
PHYSICAL REVIEW FLUIDS 8, 023102 (2023)

Irreversibility in bacterial turbulence: Insights from the
mean-bacterial-velocity model
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We use the mean-bacterial-velocity model to investigate the irreversibility of two-
dimensional (2D) bacterial turbulence and to compare it with its 2D fluid-turbulence
counterpart. We carry out extensive direct numerical simulations of Lagrangian tracer parti-
cles that are advected by the velocity field in this model. We demonstrate how the statistical
properties of these particles help us to uncover an important, qualitative way in which
irreversibility in bacterial turbulence is different from its fluid-turbulence counterpart: For
large but negative (or large and positive) values of the activity (or friction) parameter, the
probability distribution functions of energy increments, along tracer trajectories, or the
power are positively skewed; so irreversibility in bacterial turbulence can lead, on average,
to particles gaining energy faster than they lose it, which is the exact opposite of what is
observed for tracers in 2D fluid turbulence.

DOI: 10.1103/PhysRevFluids.8.023102

I. INTRODUCTION

Active-matter systems are fundamentally time irreversible; their constituents consume energy
from the environment and convert it to systematic motion [1–4]. Dense bacterial suspensions, which
are important examples of active systems, show spatiotemporal evolution that is reminiscent of flows
in turbulent fluids [5–8]. We present a quantification of the inherent irreversibility of such bacterial
turbulence by following the dynamics of Lagrangian tracer particles, as in classical fluid turbulence.
Most classical fluid flows are turbulent; they can attain a nonequilibrium, but statistically steady,
state (NESS), if the energy injection into the fluid, say, by an external force, is balanced by viscous
dissipation. Far away from boundaries, this NESS is statistically homogeneous and isotropic if we
consider length scales that are much smaller than the energy-injection scale l f [9,10]. Two important
characteristics of this NESS are (a) the distribution of energy over a large range of length scales and
(b) the temporal irreversibility of turbulent flows. This irreversibility is not easily apparent if we
look at movies, played forward or backward in time, of Lagrangian particles, or tracers, that are
advected by turbulent flows; however, the statistics of such tracers or inertial particles in turbulent
flows yields signatures of this irreversibility [11–19] if we analyze (a) the increments

W (t, τ ) ≡ E (t + τ ) − E (t ) (1)
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of the particle energy E at time t or (b) the power

pL(t ) ≡ dE

dt
= aLvL, (2)

with vL being the magnitude of the tracer velocity and aL being the component of its acceleration
along its trajectory. It has been found that probability distribution functions (PDFs) of W and pL,
obtained by averaging over t and the trajectories of all tracers, are negatively skewed [11,16,18,20–
23]; i.e., on average, such tracers lose energy faster than they gain it. We show how to use these PDFs
to bring out differences between irreversibility in fluid turbulence and its counterpart in bacterial
turbulence [7,24–30], an exciting new form of spatiotemporal chaos in active fluids. We carry out
an extensive study of the irreversibility of bacterial turbulence in the mean-bacterial-velocity model
[7]. Our work uncovers an important, qualitative way in which irreversibility in bacterial turbulence
is different from that in fluid turbulence: For large but negative (or large and positive) values of the
activity (or friction) parameter α (see below), the PDFs of W (τ ) or pL are positively skewed; this
implies that irreversibility in bacterial turbulence can lead, on average, to particles gaining energy
faster than they lose it, for certain ranges of values of α.

II. THE MODEL

Hydrodynamic models have been developed to describe turbulence in dense, quasi-two-
dimensional (quasi-2D) bacterial suspensions [7,8,24–29,31–35]. We use the mean-bacterial-
velocity model [7] or the Toner-Tu-Swift-Hohenberg (TTSH) model [8,36], for the incompressible
velocity field u(x, t ); this model has been employed to study turbulence in dense suspensions of
Bacillus subtilis:

∂u
∂t

+ λ0u · ∇u = −∇P − (α + β|u|2)u + �0∇2u − �2∇4u,

∇ · u = 0. (3)

Here, P(x, t ) is the pressure at point x and time t ; the constant density ρ is set to unity [37]. We use
periodic boundary conditions in all directions because we concentrate on statistically homogeneous
and isotropic bacterial turbulence. We restrict ourselves to two dimensions as most experiments in
this field have been conducted in quasi-2D systems. The parameters �0 < 0 and �2 < 0; a spatial
Fourier transform of Eq. (3), followed by a linear-stability analysis about the spatially uniform state,
yields the wave vectors k, with magnitude k, for which there are linearly unstable modes. We define
the following characteristic length, velocity, and time scales, respectively:

	 = 2π

√
2�2

�0
, v0 =

√
|�0|3
�2

, θ = 	

v0
. (4)

These unstable modes provide a source of energy injection into the system [38]; this energy is
dissipated by (a) the linearly stable modes, (b) the cubic term with the coefficient β > 0, and (c)
the linear term with the coefficient α, if α > 0. Moreover, there is energy injection, or activity, if
α < 0; and �0 < 0 and λ0 �= 1 also induce activity [36] (λ0 > 1 for pusher swimmers such as B.
subtilis (see, e.g., Refs. [7,24,39])). The interplay between these energy-injection and dissipation
terms leads to a NESS with self-sustained, turbulence-type patterns [30]. The effective viscosity

k2νeff (k) = (
α + 2βu2

rms + �0k2 + �2k4
)

(5)

can be used to rewrite Eq. (3) in a Navier-Stokes form (see the Appendix and Ref. [30]). Clearly,
the wave numbers k at which energy is injected (dissipated) are those with νeff (k) < 0 [νeff (k) > 0];
the root-mean-square velocity urms must be obtained from a calculation (see below). We can tune
different parameters in Eq. (5) to vary νeff (k); for example, run D (see Table I) is an illustrative one
in which energy is injected predominantly at one wave number. We solve Eq. (3) by a pseudospectral
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TABLE I. Parameters for our DNSs. For all the runs listed in the table, �0 = −0.045, β = 0.5, and λ0 = 3.5.

Run �2 α δt 	 θ v0

A1–A12 9 × 10−5 a 2 × 10−4 0.40 0.40 1.0
B 9 × 10−5 −4 1 × 10−5 0.40 0.40 1.0
C 9 × 10−5 1 5 × 10−5 0.40 0.40 1.0
D 3.6 × 10−5 14 1 × 10−4 0.25 0.16 1.60

aRuns A1–A12 use α = −4, −3.5, −2.5, −1.5, −1, −0.5, 0, 1, 3, 3.5, 4, and 5, respectively.

direct numerical simulation (DNS) [40,41] with N2 = 10242 collocation points and the parameters
in Table I. We employ the second-order integrating-factor method IFRK2 for time marching [42];
we have checked in representative cases that our results are unchanged if we use N2 = 20482

collocation points. We hold λ0, β, and �0 fixed, and we tune the activity principally by varying
α. We follow Refs. [7,43] in restricting our model parameters to experimentally realizable regimes.
The average velocities observed in experiments on B. subtilis are � 25 µm/s, at normal oxygen
concentrations, and the typical viewing area is 400 × 400 µm; we map these to the constant velocity
scale v0 and the simulation box area L × L, respectively. This gives us the scale factors of 25/v0

and 4 × 10−2/L for mapping velocities and lengths, respectively, in our DNSs to their experimental
counterparts.

III. RESULTS

In Figs. 1(a)–1(c), we present filled contour plots of the vorticity ω(x, t ) = ∇ × u(x, t ), with
some tracers shown via black points, for the representative runs A1, A8, and D, respectively (see
Table I). In Figs. 1(d)–1(i), we give log-log plots versus k	 of the k-shell-averaged energy spectrum
E (k) and energy flux �(k):

E (k) = 1

2

k′=k+1/2∑
k′=k−1/2

〈̃u(k′) · ũ(−k′)〉t ,

�(k) = −λ0

k′=k∑
k′=0

k′′=k′+1/2∑
k′′=k′−1/2

[〈̃u(−k′′) · P(k′′) · ( ˜u · ∇u)(k′′)〉t ]. (6)

Here, tildes denote spatial Fourier transforms, 〈·〉t is the time average over the NESS, and the
transverse projector P(k) has the components Pi j (k) = δi j − kik j

k2 . The total fluid energy, root-mean-
square velocity, integral length scale, integral time scale, and integral-scale Reynolds number are

ET =
∑

k

E (k), urms =
√

2ET , LI =
∑

k[E (k)/k]∑
k E (k)

,

TI = LI/urms, ReLI ≡ urmsL
3
I /�2, (7)

respectively. The gray-shaded areas in Figs. 1(d)–1(i) indicate the ranges of k for which νeff (k) <

0. For the runs in Table I, there is no range of k over which �(k) remains constant, unlike its
fluid-turbulence counterpart; so we cannot identify inverse- or forward-cascade regimes in E (k).
However, E (k) is spread over a large range of k, and the temporal evolution of u is chaotic, so the
bacterial-turbulence NESS for this model [Eq. (3)] displays spatiotemporal chaos. In Figs. 2(a)–2(d)
we present plots versus α of urms/v0, LI/	, TI/θ, and ReLI , respectively (runs A1–A12); as α

moves from the activity regime (α < 0) to the frictional regime (α > 0), urms/v0, LI/	, and ReLI

decrease, but TI/θ first decreases and then increases because urms decreases more rapidly than LI .
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FIG. 1. Plots for runs A1, A8, and D (Table I): (a)–(c) Filled contour plots of the vorticity ω(x, t ), with
some tracers (black points), at a representative time in the NESS; log-log (base 10) plots vs k	 of (d)–(f) the
energy spectrum E (k) and (g)–(i) the energy flux �(k) [Eq. (6)]; the gray-shaded areas indicate the ranges of
k for which νeff (k) < 0 [Eq. (5)].

The velocity vL(t ) of a tracer at xL(t ) is

dxL(t )

dt
≡ vL(t ) = u(xL(t ), t ). (8)

We track Np = 10 000 tracers, employ the second-order Runge-Kutta method for time marching,
and evaluate u(xL(t ), t ) at off-grid points via bilinear interpolation [44–46]; to get good statistics,
we use very long runs (3 × 106 time steps per particle). The acceleration of a tracer particle is

a(xL, t ) ≡ ