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Recent literature shows that chiral particles driven by vorticity gradients of a base
Newtonian liquid can separate only in nonlinear or nonstationary flows. Here, we show that
a base Newtonian liquid endowed with rotational degrees of freedom can give rise to chiral
particle propulsion and separation even in the Stokes flow approximation. We consider
active mechanisms generating spatially inhomogeneous vorticity in the base liquid in a
channel such as a magnetic torque, a pressure gradient, and a sliding wall. These mech-
anisms generate regions of spatially inhomogeneous vorticity maintained by the internal
angular momentum, propelling the chiral particles according to their handedness. Similar
conclusions can be reached when one of the channel walls is replaced by a free surface
acted on by surface shear. This behavior is in contrast to the case of standard Newtonian
liquids where chiral particle propulsion generated by vorticity gradients is not possible in
Stokes flow. This effect can find applications in industry, biology, and medicine.
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I. INTRODUCTION

Recent years have seen significant progress in the design and synthesis of active systems [1]
executing cooperative functions by the application of external inputs, such as chemical energy [2]
and/or electromagnetic fields [3]. Activity has been employed to promote segregation in colloids
[4], including those endowed with reduced symmetries, such as chiral particles [5].

Chirality, a ubiquitous property of biomolecules and biomolecular assemblies [6], refers to the
lack of inversion symmetry of a particle. This lack of symmetry in shape can be employed to propel
particles in an active or passive manner [7]. In the active case, propulsion is achieved by coupling
the chiral particles’ electric dipole moments or magnetization to external electromagnetic fields [8].
In the passive case, chiral particles can be propelled without intrinsic torques by only resorting to
their asymmetric shape, cf. Refs. [9,10].

Here, we consider the passive case and a base liquid endowed with rotational degrees of freedom
in a channel under either (i) an external magnetic field, (ii) a pressure gradient, (iii) a sliding channel
wall, or (iv) a surface shear “wind,” when one of the channels walls is replaced by a free surface.
Either of these mechanisms imparts energy into the base liquid in the form of internal angular
momentum. The generated spatially inhomogeneous regions of vorticity can drive n− left- and n+
right-handed chiral particles in a direction perpendicular to the plane of the vortex (cf. Fig. 1) with
single chiral particle velocities vp and −vp, respectively, by taking advantage of their asymmetric
shape. Thus, particles of opposite chirality will move in opposite directions. This effect is in contrast
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FIG. 1. Shear flow u(z)x̂ of a liquid with rotational degrees of freedom [described by the stress and couple-
stress tensors Eqs. (3) and (4)] between two rigid plates located at z = ± d

2 (and infinite in the other two
directions) gives rise to chiral particle propulsion in the y direction with velocity vp(z)ŷ, a chiral stress σ ch

yz (z),
and a commensurate (liquid) chiral velocity vch(z)ŷ. Rotational degrees of freedom are accounted for by the
angular velocity ωŷ (see the discussion in Sec. II).

to its standard Newtonian liquid counterpart, where propulsion induced by gradients of vorticity is
impossible in Stokes flow [10].

Propulsion of an individual particle can be physically justified as follows. The chiral current and
thus the individual chiral particle velocity cannot be proportional to liquid vorticity as there should
be no chiral current in a rigidly rotating liquid. On the other hand, it can be proportional to the
difference between vorticity and twice the angular velocity of the rotational degrees of freedom.
This effective vorticity rotates the chiral particle which, as a consequence, translates due to its chiral
shape.

The motion of the chiral suspension affects the base liquid. Corrections to the Cauchy stress
tensor of chiral origin have to be taken into account in a nonracemic mixture. The forces generated
are perpendicular to the flow direction. Thus, the chiral suspension also leads to corrections of the
liquid velocity directed perpendicularly to the motion of the base flow.

Chirality generates forces on the boundaries by the motion of the chiral particles. In channel
flow, the parallel walls experience chiral forces that lie on their plane and are perpendicular to the
base flow direction. The two walls experience forces with opposite signs in the pressure-driven
flow or the same sign in the two cases of magnetic field and sliding channel walls. We emphasize
that although activity may refer to the actuation of matter due to an external magnetic field, the
vorticity-generating mechanisms of pressure gradient, sliding of a channel wall, and shearing of a
free surface are not concerned with any magnetic properties. We also note that the effect is prominent
close to solid boundaries where vorticity gradients are stronger.

In this paper, we attempt to combine logical consistency with completeness. The paper is
organized as follows. In Sec. II, we briefly describe the equations of motion for a liquid endowed
with rotational degrees of freedom [11]. The liquid can be driven by a rotating magnetic field
but it can also be driven by a pressure gradient or a moving boundary. In Sec. III, we review the
hydrodynamic equations and constitutive laws for passive chiral particle propulsion and separation
as developed in Ref. [10]. This description is then generalized to account for the rotational degrees
of freedom of the liquid we consider in this paper. In the subsequent sections, we calculate the force
experienced by the liquid from the presence of the chiral particles during their motion, the resulting
liquid velocity vch, and the velocity of an individual chiral particle. The base liquid is driven by
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four separate mechanisms. The first mechanism, which gives rise to the most prominent effects, is
a magnetic torque, discussed in Sec. IV B. We derive expression and estimate the strength of the
observables for a magnetic liquid EMG 900 that has been employed in recent experiments [11]. We
report modest estimates for the effects. These can be modified by changing the sizes of the channel,
particles, and liquid properties. We repeat the discussion when the effect is driven by the remaining
mechanisms: a pressure gradient in Sec. IV C and the practically important case of Couette flow in
Sec. IV D. In Sec. IV E, we repeat the foregoing analysis for a liquid layer with a free surface driven
by a surface shear wind. We conclude this paper in Sec. V with a discussion of certain applications
to which the above mechanism can be applied.

