flow and fluid elasticity during
the reversal process. The existence of time phase differences of different potentials in the
evolution drive this potential-energy transfers.
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I. INTRODUCTION

The Rayleigh-Bénard convection (RBC) in a cavity consists in a fluid heated from top and cooled
from the bottom generating a flow caused by thermal buoyancy. As one of the most fundamental
and ubiquitous physical phenomena in nature and industrial processes, RBC has been extensively
studied for more than a hundred years [1,2]. A stationary RBC system will lose its hydrodynamic
stability when the buoyancy force exceeds its viscous dissipation which maintains the stability of
the system, and laminar convection will take place [3,4]. The Rayleigh number Ra = αg�T H3/νκ

(where �T = T2 − T1 is the temperature difference between the bottom and top and κ = k/ρ0Cp

is thermal diffusivity) represents the ratio of the buoyancy force and the viscous forces. When Ra
increases further, the stable laminar convection cannot be maintained any longer and the turbulent
thermal convection starts, Lohse and Xia [5]. The flow pattern selection or bifurcation on the
transition from stationary to chaos is extensively documented [2].

Polymeric fluids exhibit a very strong viscoelastic behavior. The long-chain macro-molecular
structure of the polymer suspended in a Newtonian fluid solvent will confer more complexity to
the (viscoelastic Rayleigh-Bénard convection, or VRBC) compared with the Newtonian Rayleigh-
Bénard convection (NRBC) [6], such as elastic instability [7] and enhancement or reduction heat
transport [8,9]. As an important facet of the elastic instability of VRBC, the elasticity-induced
oscillations were known for decades. Most of the efforts in the past on this problem focused on
the influence of the rheological parameters on pattern selection, especially on the critical Rayleigh
number Rac for convection onset through linear instability analyses [10–17]. There are a few studies
that investigated some facets of the flow behavior such as the magnitude of the convection amplitude
in oscillating VRBC via weakly nonlinear stability analyses [18–21].

The advent of more sophisticated and accurate constitutive models since the early pioneering
work of Green III [10] using the upper-convected Maxwell model motivated further studies on the
oscillating VRBC [11,22,23]. Park and Lee [24] pointed out the existence of different convection
onset points in VRBC depending on the elasticity of the fluid through a linear instability analysis.
The time-dependent oscillating convection onset takes place in strongly elastic (extraordinary
conditions) VRBC and the steady convection onset is associated with weakly elastic VRBC, which
is similar to the onset in the Newtonian cases. This result specifically reinforces the point of Lar-
son [25], namely, “viscoelastic effects are unimportant in the linear stability of the Rayleigh-Bénard
flow, except perhaps under extraordinary conditions,” meaning under a large temperature difference
or a very substantial elasticity or small-geometry configuration. The oscillation period can be very
long because the viscoelastic fluid tends to acquire the properties of an inelastic Newtonian fluid
as its elasticity becomes negligibly small. Unlike the randomly oscillating NRBC, the oscillating
process in VRBC shows a spatial and temporal periodicity and exhibits a strong correlation with
the rheological parameters of the viscoelastic fluid. This phenomenon was also experimentally
observed in RBC affected by magnetic or electric fields [26,27]. Park and Ryu [12,20] and Park
et al. [28] systematically investigated the oscillating VRBC in infinite and two-dimensional (2D)
enclosures space via linear and nonlinear stability analyses. They worked with a general viscoelastic
constitutive model and clarified the relationships between Rac and (β,We) in the case of an infinite
horizontal cavity. Their results show that Rac for convection onset increases as We decreases or β

increases, and the steady convection onset is replaced by the oscillating reversal convection by is We
increases and/or β decreases [13,29]. Similar results were also obtained through a weakly nonlinear
stability analysis by Kovalevskaya and Lyubimova [30] and Bhadauria and Kiran [31]. They studied
the effect of gravity modulation on the over-stability of VRBC. The effect of the relaxation time and
the retardation time on the heat transfer capacity and on the Rac was investigated. Both Rac and the
heat transfer capacity strongly correlate with the relaxation and retardation times.

Oscillating viscoelastic convection was studied experimentally by Kolodner [32]. He investigated
the Rayleigh-Bénard convection of a DNA suspension in a ringlike container and observed the oscil-
lating convection. He argues that the oscillations maybe driven by the deformation of the DNA. The
experimental work of Métivier et al. [33] with elasto-viscoplastic carbopol gels confirms the findings
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FIG. 1. Computational configuration of aspect ratio A = 2.

of the recent studies of the oscillatory VRBC using direct numerical simulations [7,29,34,35].
Métivier et al. [33] studied the thermal convection with slip boundary conditions. A very intuitive
velocity vector diagram of convection reversal was given for different stresses. However, their
results only gave a simplified and superficial account of the regular convection reversal. The view of
Métivier et al. [33] is that the oscillating convection is related to slip at the wall. However, they do
not rule out the role of the fluid elasticity. Thus, clearly the oscillating convection with viscoelastic
fluids is still an open problem.

To the best of our knowledge, there is no research reported in the literature explaining how
the regular oscillating convection evolves and what triggers and supports reversal in VRBC.
The first aim of the present work is to explain the mechanism of convection reversal through a
kinetic-energy budget analysis by performing a series of direct numerical simulations on the regular
reversal convection in VRBC using an in-house solver. The numerical code to simulate VRBC
was detailed in-depth and its capability proven in our recent work [36]. The Phan-Thien-Tanner
constitutive model is used to describe the viscoelastic fluid, which introduces two extra rheological
parameters ε and ξ , fixed in this paper. Some examples of the experimentally determined values
of the constitutive constants ξ and ε in the literature are for dilute polymeric solutions like low
concentration polyethylene (LDPE), ε = 0.02 and ξ = 0.1 whereas for concentrated polymeric
solutions like molten polyethylene (HDPE) ε = 0.02 [37]. Other polymeric fluids, such as 5%
polyisobutylene (PIB) solutions are characterized by ε = 0.25 and ξ = 0.25 [38]. The second aim
of the present work is to complete the results of our recent work [36]. Details of three-cell flows, the
relevant reversal mechanism and the corresponding heat transfer are provided. The rest of the paper
is organized as follows: Section II summarizes the numerical approach and procedures. Section III A
briefly introduces the process of reversal convection. Sections III B to III D show the effect of
rheological parameters (β, We) on Rac as an extension of the previous research (Zheng et al. [39])
and present main results on regular oscillating convection in VRBC. Section III E details the results
about heat transfer analysis.

II. NUMERICAL PROCEDURES

A. Governing equations and computational model

The VRBC was simulated in a 2 : 1 cavity, shown in Fig. 1, filled with a viscoelastic fluid, which
obeys the constitutive equation of Phan-Thien-Tanner model. In Cartesian coordinate system, x is
the horizontal direction perpendicular to the gravity g, y denotes the vertical direction parallel to
g. The no-slip boundary condition is imposed on all boundaries. A temperature difference �T =
(T2 − T1) with (T2 > T1) was also imposed between two horizontal walls, T2 and T1 representing
the temperatures on the bottom and top, respectively. There is no heat flux on the vertical walls
(∂T/∂x = 0 at x = 0 and x = 2).

Total stress σ = τs + τp is the sum of the Newtonian solvent contribution 2μsD and the viscoelas-
tic polymer contribution τp. μs is the solvent viscosity and D = 1

2 (∇u + ∇uT ) is the deformation
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rate tensor. The polymeric extra-stress tensor τp is described by the constitutive equation:

∇
τ p = −1

λ
τ p + 2

μp

λ
D − ε

μp
tr(τ p)τ p − ξ (Dτ p + τ pD), (1)

where λ is the relaxation time, μp is the zero shear rate molecular viscosity, and ε and ξ are two
constitutive parameters representing respectively the elongational behavior of the long-chains and
the slip between polymer molecules and the surrounding continuum. In Eq. (1), the superscript ∇
indicates the contravariant convected time derivative expressed by

∇
τ p = ∂τ p

∂t
+ (u · ∇)τ p − ∇uT · τ p − τ p · ∇u. (2)

The following scale factors are introduced to nondimensionalize the governing field equations:

x∗ = x

H
, t∗ = t

Uc

H
, u∗ = u

Uc
, T ∗ = T − T0

T2 − T1
, p∗ = p

ρ0U 2
c

, and τ∗
p = τ p

ρU 2
c

,

with H being the cavity height and the reference velocity Uc = κ
H

√
Ra. To simplify the notation,

we drop hereafter (∗) from all the dimensionless variables. The dimensionless governing field equa-
tions with the Oberbeck-Boussinesq approximation for two-dimensional (2D) VRBC are written
as

∇ · u = 0, (3)

∂u
∂t

+ (u · ∇)u = −∇p + β
Pr√
Ra

�u + ∇ · τp + PrTe j, (4)

∂T

∂t
+ (u · ∇)T = 1√

Ra
�T + f 2β

EcPr√
Ra

D : ∇u + Ecτ p : ∇u, (5)

∂τ p

∂t
+ (u · ∇)τ p − ∇uT · τ p − τ p · ∇u = − 1

We
√

Ra
τ p + 2

1 − β

Ma2
D

− ε

√
Ra

(1 − β )Pr
tr(τ p)τ p − ξ (Dτ p + τ pD), (6)

where u = (u1, u2) is the velocity field, the e j is the unit vector along the jth direction, T is the
temperature field, p is the pressure field, and τ is the extra stress tensor. The incompressibility
constraint (∂u/∂x = 0) is satisfied. The Prandtl number Pr denotes the ratio of the kinematic
viscosity and the thermal diffusivity (Pr = μ0Cp/k = ν/κ), the Weissenberg number We = λκ/H2

is the ratio of the elastic forces to the viscous forces, the viscoelastic Mach number is defined as
Ma = √

RaWe/Pr. The dimensionless Eckert number Ec = U 2
c /(Cp�T ) expresses the relationship

between kinetic energy and the enthalpy, and is used to characterize the influence extent of the heat
dissipation. For all the cases investigated in this work, Ec takes on values of the order of O(10−10),
and the magnitude of the values of βEcPr/

√
Ra corresponds to O(10−11). These values of Ec are

extremely small (�1), so that the viscous dissipation and the elastic dispersion can be ignored in
the calculations presented in this paper. The boundary conditions are set as follows: the no-slip
boundary condition is imposed on all boundaries; the thermal boundary conditions are adiabatic
on the vertical walls (∂T/∂x = 0 at x = 0 and x = 2); a temperature difference �T = (T2 − T1)
(T2 = 1 and T1 = 0) is imposed on the horizontal walls, T2 and T1 represent the temperatures on the
bottom and top, respectively.

We point out that, due to the definition of the reference velocity Uc = κ
H

√
Ra in this paper, the

natural way to define We is to use Uc, as has been done by Cheng et al. [9]. The drawback of using
Uc to define We is that We will change with Rayleigh number. To prevent this We dependency on
Ra, a definition of We independent of Ra, We = κλ/H2, is used in this paper: for Ra = 1600 and
We = 0.1 in the present work for instance, the equivalent We is We = 10.58 in the work by Cheng
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FIG. 2. Grid independence is checked with the parameters Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150,
ε = 0.1, and ξ = 0.05 and the corresponding convection pattern is time-dependent periodic convection.
Maximal values of u2, T , and τ22 in one time period at the monitoring position (1, 0.5) are used to show
the grid independence.

et al. [9], where Uc = √
αgH�T . We note that the numerical code developed in-house and used

in this work is highly efficient for high We, which is another important contribution of the present
work.

