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Hypersonic flows are of great interest in a wide range of aerospace applications and are a
critical component of many technological advances. Accurate simulations of these flows in
thermodynamic (non)equilibrium (accounting for high temperature effects) rely on detailed
thermochemical gas models. While accurately capturing the underlying aerothermochem-
istry, these models dramatically increase the cost of such calculations. In this paper, we
present a model-agnostic machine-learning technique to extract a reduced thermochemical
model of a gas mixture from a library. A first simulation gathers all relevant thermodynamic
states and the corresponding gas properties via a given model. The states are embedded
in a low-dimensional space and clustered to identify regions with different levels of
thermochemical (non)equilibrium. Then, a surrogate surface from the reduced cluster
space to the output space is generated using radial-basis-function networks. The method is
validated and benchmarked on simulations of a hypersonic flat-plate boundary layer and
shock-wave boundary layer interaction with finite-rate chemistry. The gas properties of
the reactive air mixture are initially modeled using the open-source Mutation++ library.
Substituting Mutation++ with the lightweight, machine-learned alternative improves the
performance of the solver by up to 70% while maintaining overall accuracy in both cases.
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I. INTRODUCTION

Chemical nonequilibrium effects have been shown to play an important role in the accurate sim-
ulation of flows at hypersonic conditions and in the computation of design characteristics, such as
transition location or thermal loading [1–4]. Recent studies have identified these effects as causes of
order-one changes in growth rates, response behavior, or sensitivities, even though the correspond-
ing variations in first-order flow statistics have been modest. These findings have in turn prompted
a significant endeavor of augmenting existing flow solvers with nonequilibrium modules to account
for finite-rate aerothermochemical features. Simulations in this parameter regime introduce and
track a range of species in their inert or ionized forms [5–7]. Complementing the hydrodynamic
state vector by chemical components is a well-established technique, for example, in combustion
or atmospheric simulations, but the required modeling of the interspecies interactions, such as
dissociation, reaction, and recombination [8], for hypersonic applications poses great challenges.
Much of this modeling is accomplished by lookup libraries, which act as repositories of tabulated
chemical reactions encountered for a given flow state [9]. When passing state-vector components to
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FIG. 1. CPU time of a benchmark simulation, run with different aerothermochemical models. Including
nonequilibrium effects in the simulation causes a significant increase in computational time.

the library, amplitudes and timescales for various forcing terms are returned, appearing as exogenous
inputs to the momentum, energy, and species transport equations.

Much effort has gone into these libraries such as Pegase [10], Eglib [11], Plato [12], and the
leading library for reacting flows simulations, CHEMKIN [13]. For aerothermochemical nonequi-
librium effects in hypersonic flows, the Mutation++ library (MUlticomponent Thermodynamic
And Transport properties for IONized gases in C++), developed and maintained at the von Karman
Institute, has become the standard for high-fidelity simulations of high-speed and high-enthalpy
flows [9]. This library can be coupled to existing flow solvers and is capable of modeling a range
of partially ionized gas effects, together with nonequilibrium features, energy exchange processes,
and gas-surface interactions. The flexibility and scope of the library comes at the expense of a
computational bottleneck that slows down a typical large-scale simulation by a large factor, as
shown in Fig. 1, where typical simulation times for calorically and thermally perfect gases are
juxtaposed with results for nonequilibrium chemical reactions. A wide margin can be observed.
For this reason, nonequilibrium computations range among the most inefficient and laborious
calculations in fundamental hypersonic research. To increase performance, most CFD codes use
hard-coded chemistry [14]. However, any change in the gas mixture or the thermochemical model
comes at a human cost in terms of development, implementation, and validation.

More generally, many engineering applications need to evaluate an expensive function f̃ (x) many
times. Therefore, it is of great interest to alleviate the CPU burden of these applications by finding an
efficient approximation of such functional forms. One of the oldest and most common approaches
to approximate f̃ is to use structured tabulation. In a preprocessing step, values of f̃ are tabulated
for a hypercube in the input space. Then, during the simulation, values of f̃ are linearly interpolated
in the table. The lookup table (LuT) method was proven successful in many applications, such as
tabulated chemistry for spray combustion [15], design of energy devices using organic Rankine
cycles [16], or simulations of hypersonic boundary layers in chemical equilibrium [17]. However,
building and storing the table, together with the lookup procedure during the simulation, become
computationally more intensive as the number of dimensions D of the input space increases. This
demonstrates the well-known curse of dimensionality, where the volume of sample points needed
to construct an accurate table increases exponentially with the number of dimensions of the input
space. Similarly, linear interpolation in high dimensions is a tedious task. This latter point even
prevents the application of this LuT methodology in the case considered in this paper, where the
input space dimension is D = 6. Pope developed the ISAT algorithm (in situ adaptive tabulation) to
overcome this deficiency in high dimensions with a storage/retrieval approach and demonstrate the
concept on applications in the combustion field [18].

023201-2



DATA-DRIVEN FRAMEWORK FOR INPUT/OUTPUT LOOKUP …

Recently, more general methods that can tackle higher dimensional problems have also been
proposed and have seen considerable success in a variety of applications, particularly in the active
research field known as surrogate modeling. Underlying this effort is the universal approximation
theorem [19], which proves that deep neural networks, with at least one hidden layer and nonlinear
activation functions, formally proposed by LeCun [20], can approximate any nonlinear function of
any dimension. For example, Liu and Batill [21] used neural networks for surrogate-model-based
optimization in aeronautics. However, the training cost of the network by backpropagation becomes
prohibitive as the number of neurons and layers increase—a necessity which might arise in complex
high-dimensional problems. Radial basis function (RBF) networks, a special case of three-layer
neural networks [22,23], can also be used for nonlinear function approximation in any dimension.
Their training is easier and cheaper than classical neural networks as the optimal weights can be
found by solving a linear system of equations. RBFs have been widely used for surrogate modeling
in many fields such as aerodynamic shape optimization [24,25] and meteorology [26], to name
but two. Statistical surrogate modeling techniques have also found great success as they directly
include an estimation of the error in the model. The method of kriging, originally developed for two-
dimensional geostatistics problems [27], has been extended to approximate input/ouput problems of
any dimension by Sacks et al. [28]; see the review by Kleijnen on the use of kriging for surrogate
modeling [29]. Finally, Polynomial Chaos Expansion (PCE) is another technique that can generate
surrogate models well suited for uncertainty quantification [30].

Despite some success, the often brute-force nature of these algorithms may not always yield
a satisfactory surrogate model in terms of accuracy and computational cost. Bouhlel et al. [31]
pointed out several performance issues when performing kriging in high dimensions (D = 100).
This number of dimensions is common in reactive flow simulations where hundreds of species are
tracked, even with reduced chemical mechanisms [32–34]. Moreover, one common assumption in
surrogate modeling relates to the smoothness of the approximated relation. This is not always true,
especially in hypersonic applications where shocks and temperature discontinuities are amongst
the typical features of such flows. Nonetheless, clever preprocessing steps can greatly improve
the model’s performance in these cases. For example, Bouhlel et al. [31] coupled kriging with
partial least-squares (PLS) methods to reduce the high-dimensional (D = 100) input space. In
Ref. [35], principal component analysis (PCA) has been used as a preprocessing step before
applying polynomial chaos expansions on the PCA basis [35]. When dealing with discontinuous
functions, Bettebghor et al. [36] proposed to cluster the input basis into different regions (to avoid a
discontinuity within a cluster) and build a surrogate model on each of these regions. All models are
then combined together and form a mixture of experts, as described in the literature [37]. Yang [38],
however, pointed out that combining surrogate surfaces does not necessarily outperform a single
model fitted over the entire input space. Hence, special care has to be taken in combining these
steps.

The objective of this paper is therefore to develop an effective preprocessing technique, allowing
the construction of a low-dimensional surrogate model capable of replacing the computationally
expensive library and the memory-intensive LuTs when modeling interspecies interactions in
simulations of chemically reactive flows.

The paper is organized as follows. In Sec. II, the generic algorithm is presented in detail. It
combines techniques from nonlinear model reduction, network clustering, and surrogate modeling
to efficiently extract a surrogate, lightweight model of the full library. In Sec. III, the governing
equations for hypersonic flows in chemical nonequilibrium as well as the thermochemical model
for such flows are recalled. In Sec. IV, the algorithm is first tested on the simulation of an
adiabatic Mach-10 boundary layer in chemical nonequilibrium, initially studied by Marxen et al
[1]. The gas properties of the reactive air mixture are initially modeled using the open-source
Mutation++ library [9]. Replacing the library by the surrogate model then overcomes the com-
putational bottleneck alluded to above. In addition, a shock-wave boundary layer interaction (SBLI)
case is also considered to highlight the capability of the algorithm to deal with flows presenting
discontinuities.
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While focusing on the nonequilibrium gas-dynamic library Mutation++, we stress that the
employed techniques are agnostic about the particular library they are applied to and can just as
readily be employed to other libraries or LuTs attached to simulations. Applications in combustion,
phase-change simulations ,or particle-laden flows stand to benefit from this accelerating methodol-
ogy at the interface between flow solvers and material-property libraries.

II. DESCRIPTION OF THE ALGORITHM

In this section, the general algorithm to extract a reduced library for the thermochemical
properties of multicomponent mixtures in chemical nonequilibrium is described.

Compressible flow simulations in chemical nonequilibrium require transport, thermodynamic,
and chemical reaction properties, z̃ ∈ RDZ , (e.g., viscosity, conductivity, enthalpies, and chemical
source terms) to close the governing equations. These properties are modeled as functions of the
local thermodynamic state and mixture composition, concatenated into the local thermodynamic
vector q̃th ∈ RD, usually computed using tabulation or external libraries, and can be considered as
an input/output problem:

z̃ = f̃ (q̃th ), (1)

where the function f̃ represents the library of interest, and D and DZ represent the dimensions of the
input and output spaces, respectively. This function then needs to be evaluated at each grid point and
at each time step. While accurate, the extensive calls to the library come at a substantial performance
loss for the solver, together with a significant time penalty (see Fig. 1).

While these function calls cannot be entirely avoided, existing features of the flow inspire
strategies to seek a less expensive method to evaluate the required properties. (i) Flows have history.
In other words, several calls to the library may be redundant since some thermodynamic states
are seen multiple times throughout the simulation. (ii) Any flow of interest contains only a subset
of all possible thermodynamic states, given its nature and free-stream conditions. Hence, only a
small subset of the input space of function f̃ needs to be accessed. (iii) While a data-driven method
requires a lot of data for training, some (rare) flows of interest, such as hypersonic boundary layers
in chemical nonequilibrium, exhibit elegant, locally self-similar solutions [39] that can be used for
training instead of an expensive direct numerical simulation. This final point will be explored in
more detail in future work.

The proposed algorithm leverages these features by creating a surrogate model of the function
f̃ only on a subset of input states relevant to the simulation, which is commonly represented as
a low-dimensional manifold in RD. This allows us to first perform dimensionality reduction of
the input space (see Refs. [31,35]). Next, following a similar approach as in Ref. [36], regions
with different dynamics and/or discontinuities between them are clustered into a low-dimensional
representation. Finally, surrogate models are constructed on each cluster in this low-dimensional
space. Hence, the training of the algorithm is performed in three steps: (i) dimensionality reduction,
(ii) community clustering, and (iii) surrogate model construction. Once trained, the model replaces
the lookup library already in place to predict the thermochemical properties of the mixture within
the flow solver. We stress that the lighter version of the library will perform correctly only on the
range of conditions seen during the simulation. A general schematic of the training process and the
coupling with the flow solver is presented in Fig. 2.

It should be noted that this strategy is also applicable to flows in thermal nonequilibrium, where
the internal energy modes are out of equilibrium with the translational energy of the flow [40].
Since the additional source terms modeling the energy exchange in the internal energy equation(s)
are modeled as a function of the local thermodynamic state vector as well, they can be added to the
outputs and a surrogate can be constructed accordingly. This endeavor, however, lies outside of the
scope of the current study and will be pursued as a subject of a future work. In the future, on-the-fly
adaptivity will also be added to the algorithm to allow the model to learn new states as the simulation
is advanced in time. This capability will help tackle more challenging and unsteady flow problems,
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FIG. 2. General schematic of the model training and coupling to replace any expensive input/output library.

while alleviating the need for a complete training set which may not always be available. Hence, the
final intended use of the model will be as follows: (i) a preliminary laminar simulation will warm
start the training of the algorithm and (ii) as more flow features are added (such as instabilities),
the model will adaptively learn the remaining “new” thermodynamics states pertaining to the new
unsteady features. Following this procedure, the dynamics will be obtained at a lower CPU cost.

A. Training

The algorithm is trained using the simulation of an adiabatic Mach-10 boundary layer in chemical
nonequilibrium, thoroughly described in Sec. III D. The gas considered is a five-species air model
S = N2, O2, NO, N, O with five reactions. The computational code solves the compressible reactive
Navier-Stokes equations, where the kinetic parameters are computed by coupling with Mutation++
[9]. The input thermodynamic state vector q̃th is composed of density ρ, internal energy ρe, and
the mixture partial densities ρs, s ∈ S . The outputs of the library fall within three categories: ther-
modynamic properties (pressure p, temperature T , species specific enthalpies hs, s ∈ S), transport
properties (viscosity μ, thermal conductivity κ , diffusion coefficients Ds, s ∈ S), and chemical
kinetics source term ω̇s, s ∈ S . More details concerning the governing equations and the thermo-
chemical model can be found in Sec. III.

1. Data collection

To train the model, N thermodynamic state vectors q̃th are randomly sampled on the grid of a
previously converged simulation in chemical nonequilibrium and concatenated into the input vector
X̃ ∈ RN×D. The corresponding outputs from the library are collected and concatenated into the
output vector Z̃ ∈ RN×DZ . Figure 3 shows the numerical range of selected output variables along
each input, normalized between 0 and 1 with a minimum-maximum scaling:

X = X̃ − X̃min

X̃max − X̃min
, Z = Z̃ − Z̃min

Z̃max − Z̃min
. (2)
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FIG. 3. Numerical range of selected Mutation++ outputs Z (vertical) with respect to the inputs X
(horizontal).

Taking dynamic viscosity μ, for example, it shows a strong dependency on density ρ and internal
energy ρe but a low variation with respect to the radicals’ partial densities ρO, ρN , and ρNO. The
same observations can be made for all other outputs. Hence, the variation of the function f̃ with
respect to the inputs can be accurately represented on a low-dimensional subspace of the inputs.
This motivates the first step of the algorithm, namely, dimensionality reduction.