II. REVIEW OF HYDRODYNAMIC EQUATIONS FOR A BASE LIQUID WITH ROTATIONAL
DEGREES OF FREEDOM—NO CHIRAL PARTICLES

In the absence of chiral particles, a liquid with rotational degrees of freedom is characterized by
the balance of linear and internal angular momentum that can be expressed in the form [12]

ρDui/Dt = ∂kσik and (1)

IDωi/Dt = ∂kCik + Ni + εimkσkm, i, k, m = 1, 2, 3, (2)

where D/Dt is the convective derivative, ρ is the fluid density, I the volume density of the grain
moment of inertia, ui is the fluid velocity, ωi the grain angular velocity, and Ni is the magnetic
torque density. As noted in Ref. [12], the last term of the second equation in Eqs. (2) represents
the transformation of moment of momentum εi jkxiu j into internal angular momentum only when
the stress σi j has an antisymmetric part. It is this antisymmetric part of the base flow constitutive
relation that maintains a spatially inhomogeneous vorticity distribution that gives rise to the chiral
particle propulsion considered in this paper. The resulting total stress σ is [11]

σik = −pδik + ηV̂ik + ζŴik + T̂ik, (3)

where V̂ik = ∂kui + ∂iuk is twice the rate-of-strain tensor, Ŵik = ∂kui − ∂iuk − 2εkilωl is a “spin”
tensor measuring the imbalance between liquid and particle angular velocity, T̂ik = (hibk −
1
2 h2

jδik )/4π is the Maxwell stress tensor, and h and b denote the macroscopic magnetic field and
induction, respectively. Here, the liquid is considered incompressible ∂iui = 0, p is the pressure,
and η is the liquid (shear) viscosity. The phenomenological coefficient ζ multiplying Ŵ in Eq. (3)
is termed the vortex viscosity in the literature [11,12], εi jk is the alternating pseudotensor, and we
employed the Einstein summation convention on repeated indices. Ŵ has (curlu)/2 − ω as its axial
vector. Thus, whenever Ŵ is nonvanishing, there is an imbalance between the liquid vorticity and the
angular velocity ω (either of the two can be driven by an external source), and thus transfer of energy
takes place from rotational to translational degrees of freedom and vice versa. This guarantees
that diffusion of vorticity will be maintained in such a flow even in the Stokes regime, as will
be discussed below.

Diffusion of internal angular momentum takes place due to couple stresses C,

Cik = η′(∂kωi + ∂iωk ) + ζ ′∂ jω jδik, (4)

the suspended particles experience in their rotational motion. Here η′ and ζ ′ are the shear and bulk
coefficients of spin viscosity [12]. Therefore, ∂ jCi j in Eqs. (2) is the rate of arrival of internal angular
momentum by way of diffusion.

Incorporating the constitutive assumptions Eqs. (3) and (4) into the balance of linear and internal
angular momentum Eqs. (1) and (2), we obtain in familiar vector notation

ρ[∂t u + u · ∇u] = −∇p + 2ζcurlω + (ζ + η)∇2u, (5)

I[∂tω + u · ∇ω] = N + 2ζ (curlu − 2ω) + η′∇2ω, (6)
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and ∇ · u = 0 for an incompressible liquid. Here we introduced the condition ∇ · ω = 0, which is
automatically satisfied in the context of the geometry employed in this article.

In this paper, we consider no-slip and no-rotation boundary conditions on a solid surface:

u = 0 and ω = 0. (7)

Both can be relaxed. The angular velocity condition can be replaced by various models that have
appeared in the literature [11,12]. The no-slip condition may also be relaxed and replaced by wall
slip models [13]. It suffices, however, for the purposes of the present paper to employ Eqs. (7)
and limit attention to the chirality-related physical effects rather than an exhaustive enumeration of
cases related to different boundary conditions satisfied by the base flow. In this paper, we will also
consider a liquid with a free flat surface. In this interface, one has to satisfy a shear stress and couple
stress condition,

[[tσn]] = τ and [[Cn]] = 0, (8)

where n and t denote the unit normal and tangent on the interface, τ is an imposed surface shear
wind [14] and the symbol [[·]] denotes the jump of the field across an interface. The second condition
in Eqs. (8), satisfied by a liquid with rotational degrees of freedom, was only recently derived by
Chaves and Rinaldi [15] and employed in studies of active matter with a free surface [16].

To make analytical progress, we now introduce the following geometry, which, despite its
simplicity, displays all relevant features of the effects conveyed in this paper, and which were
absent in Ref. [10]. Consider shear flow between two (no-slip) parallel plates (see Fig. 1) located at
z = ±d/2, for which the liquid velocity, particle angular velocity, and liquid vorticity become

u = u(z)x̂, ω = ω(z)ŷ, curlu = ŷ∂zu. (9)

This flow pattern can be justified, for instance, by the application of a rotating magnetic field in the
x − z plane, which was shown to arise in several theoretical and experimental instances [17].

In the creeping flow approximation, the Navier-Stokes Eqs. (5) and (6) reduce to

x̂ : −∂x p − 2ζ∂zω + (ζ + η)∂2
z u = 0, (10)

ŷ : 2ζ (∂zu − 2ω) + η′∂2
z ω + N = 0. (11)

We consider a geometry where the lower boundary of the liquid at y = −d/2 is an immobile wall
(cf. Fig. 3), with no slip and no particle rotation:

u = 0, and ω = 0, at z = −d

2
. (12)

For the upper wall, located at y = d/2, we will investigate the following distinct cases:
(1) Channel with immobile upper wall; then the boundary conditions read u = ω = 0.
(2) Channel with moving upper wall: u = U and ω = 0.
(3) Free surface with shear wind of strength τ : σxz = τ and ∂zω = 0 [15] [derived from Eq. (8)].
The exact forms of the fields u and ω determined by the solution of Eqs. (10) and (11) with the

above boundary conditions appear in Appendix B. They were obtained by considering a constant
magnetic torque N , as was derived, for instance, by Zahn and Greer [17] by applying a rotating
magnetic field to a ferrofluid suspension and by taking the limit ωτB → 0, where τB is the Brownian
relaxation time of the grains.

III. THEORY OF CHIRAL PARTICLE PROPULSION AND SEPARATION IN A LIQUID
WITH ROTATIONAL DEGREES OF FREEDOM

In this section, we briefly summarize the main equations and constitutive laws derived in
Ref. [10] satisfied by chiral particles suspended in a standard Newtonian liquid. We then generalize
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them to account for the rotational degrees of freedom and antisymmetric stress tensors of the base
liquid employed in the present paper.

Consider a suspension of n = n+ + n− chiral particles per unit volume suspended in the base
liquid endowed with the rotational degrees of freedom we described in the previous section. n+ and
n− are the number densities of right- and left-handed particles, respectively.