B. Numerical schemes

The governing equations and proper boundary conditions are solved using an in-house code.
A quasilinear treatment of the hyperbolic terms in the linear momentum equation and the vis-
coelastic constitutive equation was adopted. The capability of this solver to simulate VRBC has
been validated in our previous work [36,39,40], where the numerical procedure is detailed. We
recall briefly the main features. Velocity-pressure coupling gives rise to the elliptic nature of the
governing equations while velocity-τp coupling gives rise to the hyperbolic nature of the governing
equations. To cope with the hyperbolic nature, a quasilinear treatment of the hyperbolic terms
[(u · ∇) − ∇ · τ p] in the momentum equation and (u · ∇)τ p − ∇uT · τ p − τ p · ∇u − 2 1−β

Ma2 D in the
viscoelastic constitutive equation was adopted. A second-order semi-implicit time scheme is used:
the implicit terms are mass conservation, pressure gradient, molecular diffusion, relaxation term,
and thermal diffusion; other terms including the quasilinear forms are explicit. Time evolution
implemented makes use of the second backward differential formula (BDF2). In space, the second-
order central difference is applied to most of the terms except for the quasilinear parts which are
treated in the eigenspace of Ai by a high-order upstream central (HOUC) scheme according to the
sign of each eigenvalue. A uniform and a staggered grid was used for the spatial discretization and
for the velocity-pressure coupling, respectively. The latter is handled by the projection method. In all
the simulated cases, the nondimensional numbers and the constitutive constants are fixed as follows:
Pr = 7.0, We ∈ [0.07125, 0.25], and β = (0.1, 0.2).

Note that the BDF2, well known for solving the Navier-Stokes equations of incompressible
viscous fluids, is also applied here due to the fact that the working fluid is incompressible. Also, due
to the hyperbolic nature resulted from velocity-τp coupling, central differencing schemes cannot be
used to treat the quasilinear terms and that the HOUC, similar to the well-known ENO and WENO
schemes for hyperbolic equations are applied here although it may not conserve the discrete kinetic
energy.

C. Grid-independence verification

The grid independence was tested with the following values of the parameters Ra = 1200, Pr =
7.0, β = 0.1, We = 0.150, ε = 0.1, and ξ = 0.05. A small enough time step was chosen δt = 0.001
not to affect the results. Four grids [122 × 56, 128 × 64, 144 × 72, 160 × 80] were tested. As shown
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FIG. 3. Energy conversion framework for the VRBC in regular reversal.

in Fig. 2, there is only a very small difference between the grids 128 × 64 and 160 × 80. Thus, the
grid with 128 × 64 nodes was used in all the simulations in this paper.

D. Viscoelastic kinetic-energy budget

We introduce a viscoelastic kinetic-energy budget analysis method in this paper following the
ideas of Cheng et al. [9] and Li et al. [41] who used the kinetic-energy budget method to gain
new insight into turbulent VRBC. A understanding of the reversal evolution can be developed by
considering the global and local kinetic-energy exchange.

The instantaneous fluid field energy can be split into the components shown in Eq. (7), each one
of them denoting local or global-integrated quantities (with operator 〈·〉ω):

dE

dt
= �D + �V + �G + �F , (7)

where
(i) E = 1

2 uiui denotes the kinetic energy;

(ii) �D = − ∂ (pu j )
∂x j

+ β Pr√
Ra

∂2Ei j

∂x2
j

represents the pressure diffusion and molecular viscous trans-
port;

(iii) �V = −β Pr√
Ra

∂ui
∂x j

∂ui
∂x j

represents the viscous dissipation, which describes the work done by
a fluid layer on adjacent layers, transformed into heat due to the action of shear forces;

(iv) �G = −( ∂ (uiτi j )
∂x j

− τi j
∂ui
∂x j

)
denotes the energy transition between flow structures and polymer

microstructures due to the stretching and relaxation behavior of polymer chains, where ∂ (uiτi j )
∂x j

and

τi j
∂ui
∂x j

denote the dissipation and interactive impact between flow and polymers, respectively;
(v) �F = PrTe jui is buoyancy flux input which describe the work done by the density differ-

ence due to the Boussinesq approximation.
The energy conversion distribution map is shown in Fig. 3. There are three forms of energy

reservoirs, the kinetic energy EK , the elastic energy EE , and the buoyancy potential energy EB. On
the right-hand side of Eq. (7), �G refers only to the energy transfer between flow and polymeric
structures, and it does not directly represent the magnitude of the elastic potential energy. To
characterize the elastic energy in this convection flow with the viscoelastic whose behavior is
described by the PTT model, the component Ci j of the deformation tensor C as the end-to-end
moment (〈rir j〉) of the extension of the polymers, modeled as linear spring-dumbbell is used. In this
scaling, the equilibrium deformation corresponds to an isotropic distribution with unit end-to-end
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FIG. 4. Critical Rayleigh numbers Rac1 and Rac2 as a function of We with β = 0.1, 0.2. The remaining
constitutive parameters are fixed at ε = 0.1, ξ = 0.05. Below Rac1 the cavity is in pure conductive and
motionless regime, between Rac1 and Rac2 flow regime is time-dependent, and above Rac2 flow regime is
steady in the cavity.

displacements [42]. As the relationship between the elastic stress and strain can be expressed by

τ p = 1 − β

We
(C − I), (8)

where C is the polymer deformation tensor and I is the unit tensor. The elastic energy stored in the
polymers is proportional to

1 − β

We
tr(τp) ∼

(
1 − β

We
tr(C) + constant

)
. (9)

Hence, the total normal elastic stress τii will be used to represent the stretching and shrinking energy
evolution of the macromolecular structure of the polymer in the viscoelastic flow.

III. RESULTS AND DISCUSSION

For the parameters studied, time-dependent reversal convection sets in at Rac1 due to a Hopf
bifurcation and ends at Rac2 due to a drift-pitchfork bifurcation. The two critical Rayleigh numbers
are determined by a less conventional stability analysis based on the fact that the bifurcations
are supercritical and that the solution characteristics (solution amplitude for a Hopf bifurcation
and solution frequency for a drift-pitchfork bifurcation) are linear with

√|Ra − Rac|. The linear
relationship is extrapolated to the critical point and this allows us to determine the critical Rayleigh
number. Details can be found in our previous paper (Zheng et al. [39]). The results obtained are
displayed in Fig. 4. The regions of Ra between Rac1 and Rac2 correspond to the regular reversal
convection which will be investigated in detail.