2. Dimensionality reduction

The goal of this section is to find an effective algorithm for dimensionality reduction of the input
space to construct a mapping between its reduced-order representation and the output of the library,

Ẑ = g(Y), (3)

where g is the approximation of the scaled library f in the low-dimensional subspace of the inputs,
Y is the reduced-order representation of an input X and Ẑ the prediction of the model. The benefit
of this first preprocessing step is to maintain high accuracy of the surrogate model, while decreasing
the overall cost of construction and evaluation. In fact, constructing a response surface faces the
well-known curse of dimensionality; as the number of input dimensions increases, the cost of
constructing an accurate surface increases exponentially. This approach was proven successful in
Ref. [31], where PLS was used in tandem with kriging to reduce the dimension of the input space.

a. Principal component analysis. The most common technique for dimensionality reduction of
a data set X ∈ RN×D in high dimensions is PCA (see, e.g., Ref. [41]). The principal components of
X are found through the eigenvalue decomposition of the covariance matrix of the data. The data set
X is then projected onto d < D leading eigenvectors (or principal components) of the covariance
matrix, resulting in a low-dimensional representation Y ∈ RN×d of the original data set. However,
depending on the shape of the manifold, the variations of the output variables with respect to the
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FIG. 4. Low-dimensional representation Y ∈ RN×d (d = 2) of X ∈ RN×D, colored by temperature T .
Obtained with (a) PCA, (b) AE, (c) PLS, (d) IO-E.

low-dimensional subspace may not be properly preserved, which is the case presented in Fig. 4(a)
with points of high and low temperature projected onto similar locations. This example illustrates
the limitations of PCA for dimensionality reduction of a data set constrained to a nonlinear manifold.

b. Autoencoders. Nonlinear dimensionality reduction via autoencoders (AEs) typically have
a higher compression rate than linear techniques. An AE is a parametric model (i.e., a deep
neural network with an activation function σ ) that embeds the input data set X ∈ RN×D into a
low-dimensional representation Y ∈ RN×d through an encoder function E. The low-dimensional
representation is then decoded back to the input space with the decoder function D, producing a
reconstruction of the input X̂ ∈ RN×D:

Y = E(X),

X̂ = D(Y).
(4)

The weights of the two networks E and D can be trained using backpropagation of the L2 error
‖X − X̂‖2 through the network. If the activation function is selected as the identity (i.e., σ (x) = x),
the AE is linear and unbiased,

E = WE ,

D = WD,
(5)

where WE and WD are the weight matrices of the encoder and decoder, respectively. These optimal
weights can be found through PCA. In fact, the linear latent space of dimension d of the encoder
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will span the same subspace as the top d PCA singular vectors. The equivalence between the two
techniques was first shown by Baldi and Hornik [42]. Correspondingly, a two-layered nonlinear AE
can be mathematically described as follows:

Y = WE ,2σ (WE ,1X + bE,1) + bE,2,

X̂ = WD,2σ (WD,1Y + bD,1) + bD,2,
(6)

where σ is a nonlinear activation function, WE ,1 ∈ RH×D,WE ,2 ∈ Rd×H are the weight matrices of
the first and second layers of the encoder with respective biases bE,1 ∈ RH and bE,2 ∈ Rd . H denotes
the dimension of the hidden layer. The matrices and bias vectors of the decoder have transposed
dimensions. This corresponds to the minimal architecture (i.e., with one hidden nonlinear layer
and an output linear layer) requested by the universal approximation theorem [19]. However, more
hidden layers can be considered. Figure 4(b) shows the manifold unrolled in two dimensions with
an AE, colored by the magnitude of the temperature, an output of the library. The AE outperforms
PCA by preserving the local structure and preventing points at different thermodynamic states (i.e.,
different temperatures) to be projected onto the same location. However, the highest temperature
zone is concentrated in a thin layer adjacent to the lower temperature area. This will result in strong
and unphysical gradients of the surrogate model within this region.

c. Partial least squares. Since our interest lies in reducing the dimensionality of the input to
construct a reduced-order surrogate model of the input/output relations, it is useful to entangle the
input into a low-dimensional space that best reconstructs the outputs. In analogy to PCA finding
dependencies between the inputs, PLS finds a basis of the input space that optimally accounts for
features in the output space. It has been used to construct surrogate models aimed at reducing the
dimensions of the input space (see Ref. [31]). Different variants of PLS now exist, using either a
singular value decomposition (PLS-SVD) or iterative algorithms (such as PLS-W2A in Ref. [43]).
While it has been shown that in cases where the dimension of the latent space is strictly greater than
one, PLS-SVD differs from PLS-W2A and its variant PLS2, no major differences in the resulting
latent space were observed. The results of PLS-SVD are presented here to highlight the similarity
to PCA. Given the input X and output vectors Z, the PLS-SVD algorithm [43] determines

XT Z = U�VT . (7)

Similar to PCA, the projection of the input is then obtained by projecting onto the d < D top left
singular vectors,

Y = XU, (8)

where U ∈ RD×d is the truncated left-singular matrix. Figure 4(c) shows the training set projected
onto the two-dimensional basis generated with PLS. As expected, adding the output information
in the computation improves the output’s representation in the reduced-order input basis compared
to PCA. However, an artificial discontinuity is created near the high-gradient region that was not
present in Fig. 4(b). This highlights the lower compression rate of linear techniques compared to
nonlinear ones.

d. input/output encoders. The strategy adopted here is therefore a nonlinear dimensionality
reduction of the input data using input/ouput encoders (IO-Es), a modified version of AEs adapted
to input/ouput relations. To that end, the decoder architecture is modified to best reconstruct the
output of the library Z ∈ RN×DZ as

Ẑ = WD,2σ (WD,1Y + bD,1) + bD,2, (9)

where the weight matrices are now WD,1 ∈ RHD×d ,WD,2 ∈ RDZ ×HD with respective biases bD,1 ∈
RHD and bD,2 ∈ RDZ . HD now represents the hidden dimension of the decoder. The resulting network
is then trained via backpropagation of the reconstruction error based on the output ‖Z − Ẑ‖2. The
IO-E architecture is illustrated in Fig. 5.
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FIG. 5. Schematic of the input/output-encoder architecture proposed. An input sample X is passed through
the encoder network to generate a low-dimensional representation Y. Y is decoded back to predict the library
output Ẑ. At each training step, the L2 loss ‖Z − Ẑ‖2 between the library and the network prediction is
calculated and backpropagated until convergence of the encoder and decoder weights, WE and WD, respectively,
is reached.

Figure 4(d) shows the equivalent manifold using the IO-E architecture, with the same number of
hidden dimensions. The IO-E architecture outperforms all other techniques as the high-temperature
region is now projected onto its own properly defined zone with smooth variations. This feature will
have a marked impact on the performance of the library when linked to the solver. It is worth noting
that the decoder part of the IO-E could be used directly to predict the output of the library. However,
we will see in Sec. IV B that the accuracy of the full IO-E would not be optimal in this case. This
motivates the use of clustering and RBFs, as described next.

3. Community clustering

In the second step of the algorithm, we seek to discover clusters within our data. In our present
context, a cluster represents a subset of data that shares similar thermodynamic features. These
feature classifications will then be useful in constructing a dedicated surrogate surface of the low-
dimensional input manifold. To this end, Newman’s spectral algorithm for community detection in
a network [44] is used. A clear advantage of Newman’s algorithm is that the number of clusters is
not defined a priori, in contrast to more common clustering techniques (e.g., k means). The number
of clusters is instead the result of a maximization procedure performed on the modularity Q of the
network. In other words, the number of thermodynamic clusters in the flow are determined only
from the data and is not based on a priori knowledge of the user. This knowledge might even be
impossible to come by in complex, unsteady hypersonic flows subjected to shocks.

Following this approach, the Euclidean distance matrix � of the data set in low-dimensional
space is computed:

�i j = ‖Yi − Y j‖2 for (Yi, Y j ) ∈ Y2. (10)

The data set is subsequently recast into an undirected network with a binary adjacency matrix A,
constructed as

Ai j =
{

1 if �i j < ε

0 otherwise.
(11)

023201-9



CLÉMENT SCHERDING et al.

(a) (b)

FIG. 6. Demonstration of the Newman algorithm. (a) Original distance matrix � of data set Y. (b) Restored
communities from running Newman’s algorithm on A, showing two distinct clusters.

Two points are connected with an edge if their Euclidean distance is below a certain threshold ε.
This threshold is usually chosen as a fraction of the mean of the distance matrix �. The influence
of the threshold ε on the number of clusters will be investigated in Sec. IV A 2.

Finally, the data set is progressively split into two communities until the modularity, Q, is
maximized. The modularity is defined as the proportion of edges contained within a community
over the same proportion for a random reference network. Let ki be the number of edges pointing
toward the data point numbered i, and m the total number of connections within the network. Then,
the probability of having an edge between i and j in the random reference network is kik j/m. Hence,
the modularity Q is defined as

Q = 1

m

∑
i j

(
Ai j − kik j

m

)
δci,c j , (12)

where δci,c j is the Kronecker delta for the communities of i and j. For instance, δci,c j = 1 only when
i and j belong to the same community. By defining a vector s where si = 1 if vertex i belongs to the
first group, and si = −1 otherwise, we can reformulate

Q = 1

2m

∑
i j

(
Ai j − kik j

m

)
(sis j + 1) = 1

2m
sTBs, (13)

where the modularity matrix B is given as

Bi j = Ai j − kik j

m
. (14)

Since the graph is undirected, the modularity matrix B is symmetric and the modularity Q represents
a Rayleigh quotient for matrix B. To maximize Q, we need to choose a vector s that is parallel to
the principal eigenvector (corresponding to the largest eigenvalue) of B, v, which can be achieved
by setting si = 1 if vi > 0 and si = −1 if vi < 0. To partition the graph into more than two
communities, this algorithm is repeated until the modularity of each subgraph can no longer be
increased. A thorough description of the full algorithm can be found in Ref. [44].

Figure 6(a) shows the application of the clustering algorithm to the boundary layer data. The
distance matrix � is constructed on Y. After running the algorithm on the subsequent adjacency
matrix A, two distinct clusters are identified, highlighted by the low distance between the points
within a cluster in Fig. 6(b).
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4. Surrogate model construction

Finally, a surrogate surface is computed on the scattered low-dimensional points of each cluster.
Many algorithms can be used to that end, such as kriging [29,31], artificial neural networks [45],
or RBFs [22,23,46]. In the application of interest to this paper, RBFs provided the best trade-off
between performance and accuracy, as well as an easy training step. In fact, the optimal weights of
a RBF can be obtained through the solution of a linear system. However, it should be noted that our
choice is not definitive and can be easily changed.

Given a set of NR input points x1, ..., xNR ∈ Rd and the function value at these points
f (x1), ..., f (xNR ), the RBF interpolant g is given by

g(φ, x) =
NR∑
i=1

λiφ(‖x − xi‖), (15)

where φ is the kernel function whose value depends on the distance r = ‖x − xi‖ between the
evaluation point x and the center xi of the RBF. In this paper, the thin-plate spline kernel [47] was
used, i.e.,

φ(r) = r2ln(r). (16)

With this particular kernel, the kernel matrix is only conditionally positive definite. To ensure a
unique solution for the interpolation weights, the system is augmented by a polynomial p ∈ �d

m
(space of polynomials of d variables and degree up to m) to the right-hand side of Eq. (15) [23],
resulting in

g(x) =
NR∑
i=1

λiφ(‖x − xi‖) + p(x). (17)

The extra degrees of freedom are accounted for by enforcing orthogonality of the coefficients with
respect to the polynomial space as

NR∑
i=1

λir(x) = 0, r ∈ �d
m. (18)

Finally, the polynomial coefficients c = [c1, ..., cd+1]T and the RBF coefficients � = [λ1, ..., λNR ]T

are found through the solution of the following linear system:[
� P

PT 0

][
�

c

]
=

[
f

0d+1

]
, (19)

where Pi = [1, xi, ..., xd
i ] for i ∈ [1, NR] is the polynomial matrix, and f = [ f (x1), ..., f (xNR )] de-

notes the vector containing the function values at the RBF centers.
Due to the large size of the training set, using one cluster center per training point [i.e., NR =

N = O(105)] will likely result in overfitting and prohibitive computational cost [48]. Following
the recommendations in Ref. [48], the interpolant is constructed in two steps. First, the k-means
algorithm with NR � N clusters is applied on the concatenation of the input and output vector
(X, Z) ∈ RN×(D+DZ ). The addition of the output vector results in a low within-cluster variance of
the outputs and will ultimately improve the surrogate model. The NR centroids obtained with k
means, xc, are sent to the library to compute the function value vector f . Simultaneously, they are
encoded in the low-dimensional space to obtain the NR cluster centers that will be used to train the
RBF yc

1, ..., yc
NR

∈ Rd . Figure 7 shows the resulting tesselation in the embedded space after applying
the k-means algorithm with NR = 250. The influence of the number of RBF centers on the quality
of the surrogate model will be assessed in Sec. IV A 3.
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FIG. 7. Tesselation of the low-dimensional space after applying the k-means algorithm with NR = 250 on
the concatenation of the input X ∈ RN×D and output Z ∈ RN×DZ vectors. Black stars represent the cluster
centroids’ low-dimensional representation yc

1, ..., yc
NR

.

Following this approach, a single interpolant, gck , is constructed for each cluster, ck ; in other
words, gck is the approximation of the scaled library function f on the low-dimensional subspace
corresponding to cluster ck . The advantage of having one interpolant per cluster is twofold. First,
it allows the surrogate model to best fit a region with a given dynamics of the high-dimensional
function, especially in the presence of discontinuities, similar to the approach of Bettebghor et al.
[36]. Second, as the surrogate model spans a smaller range of input parameters, less centers are
required to capture the given dynamics accurately, resulting in a lighter model with faster evaluation
time. To enforce continuity of the surrogate surface near the cluster boundaries, the nearest centroids
that do not belong to the considered cluster are added to its training set.

B. Coupling to the solver

Once the model is trained, we can replace the calls of the solver to the lookup library with
the lighter model. New points have to go through three steps: (i) out-of-sample dimensionality
reduction, (ii) classification, and (iii) interpolation. These three steps will be described in the
following. Let Xt ∈ RNt ×D denote the stack of all new points.