Concentration, pressure, and temperature gradients will, in general, affect the distribution of
particles in a moving liquid with velocity u according to ∂t n + div(un) + divj = 0, where

j(n) = −D∇n − nλT ∇T − nλp∇p (13)

[10,18].
As seen from the Navier-Stokes equations with rotational degrees of freedom, cf. Eqs. (10) and

(11), the shear viscosity is represented by η + ζ . Thus, the chiral momentum flux density Eq. (6) of
Ref. [10] is modified by incorporating the rotational degrees of freedom and acquires the form

σ ch
i j = (η + ζ ){nchα[∂i(curlu) j + ∂ j (curlu)i] + α1[(curlu)i∂ jn

ch + (curlu) j∂in
ch]}, (14)

where nch = n+ − n− is the chiral density.
The evolution of the chiral density can also be affected by advection, concentration, pressure,

and temperature gradients:

∂t n
ch + div(unch) + div(j(nch) + jch) = 0. (15)

Here, j(nch) is the standard current, Eq. (13), with n replaced by nch, and jch is a new contribution
allowed by symmetry:

jch = nβ∇2curlu. (16)

This current can be understood as the difference between the current of right-handed particles j+
and left-handed particles j−:

jch = j+ − j−. (17)

Thus, if j± = n±v±
p where vp is the single-particle velocity, then Eq. (17) implies Eq. (16) if we

identify v±
p with ±β∇2curlu. This definition also implies that particles of opposite chirality move

in opposite directions.
The coefficients α and β in Eqs. (14) and (16) are determined in the low Reynolds number regime

by studying the particle motion in the surrounding liquid [19]. They are given by

α ∼ α1 ∼ χR4 and β ∼ χR3, (18)

where R is the chiral particle radius and χ is the degree of chirality in the shape of the particles.
For simplicity, we consider an incompressible liquid where the right- and left-handed particles are
mirror images of each other. The chiral current Eq. (16) is allowed by symmetry and it is present
even in racemic mixtures (where nch ≡ 0).

Now the question that arises is, In which flows are the above chiral current Eq. (16) present? For
example, it is known that in Stokes flow, the above chiral current in Eq. (16) does not give rise to
chiral particle propulsion, cf. Ref. [10], unless the base flow is nonlinear or nonstationary. This is
not the case, however, when rotational degrees of freedom are incorporated in a liquid where they
generate and maintain regions of inhomogeneous vorticity gradients. From Eqs. (5) and (6), one can
derive the vorticity equation:

(ζ + η)∇2curlu = 2ζ∇2ω + ρ(∂t curlu + curl(u · ∇u)). (19)

As is evident from Eq. (19), the term ∇2curlu exists even in the Stokes flow approximation, as long
as the diffusion of internal angular momentum ∼∇2ω is nonvanishing. Even in the absence of an
external torque N, the diffusion of vorticity can be maintained by the imbalance ∇ × u − 2ω of
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TABLE I. Definition of observables and parameters.

Quantity Units Definition

vp cm/s Individual chiral particle velocity

jch cm/s/cm3 Chiral current
F dyne cm−2 Chiral particle-induced stress on channel walls
vch cm/s Chiral particle-induced liquid velocity

l =
√

ζη′
η(η+ζ ) cm Parameter

k =
√

4ηζ

η′ (η+ζ ) cm−1 Parameter

the rotational degrees of freedom in the basic liquid in the creeping flow approximation (the Stokes
regime) that can be driven by a shear flow, see Eq. (6).

When the chiral density nch is spatially uniform, only the first term of the general expression
for the chiral stress in Eq. (14) is in operation. Then, the chiral volume force density −∂ jσ

ch
i j ≡

−nchα(η + ζ )∇2curlui, derived from this term, can be generated not only in nonstationary and
nonlinear flows but also in creeping (Stokes) flow.

We note that additional terms of orientational origin exist in the chiral current Eq. (16), see Ref.
[10], Eq. (8). These terms are subdominant to the one in Eq. (16) and we will not consider them
further.

IV. ILLUSTRATIVE EXAMPLES OF CHIRAL PARTICLE PROPULSION IN A MEDIUM
ENDOWED WITH ROTATIONAL DEGREES OF FREEDOM

A. Formulation of observables to be calculated

In the sections that follow, we will predominantly be interested in deriving some practically
useful observables that we list in Table I. The first observable is the individual chiral particle velocity
vp, which, from Eq. (16), acquires the form (see Fig. 1)

vp ≡ jch

n
= vpŷ ∼ χR3∂3

z u(z)ŷ, (20)

(we drop the ± superscript on vp) directed perpendicularly to the plane of the basic flow. Second,
the stresses imparted on the channel walls by the motion of the chiral suspension,

F ≡ ŷσ ch
yz

∣∣
z=±d/2 ∼ ŷχR(η + ζ )∂2

z u(z)|z=±d/2, (21)

are also directed perpendicularly to the plane of the basic flow (see Fig. 1), where we assumed
that nchR3 ∼ 1. Third, the motion of the chiral suspension endows the liquid flow with a velocity
component vch perpendicular to the plane of the basic flow (see Fig. 1) and a commensurate chiral
angular velocity ωch,

u = u(z)x̂ + vch(z)ŷ, and ω = ωch(z)x̂ + ω(z)ŷ, (22)

where the fields with the superscript ch should be considered as a chirality-induced perturbation
superposed on the base flow u(z)x̂ and ω(z)ŷ. Thus, balance Eqs. (1) and (2) must be updated so the
Cauchy stress tensor σi j also contains the chiral stress contribution Eq. (14). This gives rise to two
extra equations that must be satisfied by the fields vch(z) and ωch(z). They read

ŷ : 2ζ∂zω
ch + (ζ + η)∂2

z vch + χR(η + ζ )∂3
z u = 0 (23)

and

x̂ : 2ζ (−∂zv
ch − 2ωch) + η′∂2

z ωch = 0, (24)
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where the basis vectors x̂ and ŷ denote the physical space direction for the conservation of linear and
internal angular momentum, respectively. The last term of the first equation is the contraction of the
chiral stress Eq. (14) where u is given by Eq. (B2). Equations (23) and (24) must be accompanied by
suitable boundary conditions, which, for the case of a channel correspond to no slip and no rotation:

vch

(
±d

2

)
= ωch

(
±d

2

)
= 0. (25)

When the upper channel wall at z = d/2 is replaced by a free surface, the conditions of zero shear
stress σyz = 0 and zero couple stress, cf. Eqs. (8), read

(η + ζ )∂zv
ch + 2ζωch + χR(η + ζ )∂2

z u = 0, and ∂zω
ch = 0, at z = d

2
. (26)

Thus, the chiral stress Eq. (14) generated by the motion of a nonracemic suspension also gives
rise to new fluid flow behavior. The contributions to the liquid velocity obtained by the solution of
Eqs. (23) and (24) subject to the above boundary conditions are, in general, small compared with
the unperturbed liquid velocity. Perturbations to the liquid velocity in other directions may also be
included, but here we concentrate on demonstrating the effect imparted only on the chiral velocity
and angular velocity components.

We need to interpret the character of the formulas Eqs. (20), (21) and (23), (24) for the
observables vp, F , and vch under spatial inversion. Under spatial inversion, it is clear that n± → n∓.
From Eq. (17), it is seen that the chiral current jch does not change sign under spatial inversion.
Thus, it is not a true (polar) vector but an axial (pseudo)vector. Thus, all terms in the continuity
Eq. (15) change signs. Likewise, we enforce the same rule in Eq. (21) for the chiral stress and thus
for the chiral fields vch and ωch as well, by solution of Eqs. (23) and (24). In these equations, the sign
of χ is, however, also associated with the sign of nch. If we consider a racemic mixture, we must
set χ = 0 in Eqs. (21), (23), and (24) and in associated boundary conditions. These rules provide
a clear physical interpretation of the effects and ensures the invariance of Eqs. (23) and (24) under
spatial inversion. In what follows, we will adopt the value χ = 1 in the numerical calculations of
the effect. Since all effects are linear in χ , the readers can then multiply by the exact value of χ to
obtain estimates of the effects with respect to the particles they employ.

The above observables are spatially dependent. In the ensuing sections, we calculate their
characteristic values by averaging over the width of the channel, so, for instance, the average particle
velocity is

〈vp〉 = 1

d

∫ d/2

−d/2
vp(z)dz. (27)

When the average vanishes, we characterize the strength of the observable by its two-norm, which,
for the case of particle velocity, is defined as follows:

‖u‖2 =
√

1

d

∫ d/2

−d/2
v2

p(z)dz, (28)

so it retains correct units.

B. Passive chiral particle propulsion induced by a magnetic torque stirring of the base magnetic liquid

When the base liquid is magnetic, for instance, a ferrofluid (cf. Fig. 2), a magnetic field rotating
in the x − z plane, produces a magnetic torque

N = N0 + O(ωτB) (29)

directed along the y axis (see Eq. (34) of Ref. [17], Eq. (48) of Ref. [11], and Eqs. (2.24)– (2.32)
of Ref. [20]), in the limit of slow rotation ωτB → 0, where τB is the Brownian relaxation time of
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FIG. 2. The magnetic torque-induced flow of a ferrofluid EMG 900_2 (see Table II) in a channel of width d
whose dynamics is described by the stress and couple tensors Eqs. (3) and (4) gives rise to passive chiral particle
propulsion. (a) Ferromagnetic grains • rotate with angular velocity ω due to a magnetic torque N = m × h,
where h is the external rotating magnetic field (see Appendix A). A chiral current jch [cf. Eq. (16)] is driven by
the diffusion of liquid vorticity which in turn is driven by the external torque and the angular velocity imbalance
curlu − 2ω. The single chiral particle velocity is denoted by vp. A chiral stress F = σ ch

yz perpendicular to the
plane of the page [cf. Eq. (14)] applies evenly directed forces F on the channel walls in the y direction. This
stress also gives rise to a chiral volume force density −∂zσ

ch
yz and a chiral velocity vch [see Eqs. (23) and (24)]

of suspended chiral particles of density nch = n+ − n− directed perpendicularly to the plane of the channel:
out of the page � at the whole expanse of the channel. The right panel shows the spatial distribution of the
observables vp, σ

ch and vch in Gaussian units. The value χ = 1 of the chiral parameter was applied in these
plots.

ferroparticles, cf. Eq. (A1). The constant N0 depends on the frequency and amplitude of the applied
field. As shown in Ref. [17], the O(ωτB) term in Eq. (29) only leads to a renormalization of the
coefficient of vortex viscosity ζ . For simplicity, here we only consider the leading order (constant)
term N0 and proceed by dropping the index.

We employ the boundary conditions of no-slip and no-particle rotation at the channel walls

u = 0, and ω = 0, at z = ±d

2
, (30)

respectively and substitute into Eqs. (10) and (11) to obtain the closed form expression for the fields
u and ω that appear in Appendix B.

Defining the dimensional parameters l =
√

ζη′
η(η+ζ ) (measured in cm) and k =

√
4ηζ

η′(η+ζ ) (measured

in cm−1, cf. Table I), substituting the unperturbed velocity profile u(z) = − Nl (d sinh(kz)−2 sinh( kd
2 )z)

4ζ (−l sinh( kd
2 )+d cosh( kd

2 ))

directly into Eq. (20) and averaging over the channel width we obtain the single particle velocity vp:

〈vp〉 ≡ 〈 jch〉
n

= − sinh
(

kd
2

)
χ R3lN k2

2ζ
(−l sinh

(
kd
2

) + d cosh
(

kd
2

)) ∼ 2χR3N

d

√
ηζ

η′(η + ζ )3
. (31)

Employing the values displayed in Table II for an EMG900 ferrofluid, we estimate the single particle
velocity to be

〈vp〉 ∼ χ1.1 × 10−3 cm/s. (32)

Clearly, this estimate can become larger by employing, for instance, larger chiral particles.
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TABLE II. Experimental values taken from Refs. [11,17,20] for EMG 900_2 Ferrofluid.

Quantity Value Definition

ρ (g cm−3) 1.03 Density
η (g cm−1 s−1) 0.045 Shear viscosity Eq. (3)
ζ (g cm−1 s−1) 0.003 Vortex viscosity Eq. (3)
η′ (g cm s−1) 10−7 Spin viscosity Eq. (4)
R (cm) 2 × 10−3 Characteristic chiral particle radius
d (cm) 0.1 Characteristic channel width
N (dyne cm−2) 2 Characteristic torque density
τ (dyne cm−2) 0.1 Characteristic surface shear stress
U (cm/s) 1 Upper wall speed in Couette flow; Sec. IV D
nchR3 1 Chiral density

The chiral suspension imparts forces F on the channel walls as these are depicted in Fig. 2. From
Eq. (14), we obtain

F ≡σ ch
yz

(
y = ±d

2

)
= ∓ (η + ζ )αnchk2Ndl sinh

(
kd
2

)
4ζ

(−l sinh
(

kd
2

) + d cosh
(

kd
2

)) ∼ χRN

√
ηζ

η′(η+ζ )
∼ 0.67χ dynes cm−2.

(33)
The chiral stress F = σ ch

yz in Eq. (49) is perpendicular to the plane of the page and applies two
evenly oriented forces F on the channel walls in the y direction.