A. Time-dependent convection reversal

Periodic convection reversal is depicted in Fig. 5. Figure 5(a) plots the total kinetic energy Etotal as
a function of time and shows a regular periodic behavior. Five particular time points in one kinetic-
energy period π are chosen and marked on this curve from t = a to t = a∗, a and a∗ corresponding
to the maximum kinetic energy while t = b corresponds to the minimum. Note that one time period
of kinetic energy is only one half of time velocity period. The kinetic energy E , streamline, and
temperature T fields corresponding to these five monitoring points are displayed in Figs. 5(b) to 5(k).
The reverse behavior takes place at before and close to t = b (E almost equal to zero). The arrows
indicate the rotation direction of the cells. Clearly, the reversal arises when the kinetic energy is
minimal (point b). The temperature in its evolution exhibits high gradient in the central zone at
the beginning of the period, then progressively, the heated zone diffuses into the cold zone and the
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FIG. 5. Time evolution of total kinetic energy Etotal showing the flow pattern transition of two-cell convec-
tion. 2 : 1 cavity filled with a PTT fluid (Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ε = 0.1, and ξ = 0.05)
at the five particular time points indicated in panel (a).
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FIG. 6. Different energy evolution in a period corresponding to a complete reversal for β = 0.1 (top) and
β = 0.2 (bottom) with We = (0.150, 0.200, 0.250) (from left to right), where the time period was normalized
graphically. (The green curve) corresponds to buoyancy flux (〈�F 〉�), (the orange curve) corresponds to kinetic
diffusion (〈�D〉�), (the purple curve) corresponds to energy exchange between flow structures and polymer
microstructures due to the stretching and relaxation of polymer chains (〈�G〉�), (the red curve) corresponds to
bulk viscous dissipation of kinetic energy (〈�V 〉�), and (the blue curve) corresponds to global kinetic energy
(〈E〉�). We fixed Ra = 1200, Pr = 7.0, ε = 0.1, and ξ = 0.05.

temperature gradient smooths out before the direction is inverted in the central zone and the cycle
continues.

B. Energy transition in viscoelastic Rayleigh-Bénard convection from global view

For the tested cases, the following parameters are used: Ra = 1200, Pr = 7.0, ε = 0.1 and ξ =
0.05, We = (0.1, 0.15, 0.2), and β = (0.1, 0.2). Figure 6 shows the evolution of each type of the
integrated energy (〈·〉�) in dimensionless time in one completed reversal period with varying We.
To facilitate the comparison, the time period in each case is rescaled graphically into the same
x-coordinate range, and the real time period is written in the right-top of the figure. 〈�V 〉� is negative
or almost zero during the reversal process, which agrees with its definition. 〈�D〉� is almost zero
at all times and can be neglected in the process of kinetic-energy transport. 〈�F 〉� is most of the
time positive and thus is a globally generating term during the process because it is most of the
time positive, which agrees with the fact that RBC is a buoyancy-driven flow. 〈�G〉� is globally
dissipation term because it is most of the time negative.

A half-period of the reversal process (from the time-point with peak kinetic-energy value to next
maximum kinetic-energy time-point with opposite velocity direction) is divided into two phases
in Fig. 5, including the kinetic-decrease phase (a–b) and the kinetic-increase phase (b–a∗): in the
kinetic-decrease phase, the kinetic energy 〈E〉� decreases from the peak value a to zero b. As the
〈E〉� goes to almost zero, each term on the left-hand side of Eq. (7) is equal to almost zero as well; in
the kinetic-increase phase, the flow structure is reorganized, the kinetic energy gradually increases
and gets to peak value again (a∗). The evolution of the flow structure is driven by multicontributions
from elastic stress and thermal buoyancy in the different time ranges in the kinetic-increase phase.
The elastic stress and the buoyancy work to increase kinetic energy in phases (b–d ) and in phases
(c–a∗), respectively.

To bring more clarity to the reversal process, we divide the kinetic-increase phase into three sub-
phases by distinguishing the contributions that drive the flow, the phase of the elastic-contribution
(b–c), in which only elastic stresses do positive work on the flow structure, the phase of the
elastic-buoyancy-contribution (c–d), in which elastic stresses and thermal buoyancy act together
with positive work on the flow structure; and the phase of the buoyancy-contribution (d–a∗), in
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FIG. 7. Snapshots of normal stresses τ11 and τ22 at the five time points indicated in Fig. 5(a). The parameters
are Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ε = 0.1, and ξ = 0.05.

which only thermal buoyancy does positive work on the flow structure. Note that a complete reverse
period has two kinetic-energy periods, which differ only in the evolution of the velocity direction
(from u2 > 0 to u2 < 0 or from u2 < 0 to u2 > 0).

The phase of kinetic-decrease starts at time-point a in Fig. 5(a) and ends at time-point b in
Fig. 5(a), in which the global kinetic energy decreases from peak value a to zero (b). In this phase,
the elastic energy exchange term 〈�G〉� remains negative, which means the energy of the system is
transformed from the kinetic energy into elastic potential energy, in other words, the kinetic energy
is stored into polymer macromolecular structure. In addition, the buoyancy flux 〈�F 〉�, that is the
only generating term also decreases to zero resulting in the gradual vanishing of the velocity field. At
the end of kinetic-decrease phase the high values of normal stresses (τ11, τ22) appear in the near-wall
areas and along the vertical central line. This will be discussed further in Figs. 7(b) and 7(g). Two
symmetric small vortices form and grow near the horizontal wall about the vertical centerline of the
cavity when time passes time-point b [Figs. 5(c) and 5(d)].

The elastic-contribution and elastic-buoyancy-contribution phases are in the time range (b–c)
and (c–d), respectively. At the start of the elastic-contribution phase, the velocity field almost stays
stationary and buoyancy flux is also almost zero, but the magnitude of the elastic stress field is
substantial, Figs. 7(b) and 7(g). At the beginning of the elastic-contribution phase, 〈�G〉� changes
from negative to positive, the kinetic energy slightly increases, but the buoyancy flux keeps going
down to negative values 〈�F 〉� < 0, which means that polymer structure starts doing positive work
(contribution) on the flow structure. However, buoyancy distribution plays an inhibiting role in the
flow convective process. The start of the reverse convection and its growth is initiated and supported
in this phase by elastic stresses. The only positive-energy input (for flow structure) to drive the start
of the opposite convection is the release of the elastic stress (〈�G〉� > 0), especially normal stress
τ22 (in the central region of the domain) and τ11 (in the near-horizontal wall) which offers enormous
tensile force. The elastic energy of the polymer macro-molecular structure is transformed into the
flow kinetic energy canceling out the dissipation effect of the negative buoyancy flux.