1. Out-of-sample encoding

The low-dimensional representation of Xt (after proper scaling of X̃t ) is straightforward. Indeed,
the point is simply fed to the encoder portion of the IO-E:

Yt = WE ,2σ (WE ,1Xt + bE,1) + bE,2. (20)

This results in a fast and inexpensive encoding of the new out-of-sample points. In fact, the time
complexity of the encoding step is O(H × Cac × L × Nt ), where H is the maximum number of
neurons in a layer, Cac is the complexity of the activation function and L is the number of layers in
the encoder step of the IO-E.
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FIG. 8. Confusion matrix C of the random forest classifier (ntree = 20), tested on unseen data points during
training. Ci j is the number of points belonging to cluster c j predicted to be in cluster ci.

2. Classification

The next step is to determine to which community the new state Yt belongs. To this end, after
applying Newman’s algorithm, a random forest classifier is trained on the resulting clusters. A
random forest classifier, formally proposed by Breiman [49], is a collection of ntree tree-based
classifiers, h(x,�k ), k = 1, ..., ntree, where �k are identically distributed random vectors. Each
tree votes for the most likely class of input vector x, and the majority wins. Figure 8 shows the
confusion matrix C of the classifier trained on the two clusters obtained above with ntree = 20.
The clusters of the embedded new points Yt , not seen during the training phase of the classifier, are
predicted and compared to the true clusters (given by Newman’s algorithm). The off-diagonal values
count the number of points that are assigned to the wrong cluster. All off-diagonal values are zero,
demonstrating the ability of the classifier to correctly predict the community of an out-of-sample
point.

The time complexity of the induction time of the classifier is O(ntree × Nt ln(Nt )) (see the book
by Frank et al. [50] for a demonstration), where ntree is the number of decision trees in the random
forest. The logarithmic term accounts for the worst case scenario for the maximum depth of each
tree. However, the maximum depth is usually set to a smaller value, resulting in a complexity of
O(ntree × depth × Nt ), which results in relatively fast classification times.

3. Interpolation

Finally, once Yt has been found to belong to cluster ck , the corresponding RBF gck is called to
evaluate the thermochemical properties Ẑt of the mixture at that state Xt :

Ẑt = gck (Yt ) =
NR∑
i=1

λiφ
(
Yt − Yc

i

)
. (21)
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The hat denotes the predicted value by the reduced library, as opposed to the true value that would
have been given by the target library, Zt . Finally, these properties are rescaled according to

˜̂Z
t = Ẑt ∗ (Z̃max − Z̃min) + Z̃min (22)

and passed back to the flow solver.
The time complexity of each surrogate model is given by O(CRBF × Nt × NR × d ), where CRBF

is the complexity of the kernel function. The time-limiting part of the RBF interpolation is the
calculation of the distance matrix that scales with O(Nt × NR × d ). Hence, using a relatively
small number NR of RBF centers, compared to Nt , will greatly improve the performance of the
surrogate model. It should be noted that the dimensionality reduction directly contributes to the
added performance of the surrogate model as d < D.

4. Global performance

The time complexity of the whole algorithm can be recovered by adding the time complexity
of each of the three steps. Hence, the total time complexity of the algorithm can be written as
O(CMLN ), where CML = O(HCacL + ntreedepth + dNRCRBF).

III. APPLICATION TO HYPERSONIC FLOWS IN CHEMICAL NONEQUILIBRIUM

In this section, the general equations governing hypersonic flows in chemical nonequilibrium
are first recalled, followed by a brief description of the numerical framework used to solve these
equations. Then, the two benchmark cases, a Mach-10 adiabatic laminar boundary layer in chemical
nonequilibrium, initially studied by Marxen et al. [1,2], and a Mach-5.92 SBLI are presented.

A. Governing conservation equations

The nondimensional Navier-Stokes equations for a mixture of multiple species S are presented
in Eqs. (23)–(26):

∂ρ

∂t
+ ∇ · (ρu) = 0 (23){

∂ρs

∂t
+ ∇ · (ρsu + ρsVs) = ω̇s

}
, ∀ s ∈ S (24)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇p + ∇ · τ (25)

∂ρe0e0

∂t
+ ∇ · (ρh0u) = ∇ · (τ · u) − ∇ · q. (26)

Equation (23) is the continuity equation, describing mass conservation in the system. Equation (24)
corresponds to the set of mass conservation equations for each species, with the net production rate
terms, ω̇s, appearing on their right-hand side. To ensure global mass conservation, in the case of a
finite-rate reacting mixture with a varying composition, Eq. (23) needs to be solved together with
Eq. (24) for all but one species. The omitted species is selected based on numerical considerations,
avoiding species with the smallest concentrations.

The nondimensional quantities are the time, t , the density, ρ, the velocity, u, the pressure, p, the
stress tensor, τ, the total energy, e0, the total enthalpy, h0, and the heat flux, q, as well as the partial
density, ρs, the net mass production rate, ω̇s, and the diffusion velocity, Vs, for the species s. More
details regarding the derivation of the equations and the validity of our invoked assumptions are
provided in Refs. [8,51,52]. There are Ns − 1 conservation equations for the species, so the total
problem involves Ns + 4 equations. The stress tensor, τ, and the heat flux, q, are computed as

τ = μ

Re∞
(∇u + (∇u)T − (∇ · u)I), (27)
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q = − κ

Re∞Pr∞Ec∞
∇T +

∑
s∈S

ρshsVs. (28)

The nondimensional Reynolds number, Re∞, and Prandtl number, Pr∞, are defined in the free
stream at the domain inlet. The Eckert number, Ec∞, is also computed at the free stream and is
equal to one by design. These nondimensional quantities are defined with dimensional quantities
(distinguishable by the tilde) as

Re∞ = ρ̃∞c̃∞L̃ref

μ̃∞
, Pr∞ = μ̃∞c̃p∞

κ̃∞
, Ec∞ = c̃2

∞
c̃p∞T̃ref

, (29)

where T̃ref = (γ̃∞ − 1)T̃∞ and c stands for the speed of sound. μ denotes the dynamic viscosity, κ

the frozen thermal conductivity, and cp the specific heat at constant pressure.

B. Thermodynamic and chemical models for a mixture in chemical nonequilibrium

In the following, the closure of the governing equations when assuming a mixture in chemical
nonequilibrium is detailed. In general, a reacting gas in a high-enthalpy flow is considered as a
multicomponent mixture that consists of a set of species S interacting through a defined network
of reactions. The presence of the species makes the chemical reaction and diffusion terms in the
governing equations significant, which in turn requires to be modeled using various assumptions.

For a multicomponent gas mixture, the global mixture properties are derived from the species
properties based on

ρ =
∑
s∈S

ρs, e =
∑
s∈S

Yses, h =
∑
s∈S

Yshs (30)

where the species mass fraction is Ys = ρs

ρ
, with

∑
s∈S Ys = 1. The mixture thermodynamic and

transport properties depend, generally, on their composition, and any two thermodynamic proper-
ties, for example, the temperature and the pressure, which define the thermodynamic state of the
mixture. The composition is commonly taken as an independent variable. It can potentially become
dependent on other thermodynamic quantities for the special cases of frozen chemistry or chemical
equilibrium. However, these cases are not described in this paper. The individual species properties
are accurately computed by kinetic theory and statistical mechanics [53,54]. Hence the composition
and the two thermodynamic properties can be concatenated into the thermodynamic state vector q̃th.
This defines the relation Z̃ = f̃ (q̃th) on which the algorithm is based.

When finite-rate chemistry is not neglected, the species mass production rate, ω̇s, and the species
diffusion velocities, Vs, need to be modeled. For a general case, a set of reactions, R, is considered
depending on the mixture in question. Each reaction r is characterized by a reaction rate, Rr ,
which is computed by the forward rate, k fr , and the backward rate, kbr . These rates, in turn, are
obtained according to experimentally or theoretically calibrated Arrhenius formulas in the form
k fr = CrT nr exp (Tar/T ) and kbr = k fr /Keqr (T ), where Keqr

is the reaction equilibrium constant at
the specific conditions. This description is given in Eq. (31) for a generic reaction:

Reaction (r):
∑
s∈S

ν ′
r,sSs

k fr−⇀↽−
kbr

∑
s∈S

ν ′′
r,sSs. (31)

The net reaction rate is then given by

Rr =
[

k fr �s

(
ρs

Ms

)ν ′
r,s

− kbr �i

(
ρs

Ms

)ν ′′
r,s

]
·
∑
s∈S

(
Zr,s

ρs

Ms

)
, (32)
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where the species molar mass is Ms and the efficiency of species s as a third-body in reaction r is
Zr,s. The net mass production rates for species s from all reactions are obtained as

ω̇s = Ms

∑
r∈R

(ν ′′
r,s − ν ′

r,s )Rr. (33)

The diffusion flux Js = ρsVs appearing in Eq. (24) also needs to be modeled. The accurate and
rigorous Stefan-Maxwell multicomponent diffusion model provides the diffusion velocities Vs

as the solution of a constrained linear system of equations [54]. In that framework, the local
molar fraction gradients are needed, which cancels the purely local assumption of the input/output
problem. Hence, in this paper, we use a simple expression based on Fick’s law with a mass correction
[55,56] given by

Js = −cMsDs∇Ys + cYs

∑
i∈S

MiDi∇Yi. (34)

Here, c = ∑
s∈S (ρs/Ms), and Ds is the averaged diffusion coefficient for species s, defined below:

Ds = 1 − Xs∑
r 
=s Xr/Ds,r

. (35)

The thermochemical library Mutation++ [9] is used to compute thermodynamic and transport
properties at different conditions. The reader is referred to the description provided in Refs. [9,54]
for further details on the library.

C. Numerical framework

The governing equations are solved using a high-fidelity in-house flow solver for the direct
numerical simulation of hypersonic flows in chemical nonequilibrium, as described in Ref. [57].
Compact schemes are used for a spatial discretization and explicit time integration is performed us-
ing Runge-Kutta schemes. More details about the discretization can be found in the aforementioned
paper.

1. Coupling with Mutation++
The thermodynamic and transport properties, as well as the source terms resulting from the

chemical kinetics models, are extracted from the Mutation++ library [9] to close the governing
equations, Eqs. (23)–(26). The library, originally written in C++, is coupled with the numerical
solver using a wrapper in FORTRAN 95.

For the remainder of this paper, we will only consider an air mixture composed of five species:
S = [N2, O2, NO, N, O]. However, we stress that the algorithm can be applied to any gas mixture.
At each grid point, we have access to the local thermodynamic state and composition q̃th (in
dimensional units):

q̃th = [ρ ρe ρN ρO ρNO ρO2 ]. (36)

q̃th is then passed to Mutation++, which returns the necessary thermochemical properties needed
to close the reactive compressible Navier-Stokes Eqs. (23)–(26):

z̃ = [μ κ P T hs ωs Ds] s ∈ S. (37)

Hence, calls to Mutation++ can be seen as an input/output problem z̃ = f̃ (q̃th) where the function
f̃ represents the library.

D. Case 1: Mach-10 adiabatic boundary layer

In this section, the first simple test case used to showcase the applicability and performance of
the algorithm is presented. We simulate a Mach-10 adiabatic flat-plate boundary layer in Earth’s at-
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TABLE I. Thermodynamic and free-stream conditions for Mach-10 adiabatic
flat-plate boundary layer test case (from Ref. [1]).

Test case 1

M∞ 10
Re∞ 105

T∞[K] 350
p∞[Pa] 3596

mosphere, based on the work of Marxen et al. [1,2]. The thermodynamic and free-stream conditions
are presented in Table I. Details of the numerical grid can be found in Ref. [57].

This case has already been validated against literature with the current flow solver in [57]. Due
to the wall temperature approaching Twall ≈ 4900 K near the inflow, N2 and O2 rapidly start to
produce their monoatomic counterpart, as well as NO, through endothermic chemical reactions.
This is illustrated in Fig. 9(c), presenting all the mass fraction profiles at the streamwise location of
Rex = 2000. Close to the wall, the O2 mass fraction decreases while O and NO are created. To a
smaller extent, N is also created through N2 dissociation. The mean flow and temperature profiles
at a streamwise Reynolds number of Rex = 2000 are presented in Figs. 9(a) and 9(b), alongside the
same case simulated using a thermally perfect gas assumption (ignoring nonequilibrium effects).
The base flows differ significantly depending on the assumption used for the gas. Wall temperature
decreases significantly from a thermally perfect gas to a finite-rate chemistry assumption and the
boundary layer becomes thicker. Overall, these results highlight and corroborate the importance of
including chemical nonequilibrium effects for the accurate simulation of high-enthalpy hypersonic
flows. On another note, it has been shown in Ref. [57] that the choice of the diffusion model [i.e.,
Stefan-Maxwell or an approximation based on Fick’s law (Eq. (34)] does not have any noticeable
impact on the base flow obtained in a chemical nonequilibrium simulation. However, using the
algebraic equation reduces the CPU cost of the simulation by 40% compared to the rigorous Stefan-
Maxwell model.

E. Case 2: Mach-5.92 shock-wave boundary layer interaction

While the adiabatic boundary layer is in a chemical nonequilibrium regime, it lacks typical
compressible flow features such as shocks and expansion fans that could challenge the performance
of the algorithm. To verify the applicability of the developed technique, a second case, namely, a
SBLI, is proposed. This case was initially studied by Margaritis et al. [57]. The thermodynamic and
free-stream conditions are presented in Table II, where x0 denotes the shock impinging location and

(a) (b) (c)

FIG. 9. Profiles of (a) streamwise velocity, (b) temperature, (c) species mass fractions from left to right
N , NO, O, O2, and N2, at Rex = 2000. (a), (b) Red line: Simulation in chemical nonequilibrium; black line:
perfect gas assumption.
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TABLE II. Thermodynamic and free-stream conditions for Mach-5.92 shock-
wave boundary layer case (from Ref. [57]).

Test case 2

M∞ 5.92
Rex0 1.15 × 106

T∞ [K] 1110.5
p∞ [Pa] 61 × 103

θ [deg] 13.0

θ denotes the shock angle. The wall is considered adiabatic. Details of the numerical grid and the
computational setup can be found in Ref. [57]. Figures 10(a) and 10(b) present the wall distribution
of the skin-friction coefficient and wall pressure, respectively. The recirculation bubble is smaller in
the case of chemical nonequilibrium compared to the case assuming perfect gas. This is explained
by the high concentration of atomic species in the recirculation bubble, as seen in Fig. 10(c). The
endothermic reactions extract energy out of the bubble. Moreover, the skin friction and pressure are
higher just upstream of the reattachment point compared to the perfect-gas simulation. Hence, this
case also highlights the effect of chemical nonequilibrium on the resulting flow features.

IV. RESULTS

The results are presented in three parts. First, each step of the offline training is assessed, and then
the performance of the model in predicting the output quantities when coupled to the Navier-Stokes
solver is analyzed on the Mach 10 adiabatic boundary layer. Finally, the same strategy is applied to
a SBLI scenario.