For comparison with the liquid undisturbed by the presence of the chiral particles, we calculate
the shear stresses σxz = (η + ζ )∂zu − 2ζω and σzx = (η − ζ )∂zu + 2ζω, and average over the
channel width to obtain

〈σzx〉 = −〈σxz〉 = N
(
d cosh

(
kd
2

)
k − 2 sinh

(
kd
2

))
2k

(−l sinh
(

kd
2

) + d cosh
(

kd
2

)) ∼ N

2
= 1 dyne cm−2. (34)

The order of magnitude of this estimate agrees with well-known results obtained in systems of
similar size in technology and biology, cf. Ref. [21]. The opposite sign between the stresses arises
due to the fact that with no-slip boundary conditions, 〈∂zu〉 = 0 so 〈σzx〉 = −〈σxz〉 = 2ζ 〈ω〉.

We calculate the Reynolds number with the channel width d being the characteristic length and
characteristic velocity is chosen to be the two-norm of the liquid velocity, giving the approximate

expression ‖u‖2 ∼
√

6η′
ηζ (η+ζ )

N
24 ∼ 3 × 10−2 cm/s. Thus,

Re ∼ 6 × 10−2. (35)

The chiral stress Eq. (49) generates a chiral volume force density −∂zσ
ch
yz that maintains a chiral

velocity directed perpendicularly to the plane of the duct and satisfies Eqs. (23) and (24). We solve
these equations numerically, subject to the material constants displayed in Table II. Averaging over
the channel width leads to the estimate

〈vch〉 ∼ 4χ × 10−2 cm/s. (36)

This rather large value is the largest of all chiral velocities we calculated for the cases that follow,
which shows that the application of a torque is a very effective way to propel passive chiral particles
and disturb the flow in a direction perpendicular to its unperturbed direction.

The chiral velocity vch [see Eq. (36)] of suspended chiral particles of density nch = n+ − n− is
directed perpendicularly to the plane of the channel: out of the page � at the whole expanse of the
channel, cf. Fig. 2.

The right panel of Fig. 2 displays the spatial distribution of the observables vp, σ
ch and vch.

Here we show the velocity vp for a particle with chirality coefficient χ = 1. A particle of opposite
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TABLE III. Particle size and spin viscosity values for Secs. IV C–IV E.

Quantity Value Definition

η′(g cm s−1) 10−9 Spin viscosity Eq. (4)
R (cm) 6 × 10−3 Characteristic chiral particle radius

chirality will move in the opposite direction. Following the convention described in the previous
section, the chiral stress and velocity are associated with a chiral current nch > 0.

C. Chiral particle propulsion in pressure-driven flow

In the absence of an external torque, a liquid with rotational degrees of freedom can still give rise
to chiral particle propulsion by way of vorticity diffusion. In this section, we consider a constant
pressure gradient ∂x p applied in a suspension of chiral particles in a liquid with rotational degrees
of freedom. We employ again the boundary conditions Eqs. (42) of no slip and no-particle rotation
at the channel walls u = 0, and ω = 0 at z = ± d

2 , and substitute into Eqs. (10) and (11) to obtain
the closed form expressions for the fields u and ω that appear in Appendix B.

Employing the dimensional parameters k and l (see Table I), substituting the unperturbed velocity

profile u(z) = − ((d2−4z2 ) sinh( dk
2 )+dl (ekz+e−kz−2 cosh( dk

2 )))∂x p

8η sinh( dk
2 )

directly into Eq. (20) and averaging its square

over the channel width, we obtain the single particle velocity vp:

‖vp‖2 ≡ ‖ jch‖2

n
=

√
2 R3χ k2l

√
d (−dk + sinh(dk))k ∂x p2

8η sinh
(

dk
2

) ∼
√

2
√

dk χ R3k2l∂x p

8η
. (37)

Employing the values displayed in Table II for an EMG900 ferrofluid, we estimate the single-
particle velocity to be

‖vp‖2 ∼ χ3 × 10−2 cm/s. (38)

This estimate was obtained by balancing the pressure gradient with the contraction of the stress
tensor ∂x p = ηU

d2 ∼ 4.5 dynes/cm, and by employing the values from Table II. Here we also
employed larger particle sizes and a smaller value for the spin viscosity η′, as these are displayed in
Table III.

The chiral suspension imparts forces F on the channel walls as depicted in Fig. 3. From Eq. (14),
we obtain

F ≡ σ ch
yz

(
y = ±d

2

)
= −nchα

(
ld k2 cosh

(
dk
2

) − 4 sinh
(

dk
2

))
∂x p

4η sinh
(

dk
2

) ∼ χR ζ
3
2 d∂x p√

η
√

η + ζ
√

et

∼ 0.27χdynes cm−2, (39)

The chiral stress F = σ ch
yz in Eq. (49) is perpendicular to the plane of the page and applies two

oppositely directed forces F in the channel walls in the y direction.
We calculate the Reynolds number with channel width d being the characteristic length and the

characteristic velocity is chosen to be the two-norm of the liquid velocity, giving the approximate
expression ‖u‖2 ∼ 0.09 cm/s. Thus,

Re ∼ 0.17. (40)

In a base Poiseuille flow of a standard Newtonian liquid, the chiral part of the stress tensor
Eq. (14) does not generate a volume force density −∂ jσ

ch
i j inside the liquid, cf. Ref. [10], and the

flow is not affected by the chiral character of the suspended particles. On the other hand, in a liquid
with rotational degrees of freedom, such as the one considered in the present paper, the chiral part of
the stress tensor Eq. (14) does generate a volume force density inside the liquid. Thus, the flow here
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FIG. 3. Pressure-driven flow of a liquid with rotational degrees of freedom in a channel of width d whose
dynamics is described by the stress and couple tensors Eqs. (3) and (4) gives rise to passive chiral particle
propulsion. A chiral current jch [cf. Eq. (16)] is driven by the diffusion of liquid vorticity which in turn is driven
by the pressure gradient and the angular velocity imbalance curlu − 2ω. The single chiral particle velocity is
denoted by vp. A chiral stress F = σ ch

yz perpendicular to the plane of the page [see Eq. (14)] applies two
oppositely directed forces F on the channel walls in the y direction. This stress also gives rise to a chiral
volume force density −∂zσ

ch
yz and a chiral velocity vch [see Eq. (41)] of suspended chiral particles of density

nch = n+ − n− directed perpendicularly to the plane of the channel: into the page ⊗ at the lower half and
out-of-the-page � at the upper half of the channel. Right panel: Spatial distribution of the observables vp, σ

ch

and vch in Gaussian units, setting χ = 1.

is affected by the chiral character of the suspended particles. The chiral stress Eq. (49) generates a
chiral volume force density −∂zσ

ch
yz that maintains a chiral velocity directed perpendicularly to the

plane of the duct and satisfies Eqs. (23) and (24). We solve these equations analytically, subject to
the material constants displayed in Table II with η′ and R taken from Table III. The average over the
channel width vanishes, so we calculate the two-norm:

‖vch‖2 ∼ 1.1 × 10−3χ cm/s. (41)

The chiral stress F = σ ch
yz in Eq. (39) is perpendicular to the plane of the page and applies two

oppositely directed forces F on the channel walls in the y direction. The chiral velocity vch [see
Eq. (41)] of suspended chiral particles of density nch = n+ − n− is directed perpendicularly to the
plane of the channel: into the page ⊗ at the lower half and out of the page � at the upper half of the
channel, cf. Fig. 3.