In the elastic-buoyancy-contribution phase, 〈�F 〉� changes its sign to be positive, both 〈�F 〉�
and 〈�G〉� contribute and accelerate the growth of the new vortices. Because both 〈�F 〉� and
〈�G〉� are positive, the growth rate of the kinetic energy is significantly improved and a dis-
sipating 〈�V 〉� is also found in this phase. The original vortices completely vanish and new
vortices with opposite rotation take up all the domain in the elastic-buoyancy-contribution phase,
Fig. 5(e).
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FIG. 8. Time proportion of each phase in one kinetic-energy period for We ∈ (0.1, 0.15, 0.2) and β ∈
(0.1, 0.2). The remaining parameters are fixed Ra = 1200, Pr = 7.0, ε = 0.1, and ξ = 0.05. As the kinetic-
energy period is only the half period of the convection reversal, the time ratio is based on the convection
reversal period and the sum of the ratios is equal to 0.5. The period time for each case is remarked by red text
in Fig. 6.

The buoyancy-contribution phase depicts the rapid increase of kinetic energy to the maximum
value due to the formation of the new large-scale circulations. The flow structure is more efficiently
driven by the buoyancy in this phase. In buoyancy-contribution phase (b–a∗ in Fig. 5), the elastic
potential energy completes the role it played in the former two phases (initiation and acceleration
reversals) and turns to absorbing energy from the flow structure in this phase, Fig. 6. The contours
of the normal stresses (τ11, τ22) at key time points are shown in Fig. 7(d) [Fig. 7(e)] and Fig. 7(i)
[Fig. 7(j)]. The increase in viscosity ratio β will reduce the time period while the increase in elastic
strength We has the opposite effect.

Each phase in one whole reverse period for cases with We ∈ (0.1, 0.15, 0.2) and β ∈ (0.1, 0.2)
is summarized in Fig. 8. We define time proportion of each phase by

tphase

tperiod
× 100% (10)

where tphase is the time of each phase, tperiod is the reversal time period of one flow reversal,
which is remarked by red text in Fig. 6. The half period (a–b–c–d–a∗) is shown in the fig-
ure, as the time proportion of each phase in two half periods is the same. It can be clearly
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FIG. 9. (a) Averaged kinetic energy 1
2π

∫ 2π

0 〈E〉�dt , (b) averaged energy exchange rate between flow

structure and polymer ( 1
2π

∫ 2π

0 〈�G〉�dt), (c) averaged buoyancy flux ( 1
2π

∫ 2π

0 〈�F 〉�dt), and (d) averaged elastic

potential power intensity ( 1
2π

∫ 2π

0 〈τ11 + τ22〉�dt) as a function of We with β ∈ (0.1, 0.2).

found that time proportion changes of each phase are almost monotonic relative to We and
β. As We increases and β decreases, the time proportion of the kinetic-decrease phase is ex-
tended. This can be explained by the fact that, as the elastic effect increases in the reversal
process, the macromolecular structure of the polymer can absorb and store more potential energy,
and that it takes longer time for the energy to transfer from the flow structure to the elastic
structure.

For higher We and smaller β, the stronger elastic effect means that elastic energy is released
faster into the flow structure when the average kinetic energy of the velocity field is almost zero.
The reversal process starts taking place at the very beginning of the elastic-contribution phase
and continues in the elastic-contribution and elastic-buoyancy-contribution phases. In this phase
elastic stress alone does positive work alone on the flow structure, and drives the reversal. The time
proportion of the elastic-contribution and elastic-buoyancy-contribution phases is compressed as
We increases and β decreases. Thus, elastic energy release takes less time to turn buoyancy flux
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FIG. 10. The contours of �G, �F at five key time-points (a, b, c, d, a∗). The isoheight with zero value is
drawn in �G and �F figures. In this case, Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ε = 0.1, and ξ = 0.05.

to be positive. The latter increases rapidly and makes 〈�G〉� turn to negative rather quickly. The
time proportion of phase (d–a∗) also decreases with increasing We and decreasing β. It leads to a
decrease in kinetic-increase phase for large We and small β.

Temporal-spatial averaged energies are also studied. Figure 9 shows the temporal-spatial aver-
aged values of the kinetic energy (E ), the energy exchange rate (�G), the buoyancy flux (�F ) and
the total normal elastic stress (τii) as functions of We with different β. Under the same conditions,
it is easy to find that these quantities increase with increasing We and decreasing β. Larger We and
smaller β increases the kinetic energy and changes the convective flow.

C. Energy evolution in viscoelastic Rayleigh-Bénard convection from the local view

In this section, we shift our attention from spatial integrated variables to local distribution to see
how each type of energy evolves in the reverse process to gain more insight into the reverse process.
Figure 7 shows in detail the spatial distribution of the elastic normal stresses τ11 and τ22, and Fig. 10
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FIG. 11. Variation of the potential energies change along the central vertical line (x = 1). In this case:
Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ε = 0.1, and ξ = 0.05. In the figures, dEdt = ∂E/∂t presents
the partial derivative of momentum E with respect to time.

gives the detailed spatial distribution of the potential energies, including �G and �F , for Ra = 1200,
Pr = 7.0, β = 0.1, We = 0.150, ε = 0.1, and ξ = 0.05. Following Fig. 6, potential-energy contours
are also drawn at five key time-points (a, b, c, d, a∗). Note that Figs. 5, 7, 10 correspond to the
same time points [a, b, c, d, a∗; marked in Fig. 5(a)]. The normal stresses, τ11 and τ22, behave in an
opposite manner; when one is maximum, the other reaches a minimum.

Figure 10 confirms that at the beginning of the kinetic-decrease phase (t = a), two symmetrical
large circulations completely fill up the domain as shown in Fig. 5(b). At t = a, the elastic-kinetic-
energy exchange term 〈�G〉� is negative, but �G is not negative everywhere in the cavity: the local
maximum and minimum values take place about the vertical central line, as shown in Fig. 10(a). This
indicates that kinetic energy is globally being either stored or dissipated in the polymeric structure
and that the negative area fills most of the cavity as indicated by Fig. 10(a), but, at some places
the kinetic energy is released into the flow. At the same time, the buoyancy flux (〈�F 〉� > 0) acts
with positive work on the flow structure, but note that �F is not positive everywhere in the cavity
as shown in Fig. 10(f). We distinguish positive and negative zones separated by u2 = 0 and T = 0
as �F = Tu2.

Obviously the positive zones are larger than the negative ones: The central part near the bottom
and the top parts near the cavity corners are negative zones indicating where �F is a dissipating
kinetic energy. From t = a to t = b, the kinetic energy 〈E〉� is reduced to almost zero. At t = b,
〈E〉� = 0 and the velocity field is zero everywhere in the cavity. 〈�G〉� = 0 and 〈�F 〉� = 0 because
u2 is very weak and almost zero everywhere in the cavity. Positive zones of �G appear at this
time and behave as the source term of the kinetic energy: the kinetic energy increases very slowly
from t = b to t = c confirming that 〈�G〉� is the only positive source term to amplify the kinetic
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TABLE I. The flow condition with different Weissenberg numbers and Rayleigh numbers. In tested cases
the following parameters are fixed: Pr = 7.0, β = 0.2, ε = 0.1, and ξ = 0.05. In the table, R represents the
reversal convection and S means the stable convection.

We Ra Cell number Flow regime

0.07125 2 R
[1920, 1960, 2120, 2240, 2400, 2560] 2 S

[1400, 1856, 1880, 1944, 2080] 3 R

0.075 [1864, 1880] 2 R
[1896, 2056, 2320, 2400] 2 S

[1720, 1760, 1800, 1816, 1840, 1856, 1920, 2000, 2040, 2080, 2160, 2240] 3 R

0.1 [1400, 1480, 1560, 1680, 1760] 2 R
[1800, 1920, 2080] 2 S

[1424, 1504, 1584, 1664, 1744, 1824, 1904, 1984, 2064, 2144, 2224] 3 R

0.125 [1200, 1240, 1264, 1280, 1440, 1520, 1560, 1600, 1640, 1680] 2 R
[1720, 1840] 2 S

[1360, 1456, 1552, 1648, 1760, 1880, 2000, 2160, 2320] 3 R

0.150 [1040, 1120, 1136, 1200, 1280, 1360, 1440, 1520] 2 R
[1616, 1696] 2 S

[1216, 1296, 1376, 1456, 1584, 1680, 1840, 2000, 2080] 3 R

0.175 [960, 1040, 1240, 1320, 1400, 1520] 2 R
[1560, 1600] 2 S

[1296, 1456, 1616, 1696] 3 R

0.2 [880, 920, 976, 1080, 1200, 1360, 1440] 2 R
[1480, 1512] 2 S

[1136, 1296, 1456, 1616] 3 R

0.225 [840, 880, 1040, 1200, 1280, 1360] 2 R
2 S

[1136, 1296, 1456, 1616] 3 R

0.250 [800, 840, 976, 1080, 1200, 1240, 1280, 1320] 2 R
2 S

[1136, 1296, 1456, 1616] 3 R

energy from t = b to t = c and hence the velocity field. At t = c, 〈�G〉� > 0 and �G = −ui j
∂τi j

x j
>

0 takes place in most of the cavity because of τi j
∂ui
x j

in the term �G while 〈�F 〉� = 0 is due to the
symmetries observed in T (T is almost fully conductive) and u2. From t = c the positive zones of
�F are growing and 〈�F 〉� becomes a positive source term of the kinetic energy and both 〈�F 〉�
and 〈�G〉� contribute to increasing the kinetic energy. At t = d , 〈�G〉� is back to zero again and
the positive zones of �F become larger than the negative ones. From t = d , 〈�F 〉� is the only
positive source term which increases the kinetic energy. As an auxiliary content to illustrate the
evolution of reverse, and also for space reasons, the evolution of three-cell reverse is depicted in the
Appendix.

Figure 11 shows the evolution of key variables (E , �G, �F , τ22, and dEdt) along the y-direction
line at x = 1 in a half period, where dEdt = ∂E

∂t presents the partial derivative of momentum E
with respect to time. These variables play important roles in the reverse process as we have already
discussed. The reason of selecting the line x = 1 for discussion is that E , �F , τ22, and �G exhibit
drastic changes during the reversal process.

E has its maximum at t = a, but the sign of dEdt switches from negative to positive along
the y direction, and is zero about y = 0.63, Fig. 11(a). That means there is an acceleration of E
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FIG. 12. (a) Bifurcation diagrams showing the multiple flow patterns found in VRBC. The y-axis represents
the y velocity at the monitoring point (x, y) = (7/8, 1/2). (b) The time shift (delay) of peak value of (E , �F )
and (�F , �G) [2R branch in panel (a)] as a function of Ra is shown. In the panel (b), tE , peak value, t�G, peak value,
t�F , peak value are the time point when the peak value of E , �F , and �G take place in one period. The simulated
cases correspond to Pr = 7.0, β = 0.2, We = 0.1, ε = 0.1, and ξ = 0.05.

starting from y = 0.63 up to y = 1 corroborated by the local �G > 0, Fig. 10(a). However, after
t = a, as shown in Figs. 5(b) and 5(c), dEdt becomes negative, meaning that E is decelerating,
from t = a+ to a + ++, and the local elastic stress τ22 increases rapidly, Figs. 7(f) and 7(g). That is
to say that the time phase from t = a + ++ to b, is a buffer area of the reversal system, because all
variables in this time interval are decreasing. It is conceivable that during this time phase (t = a +
++ to b), the absorption capacity of the macromolecular structure of polymer reaches a limitation,
the elastic stress field becomes temporarily stagnant, and part of the elastic potential energy is
released to the low-velocity region, but the E in the high-velocity region is still absorbed by the
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FIG. 13. Mean kinetic energy E = 1
2π

1
�

∫ 2π

0

∫ �

0 (uiui ) dtdV as a function of Ra in VRBC, where the
viscoelastic constitutive model is Phan-Thien-Tanner (PTT) model with We ∈ [0.07125, 0.250] and β = 0.2.
In the figure, (•) means 3R, (�) means 2R, and (×) means 2S.

elastic stress field. Thus, �G is negative and positive in the high-velocity and low-velocity areas,
respectively, Fig. 10(b), which makes the velocity field more chaotic as shown in Fig. 5(c). Except
τ22, all potentials are almost zero at time t = b. In the interval t = b to c, only elastic stress field τ22

plays its role, releases potential energy to the flow structure. The positive �G almost fills the whole
domain, Fig. 10(c). Buoyancy flux gradually plays a major role in the remaining time in the period
to complete the reversal process, Figs. 10(i) and 10(j).