A. Model training

N = 100 000 thermodynamic state vectors q̃th are sampled from the converged solution and
concatenated into the input data set X̃. The corresponding Mutation++ output data set Z̃ is also
obtained.

1. input/output encoding

The architecture and hyperparameters of the IO-E used for this test case are provided in Table III.
An important parameter is the number of dimensions required to properly unfold the input manifold.
To this end, the architecture and hyperparameters, as well as the random seed to initialize the

(a) (b) (c)

FIG. 10. Wall distribution of (a) skin-friction coefficient, (b) pressure, and (c) species mass fractions (from
top to bottom on left side: N2, O2, O, NO, and N). (a), (b) Red line: Simulation in chemical nonequilibrium;
black line: perfect gas assumption.
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TABLE III. Architecture and hyperparameters of the input/output en-
coder used to train the IO-E network on the Ma = 10 adiabatic flat plat
boundary layer test case.

Architecture

Encoder Decoder

Layer Size Layer Size

Input 6 Latent space 2
Fully connected 12 Fully connected 6
Fully connected 6 Fully connected 12
Latent space 2 Output 18

Hyperparameters

Parameter Value Parameter Value

Learning rate 1e−3 Epochs 2000
Loss Mean-squared Batch size 256

error
Activation function tanh Optimizer Adam (keras default)

network weights, are held constant and only the dimension of the latent space is varied. We follow
the reconstruction loss ‖Ẑ − Z‖2 of the testing set as a function of the latent space dimension d .
As seen in Fig. 11, the loss saturates after d = 2, suggesting that two dimensions are sufficient to
represent the input manifold, originally in R6.

2. Newman’s community clustering

The second step is to cluster the data on the low-dimensional manifold using Newman’s al-
gorithm. The only hyperparameter needed for Newman’s clustering algorithm is the threshold ε

to determine the adjacency matrix A from the distance matrix �, as described in Sec. II A 3. To
showcase the robustness of the number of clusters with respect to the threshold ε, the algorithm is

FIG. 11. Reconstruction loss ‖Ẑ − Z‖2 of the embedding done by IO-E with respect to the number of latent
space dimensions d .
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FIG. 12. Number of clusters Nc obtained with Newman’s algorithm as a function of the threshold ε, given
as multiples of the distance matrix mean �.

applied over a range of thresholds, chosen as multiples of the mean of the distance matrix �. As
shown in Fig. 12, over the range tested, the algorithm returns Nc = 2 clusters before overfitting with
extreme values.

Figure 13(a) shows the two clusters obtained in the embedded space. As expected, the two
clusters define different regions in the reduced space. To gain more physical insight, Fig. 13(b)
shows randomly selected points of the training set, mapped back to their original location in the
Cartesian space and colored by their cluster number. Contours of temperature T in Kelvin are added.
Each cluster fills a region of the flow with different levels of chemical nonequilibrium. The blue
cluster represents the free stream, where temperature is low and chemistry is frozen. Alternatively,
the red cluster corresponds to the near-wall region with dissociated species and high temperatures.

The random forest classifier has been trained with ntree = 20. This number proved sufficient to
obtain an acceptable prediction accuracy of new points clusters, as seen in Fig. 8 above.

(a) (b)

FIG. 13. Training points Y colored by their cluster number. (a) In the latent space found by IO-E. (b) At
the Cartesian location they were sampled from, with contours of temperature T in Kelvin.
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FIG. 14. Left axis: Reconstruction error of surrogate model ‖Ẑ − Z‖2 on a testing set (dashed line). Right
axis: Mean of squared RBF coefficients �2 (dotted line). Both with respect to the number of RBF centers NR

used in training.

3. Surrogate model construction

Once the clusters are determined, a separate RBF interpolant is trained for each cluster as
described in Sec. II A 4. To enforce continuity of the surrogate through the clusters, the nearest
centroids shared between the two clusters are added to the training set.

To assess the number of centroids needed, the RBFs are trained simultaneously, for both clusters,
with the same number of centroids NR (note that this number can be varied to accommodate clusters
of different sizes). The error of the model for the testing set ‖Ẑ − Z‖2 is plotted against the number
of centroids NR in Fig. 14 (blue curve). As expected, the error decreases as the number of centroids
is increased. To assess potential overfitting, one can follow the evolution of the mean of the squared
RBF coefficients �2,

�2 = 1

NR

NR∑
i=1

λ2
i , (38)

where a high value will likely indicate overfitting. On the right axis of Fig. 14, we see that �2

increases with the number of RBF centroids. Therefore, choosing the right NR is a trade-off between
low error and low overfitting. In this case, a value of NR = 250 for each cluster has been retained.

B. Model accuracy

The reduced library is tested (offline) on a full snapshot (which also includes the training points
used to build the model) to assess the capacity of the model to interpolate new points not encountered
during training. Four configurations of the data-driven model are tested: (i) model 1, using the
full IO-E for prediction; (ii) model 2, with no dimensionality reduction and no clustering (d = 6,
Nc = 1, NR = 250); (iii) model 3, with dimensionality reduction, but without clustering, (d = 2,
Nc = 1, NR = 250); and (iv) model 4, with both dimensionality reduction and clustering (d = 2,
Nc = 2, NR = 250).

Figure 15 displays the relative error (as a percentage) between the temperature T given by
Mutation++ and the prediction of the data-driven model T̂ for the four configurations enumerated
above; contours of temperature in Kelvin are also added to highlight the evolution of the flow.
First, the prediction of model 1 produces the highest error by a wide margin. This showcases the
difficulty of properly training a neural network for prediction in high dimensions. The figure shows
the maximum relative error in all three remaining models to be only a few percent, and located
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(a) (b)

(c) (d)

FIG. 15. Comparison of the relative temperature error |T̂ − T |/T in percent with contours of temperature.
(a) Model 1: Full IO-E. (b) Model 2: d = 6, Nc = 1, NR = 250. (c) Model 3: d = 2, Nc = 1, NR = 250.
(d) Model 4: d = 6, Nc = 2, NR = 250.

around the edge of the boundary layer, where the gradients are strongest. In addition, the error in
model 2 is higher than the error of model 3, even though some information is lost in the latter due
to the encoding step. This is a direct consequence of the curse of dimensionality: as the number
of dimensions increases, the sampling volume in the input space increases exponentially. However,
in this case, we kept the number of RBF centers NR fixed. To get to the same level of accuracy,
NR should be increased in model 2, resulting in a performance loss. Finally, the error decreases
slightly from model 3 to model 4. This improvement originates from the clustering step. In fact,
each of the two clusters have NR = 250 centers. Hence, the input space is actually populated with
NR = 500 RBF centers in model 4. According to Fig. 14, this likely improves the accuracy of the
surrogate surface. The added number of centroids, however, does not result in a loss of performance.
Assuming that a fraction α of the Nt query points are in cluster 1, then 1 − α query points are in
cluster 2. The evaluation time of the surrogate surface linked to cluster 1 then scales roughly as
αdNt NRCRBF. Similarly, for cluster 2, it scales as (1 − α)dNt NRCRBF. Finally, the total evaluation
time, i.e., the sum of the two, remains dNt NRCRBF. This can be easily generalized to a higher number
of clusters.

These results demonstrate that the preprocessing steps involved in the construction of the model
improve overall performance while maintaining a high level of accuracy.