In the right panel of Fig. 3, we display the spatial distribution of the observables vp, σ
ch and

vch. The employment of a small spin viscosity value from Table III has generated sharp boundary-
layer-type spatial profiles close to the rigid walls. This pattern will persist in the following two
sections where this low spin viscosity value is also adopted.

D. Chiral separation in Couette flow

The practically important case of Couette flow in a liquid with rotational degrees of freedom will
also give rise to vorticity diffusion-induced chiral particle propulsion. We calculate below the single
particle velocity, chiral stress, and chiral velocity for a liquid suspension in a channel of width d
whose upper wall moves at a constant speed U , in the absence of a torque or pressure gradient. We
employ the boundary conditions of no-slip and no-particle rotation at the channel walls,

u = U, at z = d

2
, u = 0 at z = −d

2
and ω = 0, at z = ±d

2
, (42)

respectively, and substitute into Eqs. (10) and (11) to obtain the closed form expression for the fields
u and ω that appear in Appendix B.
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FIG. 4. Couette flow of a liquid with rotational degrees of freedom in a channel of width d whose dynamics
is described by the stress and couple tensors Eqs. (3) and (4) gives rise to passive chiral particle propulsion.
A chiral current jch [cf. Eq. (16)] is driven by the diffusion of liquid vorticity which in turn is driven by the
motion of the upper wall with velocity U and the angular velocity imbalance curlu − 2ω. The single chiral
particle velocity is denoted by vp. A chiral stress F = σ ch

yz perpendicular to the plane of the page [see Eq. (14)]
applies two evenly directed forces F on the channel walls in the y direction. This stress also gives rise to a
chiral volume force density −∂zσ

ch
yz and a chiral velocity vch [see Eq. (46)] of suspended chiral particles of

density nch = n+ − n− is directed perpendicularly to the plane of the channel: out of the page � at the whole
expanse of the channel. Right panel: Spatial distribution of the observables vp, σ

ch and vch in Gaussian units
(the vertical range has been restricted by one order of magnitude for clarity).

Employing the dimensional parameters k and l (see Table I), substituting the unperturbed velocity

profile u(z) = ((d+2z) cosh( kd
2 )−l (sinh(kz)+sinh( kd

2 )))U

2d cosh( kd
2 )−2l sinh( kd

2 )
directly into the chiral current Eq. (16) and averaging

over the channel width, we obtain the single particle velocity vp:

〈vp〉 ≡ 〈 jch〉
n

= − sinh
(

kd
2

)
χ R3lU k2

d
(
d cosh

(
kd
2

) − l sinh
(

kd
2

)) ∼ 4χR3U

d2

√
ηζ 3

η′(η + ζ )3
∼ χ1 × 10−3 cm/s.

(43)
The last estimate was obtained by employing the values displayed in Table II for an EMG900
ferrofluid and suspending larger chiral particles R ∼ 6 × 10−3 compared to the particle size that
led to the estimate Eq. (38), see Table III.

The chiral suspension imparts forces F on the channel walls as depicted in Fig. 4. From Eq. (14),
we obtain

F≡σ ch
yz

(
y = ±d

2

)
= ∓ nchα(η+ζ )Ulk2 sinh(kz)

2
(
d cosh

(
kd
2

)−l sinh
(

kd
2

)) ∼ 2χ
R

d

√
ηζ 3

η′(η+ζ )3
U ∼ 0.06χ dynes cm−2.

(44)
The chiral stress F = σ ch

yz in Eq. (44) is perpendicular to the plane of the page and applies two
evenly directed forces F in the channel walls in the y direction.

We calculate the Reynolds number with the above values, whose characteristic velocity is chosen
to be the two-norm of the unperturbed by chirality liquid velocity giving the approximate expression
‖u‖2 ∼ 0.058 cm/s. Thus,

Re ∼ 0.124. (45)

As is the case in the base Poiseuille flow of a standard Newtonian liquid, the chiral part of the
stress tensor Eq. (14) for the Couette does not generate a volume force density −∂ jσ

ch
i j inside the

liquid, cf. Ref. [10], and the flow is not affected by the chiral character of the suspended particles.
On the other hand, in a liquid with rotational degrees of freedom, such as the one considered in
the present paper, the chiral part of the stress tensor Eq. (14) does generate a volume force density
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FIG. 5. Free-surface flow of a liquid layer of thickness d endowed with rotational degrees of freedom
above a solid substrate and surrounded by an ambient gas phase and driven by surface shear τ gives rise to
passive chiral particle propulsion. A chiral current jch [cf. Eq. (16)] is driven by the diffusion of liquid vorticity
which in turn is driven by the pressure gradient and the angular velocity imbalance curlu − 2ω. The single
chiral particle velocity is denoted by vp. A chiral stress F = σ ch

yz perpendicular to the plane of the page [see
Eq. (14)] applies a force F on the lower channel walls in the y direction. This stress also gives rise to a chiral
volume force density −∂zσ

ch
yz and a chiral velocity vch [see Eq. (51)] of suspended chiral particles of density

nch = n+ − n− is directed perpendicularly to the plane of the channel: out of the page �. Right panel: Spatial
distribution of the observables vp, σ

ch and vch in Gaussian units (the vertical range has been restricted by one
order of magnitude for clarity).

inside the liquid. Thus, the flow here is affected by the chiral character of the suspended particles.
The chiral stress Eq. (49) generates a chiral volume force density −∂zσ

ch
yz that maintains a chiral

velocity directed perpendicularly to the plane of the duct and satisfies Eqs. (23) and (24). We solve
these equations analytically, subject to the material constants displayed in Table II, with η′ and R
taken from Table III. The average over the channel width reads

〈vch〉 ∼ 4 × 10−4χ cm/s. (46)

In the right panel of Fig. 4, we display the spatial distribution of the observables vp, σ
ch, and

vch in Gaussian units for χ = 1. The employment of a small spin viscosity value from Table III has
generated sharp boundary-layer-type spatial profiles close to the rigid walls.

E. Chiral propulsion in a liquid with a flat free interface under surface shear τ

In the previous three sections, we considered a suspension of chiral particles in a liquid with
rotational degrees of freedom confined within rigid walls. Diffusion of vorticity also arises, however,
when a free surface is acted upon by surface shear. Here, we will consider the simplest possible case
of a free surface, a flat interface between the liquid and an ambient gas phase. Thus, consider the
situation displayed in Fig. 5. A constant surface shear τ is applied on the free surface of the liquid
lying at z = d/2. The boundary conditions become [15,22]

u(−d/2) = 0, ω(−d/2) = 0, (η + ζ )∂zu(d/2) − 2ζω(d/2) = τ, ∂zω(d/2) = 0. (47)

Solving Eq. (10) and (11) with the above boundary conditions, substituting the unperturbed velocity
profile u(z) (see Appendix B) directly into the chiral current Eq. (16) (by employing the dimensional
parameters k and l , cf. Table I), and averaging over the channel width we obtain the single particle
velocity vp:

〈vp〉 ≡ 〈 jch〉
n

∼ 2χR3τ

d

√
ζ 3

η′η(η + ζ )3
∼ χ1 × 10−3 cm/s. (48)
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The last estimate was obtained by employing the values displayed in Table II for an EMG900
ferrofluid and suspending larger chiral particles R ∼ 6 × 10−3 compared to the particle size that
led to the estimate Eq. (38), see Table III.

The chiral suspension imparts forces F on the bottom channel wall, depicted in Fig. 5. From
Eq. (14), we obtain

F ≡ σ ch
yz

(
y = −d

2

)
∼ 2χR

√
ζ 3

η′η(η + ζ )
τ ∼ 0.13χ dynes cm−2. (49)

We calculate the Reynolds number with the above values, whose characteristic velocity is chosen
to be the two-norm of the liquid velocity giving the approximate expression ‖u‖2 ∼ 0.11 cm/s. Thus,

Re ∼ 0.27. (50)
To obtain expressions for the chiral velocity, we solve Eqs. (23) and (24) analytically subject to

the boundary conditions Eq. (25) on the lower wall and Eqs. (26) on the free surface. Employing the
material constants displayed in Table II with η′ and R taken from Table III, we calculate the average
over the channel width, which reads

〈vch〉 ∼ 8.5 × 10−4χ cm/s, (51)

directed perpendicularly to the plane of the channel: out of the page � cf. Fig. 5.
In the right panel of Fig. 5, we display the spatial distribution of the observables vp, σ

ch and vch.
The employment of a small spin viscosity value from Table III has generated sharp boundary-layer-
type spatial profiles close to the lower rigid wall.

V. DISCUSSION

In this paper, we show that in a liquid with rotational degrees of freedom, suspended chiral
particles can be propelled even in Stokes flow. Three mechanisms generate a spatially dependent
vorticity distribution in this base liquid contained in a channel: an external magnetic field, a pressure
gradient, and a sliding channel wall. When one channel wall is replaced by a free surface then the
vorticity distribution is generated by a surface shear wind. These mechanisms impart energy into
the base liquid and modify its internal angular momentum, creating and maintaining regions of
spatially inhomogeneous vorticity. Suspending n− left- and n+ right-handed chiral particles on this
base liquid leads to their propulsion and separation. This is because the spatially inhomogeneous
vorticity is maintained by the internal angular momentum the external stimuli impart on the liquid.
The chiral particle inherent shape asymmetry leads them to propel in a direction perpendicular to the
plane of the vortex as is evident in the foregoing analysis summarized in Figs. 2–5. In each case, the
chiral particles impart a chiral stress on the walls of the channel or substrate that are perpendicular
to the flow. This effect is in contrast to its standard Newtonian liquid counterpart, where vorticity
gradient-induced propulsion is impossible in Stokes flow [10].

From the right panels of Figs. 2–5, we conclude that most of the diffusion of vorticity generation
and thus chiral particle propulsion takes place close to the solid walls of the channel or the free
surface. This observation could be associated with the tendency of cells to swim close to surfaces,
see Ref. [23], Chap. 11] and references therein.

Propulsion in noncentrosymmetric media was theoretically developed in the past for the case
of photoinduced separation of chiral isomers [24], the photogalvanic effect [25], and the electron
moment-induced propulsion of chiral particles [8]. The common thread in all these works is to
take advantage of the transformation properties of the current under spatial inversion. The current
is a polar vector and thus changes sign under spatial inversion. The current is so chosen as to be
proportional to vectors or vector products that are invariant under spatial inversion. Thus, these
effects exist only when the coefficient of proportionality changes sign under spatial inversion.
In the case developed in the present paper, the effect of this sign change is that particles of
opposite chirality will move in opposite directions. This principle is well-known in the area of
noncentrosymmetric media [26].
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These ideas also carry over to the stress tensor. In a nonracemic mixture, the chiral suspension
will apply stresses on the liquid and these will be represented by a chiral stress tensor. By
symmetry, it will be proportional to quantities that change signs under spatial inversion. Thus, such
contributions exist only when the proportionality constant also changes signs, since the stress tensor
is invariant under such a transformation.

In this paper, we chose for spin viscosity η′ the value ∼10−7 g cm s−1 adopted from the exper-
iments of Chaves et al. [11]. An even larger value was measured in other experiments based on a
cobalt ferrite water-based ferrofluid [27]. Both disagree with theoretical estimates of this parameter
(see, e.g., Ref. [28]) which show a value that is orders of magnitude smaller than the one employed
here. In the same vein, comparison with equilibrium molecular dynamics simulations of water show
a spin viscosity coefficient to be even smaller (∼10−21 g cm s−1) [29]. Of course, these are different
liquids but it is good to keep in mind that the determination of the spin viscosity coefficient is
still an open area of research (see the discussion in Ref. [15], Sec. IV). Thus, in Secs. IV C–IV E,
we adopted the smaller value ∼10−9 g cm s−1, merely as convenient means to reproduce chiral
particle velocities of the same order of magnitude in all four cases considered here. Adopting the
experimentally verified value of Chaves et al. [11] for Secs. IV D and IV E would give rise to very
small particle velocity estimates.

In relation to the problem analyzed in Sec. IV B, an additional effect that may arise concerns the
state of broken time-reversal symmetry and parity when the rotational degrees of freedom of the base
liquid are driven by the magnetic field. In such a case, additional effects may arise, as was recently
shown experimentally by colleagues at the University of Chicago [30]. In two dimensions, these
effects are associated with the presence of an additional viscosity coefficient of the base liquid and
in an incompressible liquid become prominent when boundary conditions are (partly) determined by
mechanisms active at an interface (surface tension, surface shear, etc.), see, for instance, Ref. [31].
The case we consider in Sec. IV B employs the same antisymmetric tensors as Ref. [30], and is
also effectively two-dimensional but lacks a free surface. As such, any effects of odd viscosity will
just renormalize the state of pressure (cf. Ref. [31]) at the base flow. Were we to consider a fully
three-dimensional case, effects of odd viscosity could become prominent; see, for instance, the
discussion in Ref. [32] and references therein.

In this paper, we attempted to provide a logical and consistent interpretation of the chiral particle
propulsion effect that was first published in Ref. [10], and extended it to the case of liquids endowed
with rotational degrees of freedom incorporating couple stresses [the tensor in Eq. (4)]. In its
absence (setting η′ ≡ 0), the problem changes character since not all boundary conditions can
be satisfied. This is a singular perturbation problem and the solution obtained without rescaling
corresponds to the outer expansion [33]. Related is the form of the chiral current that is directly
given by the difference between vorticity and twice the angular velocity of the rotational degrees
of freedom of the base liquid: jch ∼ curlu − 2ω. This alternative viewpoint will be explored in a
separate publication.

The concept developed in the present paper can be applied to separate particles according to their
handedness. It can also be considered as a strategy of locomotion in Stokes flow. In this sense, we
believe it describes an alternative mechanism for the delivery of drugs through the bloodstream [3]
and for targeting malignant cells. The latter would be an especially important application in light of
recent research which shows that only 1% of particles reach their target [34].

ACKNOWLEDGMENTS

We thank the Department of Energy, Office of Basic Energy Sciences for support under
Contract No. DE-FG02-08ER46539. Financial support for this paper was also obtained by the
Center for Computation & Theory of Soft Materials at Robert R. McCormick School of Engineer-
ing and Applied Science, Northwestern University. The authors benefited from discussions with
A. V. Andreev and feedback from L. Lopez and A. Shrestha. They are grateful to the anonymous

023302-15



E. KIRKINIS AND M. OLVERA DE LA CRUZ

referees for valuable comments and criticism that improved the paper, and for bringing a number of
references to their attention.

APPENDIX A

The Maxwell’s equations are ∇ × h = 0 and ∇ · b = 0, where b = h + 4πm with m being the
macroscopic magnetization of the base liquid. Since the torque density N = m × h depends on the
macroscopic magnetization field m, one more constitutive equation describing the evolution of this
field has to be imposed to provide closure [11]. This is

Dmi/Dt = εi jkω jmk − (mi − ξhi )/τB i = 1, 2, 3. (A1)

Here, τB is the Brownian relaxation time [11], pp. 54–57 and ξ is the effective magnetic suscepti-
bility,

ξ = ngmd L(α)/h, L = coth α − 1

α
, α = md h

kBT
, (A2)

where md = MdV is the magnetic moment of a single subdomain particle, V is the particle volume,
Md is the domain magnetization of dispersed ferromagnetic material, and ng is the number density
of the magnetic grains. In this form, Eq. (A1) applies only at moderate strengths of the applied field.
For a discussion of this point, see Ref. [11], pp. 54–57 and references therein.

APPENDIX B

Below we solve the equations of motion Eqs. (10) and (11) for a fluid in a channel with constant
torque N [17] and constant pressure gradient ∂x p,

ω = z∂x p

2η
+ A + Be−kz + Cekz + N

4ζ
, (B1)

u = z2∂x p

2η
+ 2 Az − l

(
Be−kz − Cekz

) + D, (B2)

(curlu)y = z∂x p

η
+ 2A + kl (Be−kz + Cekz ), (B3)

where l =
√

ζη′
η(η+ζ ) and k =

√
4ηζ

η′(η+ζ ) and A, B,C, and D are arbitrary constants determined by the

boundary conditions. For a channel of width d , they are u(±d/2) = ω(±d/2) = 0, adapted from
Refs. [11,17]. When the upper wall moves with speed U , one of them is replaced by u(d/2) = U .
N is the (constant) torque and ∂x p the pressure gradient:

A = Nl sinh
(

kd
2

) + 2Uζ cosh
(

kd
2

)
4ζ

(−l sinh
(

kd
2

) + d cosh
(

kd
2

)) , (B4)

B = ((∂x pdl + 2Uη)ζ + Ndη) sinh
(

kd
2

) − d2∂x pζ cosh
(

kd
2

)
8ηζ

(
l sinh

(
kd
2

) − d cosh
(

kd
2

))
sinh

(
kd
2

) , (B5)

C = ((−∂x pdl + 2Uη)ζ + Ndη) sinh
(

kd
2

) + d2∂x pζ cosh
(

kd
2

)
8ηζ

(
l sinh

(
kd
2

) − d cosh
(

kd
2

))
sinh

(
kd
2

) , (B6)

D = 2∂x pdl cosh
(

kd
2

) − d2∂x p sinh
(

kd
2

) + 4Uη sinh
(

kd
2

)
8η sinh

(
kd
2

) . (B7)

Below we solve the equations of motion (10) and (11) for a fluid layer (hard wall at y = −d/2
and free surface at y = d/2) in the absence of both torque and pressure gradient. In this case, the
liquid is forced by a constant surface shear τ . Thus, the boundary conditions become (cf. Ref. [15]),

u(−d/2) = 0, ω(−d/2) = 0, (η + ζ )∂zu(d/2) − 2ζω(d/2) = τ, ∂zω(d/2) = 0, (B8)
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giving rise to

A = τ

2η
, (B9)

B = − τ
(
cosh

(
3kd

2

) + sinh
(

3kd
2

))
2η(cosh(2kd ) + sinh(2kd ) + 1)

, (B10)

C = − τ
(
cosh

(
3kd

2

) + sinh
(

3kd
2

))
2η(cosh(2kd ) + sinh(2kd ) + 1)

, (B11)

D = τ (cosh(2kd )d − l cosh(2kd ) + sinh(2kd )d − l sinh(2kd ) + d + l )

2η(cosh(2kd ) + sinh(2kd ) + 1)
. (B12)
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