D. Effect of We on pattern selection

This section concerns the role of the elasticity, through the We values, on the flow patterns.
Table I summaries the flow pattern of VRBC with different Ra and We. In this table, (S) represents
the steady convection and (R) denotes the reversal convection. The constitutive parameters β = 0.2,
ε = 0.1, and ξ = 0.05 were fixed in all these simulations. We notice that the two-cells reversal
convection does not take place when We = 0.07125. For cases with We = 0.225 and We = 0.25,
two-cells steady convection was not obtained because the corresponding comprehensive elastic
coefficient is too large, especially when β is small (=0.2) exceeding the solving ability of this
solver. Convection is dominated by elasticity when β is relatively small.

Figure 12 depicts flow pattern selection in VRBC and the time shift (delay) of peak value of
(E , �F ) and (�F , �G) as a function of Ra, which can more intuitively explain the reason of
the periodicity of the transition from reversal to steady-state convection. Figure 12(a) plots the y
velocity at the monitoring point (x, y) = (7/8, 1/2) as function of Ra for cases with Pr = 7.0,
β = 0.2, We = 0.1, ε = 0.1, and ξ = 0.05. There are two (positive and negative) solution branches
for convection pattern of 2R (two-cells) and 3R (three-cells). The positive and negative values of
branches are maximum positive and negative velocities in one reversal period, respectively. Two
time-dependent reversal convection branches 2R and 3R both start from the pure conduction state
and distinguish from the different Hopf bifurcation P2 and P1, respectively, where P1 leads branch
of 3R, and P2 leads 2R. With increasing Ra, another bifurcation P3, a drift pitchfork bifurcation,
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FIG. 14. Averaged energy exchange rate �G as a function of Ra in VRBC, where the viscoelastic consti-
tutive model is Phan-Thien-Tanner (PTT) model with We ∈ [0.07125–0.250] and β = 0.2. In the figure, (•)
means 3R, (�) means 2R, and (×) means 2S.

takes place on the branch of 2R and induces the flow transition from 2R to steady two-cell convection
2S. For branches 3R, when Ra exceeds a certain value, 3R will also transit to 2S. But we do not very
know the transit process from 3R to 2S. It can be our next step.

In Fig. 12(b) is shown the time shift (delay) of the peak value of (E , �F ) and (�F , �G) as a
function of Ra. Here, we define the time shift proportion by

R(E ,�F ) = (
t�F , peak value − tE , peak value

)
/tperiod, (11)

R(�F ,�G ) = (
t�G, peak value − t�F , peak value

)
/tperiod, (12)

where tEpeak value , t�F, peak value , t�G, peak value are the time point when the peak value of E , �F and �G take
place in one period, as shown in Fig. 6. All tested cases in the figure are in the Ra region of regular
reversal, and the flow state will change to steady convection as Ra further increases. It can be easily
found that the time shift R(E ,�F ) and R(�F ,�G ) almost show the same decreasing trend as Ra increases,
and when the Ra is close to Rac2, the R(E ,�F ) and R(�F ,�G ) (equivalent to R(E ,�G )) are almost be zero
supporting our proposition that the formation of viscoelastic periodic reversal convection is due to
the alternating transition of the system’s total energy (kinetic energy, elastic energy, and buoyancy
potential energy). The time phase difference between the appearance of different forms of energy
(such as the maximum value) promotes this process. In other words, when the time phase difference
(R(E ,�F ) and R(�F ,�G )) disappears, the flow pattern would have passed the bifurcation point P3 and
the reversed convection would finally transit to steady-state convection.

Figure 13 shows the temporally and spatially averaged E as a function of Ra with different We.
Several conclusions could be deduced from this figure:

(i) The rate of increase of the kinetic energy (vs Ra) is different for different flow structures.
Among them, the steady-state flow has the highest growth rate of kinetic energy, represented by the
cross symbol (x) in the figure.

(ii) As the Ra closes Rac2 (flow changes from 2R to 2S), the average kinetic energy will
decrease, we call this self-regulation.
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FIG. 15. Averaged Nusselt number Nuts as a function of Ra in VRBC, where the viscoelastic constitutive
model is Phan-Thien-Tanner (PTT) model with We ∈ [0.07125–0.250] and β = 0.2. In the figure, (•) means
3R, (�) means 2R, and (×) means 2S.

(iii) There is the overlap range of the Rayleigh number for two-cell and three-cell reversal
condition.

(iv) No matter the initial flow state is two-cell or three-cell reverse convection, when the
Rayleigh number exceeds the second critical number, the steady-state convection always has only
two circulations.

In the same spirit, Fig. 14 shows the capacity of the energy exchange between the flow structure
and the polymer macromolecular structure at different We, Ra, and flow condition. From Fig. 14,
we can find that the overall energy exchange capacity of steady-state convection is stronger than that
in reversed convection. The existence of the reversal phenomenon has a huge impact on the energy
dissipation of the system. We can found a threshold of the energy exchange rate of �G between

FIG. 16. Different averaged quantities as function of the dimensionless time in regular reversal convection
system with three cells, where the rheological parameters are β = 0.1, We = 0.15, Ra = 1200, ε = 0.1, and
ξ = 0.05.
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FIG. 17. The contours of the kinetic energy E and the buoyancy flux �F at five key time-points
(a, b, c, d, a∗). In the case we fixed parameters Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ε = 0.1, and
ξ = 0.05.

reversal and stable convection. In present cases, this threshold obeys the function:

−0.051
Ra

Rac1
+ 0.038, (13)

as shown in Fig. 14. The regular reversal convection only takes place when the �G is under this
value, and the flow pattern will change to stable convection once the �G exceeds this value. The �G

shows a more of a linear relationship with Ra in the reverse region, compared with that in the steady
convection region.

E. Heat transfer

The temporal-spatial averaged Nusselt number (Nu) as a function of Ra and We is plotted in
Fig. 15. Nu is defined as the nondimensional temperature gradient at the bottom boundary of the
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FIG. 18. The contours of �G, total normal stress τii at five key time-points (a, b, c, d, a∗). In the case we
fixed parameters Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ε = 0.1, and ξ = 0.05.

cavity. The spatially temporally averaged Nusselt number Nuts is defined as

Nuts = 1

λ

1

2

∫ λ

0

∫ 2

0
−∂T

∂y
|y=0 dxdt . (14)

The behavior of Nu is similar to that of the kinetic energy shown in Fig. 13. It can be conversely
found that under a certain Ra, the same convection system can have different flow states, reverse
convection, or stable convection. For example when We = 0.125 and Ra = 1750, the flow state can
be three-cell reverse convection or two-cell steady-state convection, depending on the previous flow
mode. We can also observe that for the reversed convection state, the three-cell configuration is
more stable than the two-cell configuration because the three-cell configuration can exist in a larger
Ra range in Fig. 15.

From the perspective of heat transfer capacity, the growth rate of Nu in two-cell steady-state
convection is much larger than that of the reverse convection, as described in Fig. 15. The reason
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probably is in the flow process of reverse convection, the continuous stretching and contraction of
the polymer structure in the system plays an intermittent obstructive effect on the flow.

IV. CONCLUSIONS

Two-dimensional numerical simulations of VRBC in a rectangular enclosure was performed
in this paper. Time-dependent reversal convection onset in an enclosure of aspect ratio 2 : 1
was explored using an in-house-developed numerical code, covering the range of parameters
β = (0.1, 0.2), We ∈ [0.007125, 0.25] and fixed Pr = 7.0. We note here that the viscoelastic fluid
of the PTT type we worked with is highly elastic. As we had remarked earlier in Sec. II A the value
We = 0.1 for the Weissenberg number in the present work is the equivalent of We = 10.58 in the
work by Cheng et al. [9]. In the simulated VRBC cases a time-dependent flow, instead of a steady,
exists during the convection with increasing We and decreasing β.

For time-dependent reversal convection, the evolution of the two-cell and three-cell flow
structures were investigated in detail together with the energy conversion in the regular reversal
convection and the elasticity effect on the promotion of the reversal formation. The potential
energy in the convection system is periodically transported between the flow structure and the
polymer. The flow is driven by an elastic force and thermal buoyancy. There is a critical value
of the energy exchange rate �G between periodically reversed convection and the steady-state
convection. At higher Ra, time-dependent flow is replaced by a steady-state flow when another
critical Rayleigh number (Rac2) is reached. This flow transition corresponds to a drift pitchfork
bifurcation. The disappearance of the time-dependent convection is due to the gradual decrease or
even disappearance of the time phase difference between the evolution of the elastic energy and the
evolution of the velocity field with Ra.

The onset of the time-dependent reverse convection in the Rayleigh-Bénard convection with
nonlinear viscoelastic fluids is a novel flow feature because of the particular flow patterns. These
flow reversal characteristics are different and should not be confused with the random reversal in
turbulent Rayleigh-Bénard convection.
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APPENDIX: REVERSAL CONVECTION WITH THREE CELLS

To fully explain the mechanism of the viscoelastic property that drives the reversal convection,
the kinetic-energy transport in the reversal convection system with three cells was also investigated.
The same fixed parameters Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ε = 0.1, and ξ = 0.05
have been used to facilitate comparison with the two-cell configuration.

Figure 16 plots the different averaged terms (appearing in the kinetic energy) transport equa-
tion in the three-roll regular reversal convection versus dimensionless time. The time period for
this case is t = 0.92, which is longer than that in the two-roll configuration (t = 0.69). Compared
with the two-roll reversal convection, the evolutions in time of the different energies show behavior
similar to that in Fig. 6. The five key time-points (a, b, c, d, a∗) are displayed in Figs. 17 and 18.
Time point a marks the maximum of the kinetic energy and the minimum of the viscous dissipation,
the maximum of the buoyancy flux 〈�F 〉� and the minimum of 〈�G〉� occur later, but note that
there is a slight delay between the extrema of 〈�F 〉� and 〈�G〉�. Time point b corresponds to the
moment where 〈E〉�, 〈�F 〉� and 〈�G〉� are equal to almost zero. At this particular time, 〈�F 〉�
and 〈�G〉� terms become a dissipation term instead of a production term and a kinetic-energy term
instead of a dissipation term, respectively. At time point c, 〈�F 〉� is again zero. At b and c, 〈�F 〉�
behaves as a dissipation term and after c both 〈�F 〉� and 〈�G〉� behave as production terms. At
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time-point d , 〈�F 〉� crosses zero again and retakes its role of a dissipation term. Between d and a∗,
〈�F 〉� is the only driving force to amplify to the kinetic energy and hence the velocity field.

The mechanism of the convection reversal is the following: before the time point a, the buoyancy
flux 〈�F 〉� is increasing in time amplifying the kinetic energy and adding energy to the elastic
reservoir; 〈�F 〉� reaches its maximum after the time-point a and continues to decrease whereas
〈�G〉� reaches its minimum later. This delay in time makes the kinetic energy 〈�F 〉� + 〈�G〉� +
〈�V 〉� + 〈�D〉� negative. The kinetic energy 〈E〉� decreases, and is reduced to almost zero at time
point b. The elastic potential plays the leading role as a production term after b and makes 〈�G〉�
to become positive again before retaking the dissipation role at time point d .

As observed in the two-cell case, at t = a 〈�F 〉� is a positive term, but �F displays local negative
zones and at t = b and c 〈�F 〉� is equal to zero because of u2 ≈ 0 at t = b and the symmetries of T
and u2 at t = c. In the same way 〈�G〉� is a dissipation term at t = a but �G displays local positive
zones. In terms of the total normal stress, it remains globally positive: it is amplified from t = a to
b, and decreases from t = b to t = c and d . From t = d to a∗, it is increasing again.
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