C. Model stability

The resulting data-driven model (model 4, with all preprocessing steps) is coupled to the flow
solver in a time-marching simulation. Starting from the solution obtained with Mutation++, the
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(a) (b) (c)

FIG. 16. Comparison of profiles of (a) streamwise velocity, (b) temperature, (c) species mass fractions
from left to to right N , NO, O, O2, and N2 at Rex = 2000. Solid line and symbols correspond to the solution
obtained using Mutation++ and the data-driven model, respectively.

simulation is restarted using the reduced library only, also referred to as a closed-loop prediction.
After running for a couple of flow-through times, the solution remains stable. The base-flow profiles
are compared for various quantities of interest in Fig. 16. Excellent agreement is found between the
profiles. This validates the accuracy and suitability of the data-driven model to simulate hypersonic
flows in chemical nonequilibrium over the enthalpy range observed during the training step.

D. Model performance

To compare the performance of the data-driven model to the full library, we performed a
scaling study. Mutation++ is a serial library, hence its time complexity can be expressed as
O(CM++Nt ), where Nt is the number of independent, evaluated thermodynamic states. Two variants
of Mutation++ are considered here. The first one directly solves the Stefan-Maxwell diffusion
problem and returns the diffusion velocity. In the second one, the diffusion coefficients Ds are re-
turned and the diffusion fluxes are later computed using Eq. (34). The diffusion fluxes are computed
in the same fashion with the data-driven model. Moreover, we recall that its time complexity is
O(CMLNt ), where CML = O(HCacL + ntree depth + NRCRBF). For all three thermochemical models,
the prefactor is empirically determined in Fig. 17.

All curve fits, shown in Fig. 17, suggest that, in practice, the models scale as O(Nt ) with
exponents close to unity. The ratio of the prefactor is CML/CM++ ≈ 0.45 when using Mutation++
in its local version. We can therefore expect a 55% CPU gain by using the data-driven model instead
of Mutation++. In fact, we assessed a CPU time reduction of 50% during the simulation, with a
grid of size N ≈ 400 000. This confirms a speedup through the use of a surrogate model. Second,
the speedup is even more significant when the library also solves for the Stefan-Maxwell diffusion
problem at each grid point. Although not rigorously a one-to-one model comparison anymore,
the data-driven model now performs 70% faster without any loss of accuracy. In fact, Fick’s law
based diffusion model has been shown to be highly accurate in hypersonic simulations. Moreover,
fine tuning of the hyperparameters may allow even higher CPU gains as CML is proportional to a
linear combination of the hyperparameters. Finally, we stress that the data-driven algorithm is a
python implementation competing with a compiled C++ library. The speedup reported here can
be significantly increased by porting the model to a compiled language. It is also believed that the
speedup would be more significant when the dimensionality of the input space increases to include
more chemical species. We thus expect even larger CPU gains in the future with an optimized
implementation and added adaptivity.

E. Application to the SBLI case

Following the same steps, the model is trained on the SBLI case. The model has the following
specifications: d = 3, c = 3, NR = 250. In this case, the dimensions of the latent space and the
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FIG. 17. Comparison of the time complexity of Mutation++ with Stefan-Maxwell diffusion (dotted black
line), the purely local version (solid red line), and the data-driven model (dash dotted blue line). The best
nonlinear least-squares fit of the form CNα is added.

number of clusters are higher due to the more complex thermodynamic manifold learned by the
IO-E. A two-dimensional projection of the three dimensional manifold is presented in Fig. 18(a).
In this plane, distinct thermodynamic regions (i.e., different clusters) are wrapped around a scarcely
populated center area. This can be explained by the impinging, recirculation, and reflected shocks
that induce abrupt change in the thermodynamic state. These regions and their borders become even
more meaningful when reported to their physical location in the flow, as seen on Fig. 18(b) where
a numerical Schlieren is superposed. The green cluster corresponds to mildly hot conditions with
high density, i.e., the free stream and postimpinging shock conditions. After the recirculation shock,
the thermodynamic states shift instantaneously to higher densities and temperatures, represented by

(a) (b)

FIG. 18. Training points Y colored by their cluster number. (a) In the latent space found by IO-E. (b) At
the Cartesian location they were sampled from, with contours of magnitude of the density gradient ‖∇ρ‖.

023201-24



DATA-DRIVEN FRAMEWORK FOR INPUT/OUTPUT LOOKUP …

(a) (b) (c)

FIG. 19. Comparison of wall distribution of (a) skin-friction coefficient, (b) pressure, and (c) species mass
fractions (from top to bottom on left side: N2, O2, O, NO, and N). Solid line and symbols correspond to the
solution obtained using Mutation++ and the data-driven model, respectively.

the blue cluster. However, close to the apex of the recirculation bubble, the expansion fan decreases
these thermodynamic variables, inducing a shift back to the green cluster. Finally, the red cluster,
found in the boundary layer, corresponds to high temperatures and low densities. At the core of
the recirculation bubble, temperature decreases and density increases, which brings the local state
vector back to the green cluster.

In a closed-loop simulation, the model remains stable while maintaining a factor 2 speedup in
predicting thermochemical properties. In fact, Figs. 19(b) and 19(a) show that the wall pressure and
skin friction remain in excellent agreement with the base-flow solution after two flow-through times.
The only discrepancy with the initial solution is observed for atomic nitrogen mass concentration in
Fig. 19(c). However, it is present in such small quantities that it does not have an impact on the sta-
bility of the solution. In fact, the thermochemical properties are not sensitive to small perturbations
in atomic nitrogen concentration (cf. Fig. 3), another fact motivating the dimensionality reduction
performed in preprocessing.

V. CONCLUSIONS

In this paper, we presented a technique to reduce any high-dimensional lookup library to a
lower-dimensional surrogate, and thus reduce the CPU costs of numerical simulations that rely on
these libraries. Several machine-learning techniques have been used: encoding based on deep neural
networks, community clustering, surrogate modeling, and classification in a three-step learning
phase. In the first step, the proposed IO-E architecture has been shown to outperform PLS for
dimensionality reduction of input/output relations. Clustering was performed using Newman’s
algorithm. It discovered physically consistent clusters in the low-dimensional latent space without
a priori knowledge of the number of clusters. Then, a random-forest classifier was trained, which
reliably predicted the cluster of previously unencountered data points. Finally, a RBF network was
constructed on each cluster to obtain a continuous and local representation of the library via a
reduced-order surrogate model. The combination of these preprocessing steps has been shown to
improve the efficiency of the model on our two test cases: a Mach-10 adiabatic boundary layer and a
Mach-5.92 SBLI, both in chemical nonequilibrium. After training, the model replaced Mutation++
and converged rapidly to a unique solution. The computed base flows were recovered accurately
when compared to the true solution (obtained with Mutation++). During this demonstration, we
observed up to 70% CPU time decrease to compute the thermochemical properties of the mixture.
This computational framework can be readily ported into other application fields to accelerate sim-
ulations that rely on high-dimensional lLuTs to model complex flow behavior such as combustion,
phase-change or fluid-particle interactions.

Finally, future steps in algorithmic development will include on-the-fly adaptivity of the model
to tackle unsteady flow problems, and leveraging analytical solutions during the initial training set.
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Application to ablation and more detailed chemical mechanisms, for example, those appearing in
reactive flows, are also being pursued at the moment in the context of future work.
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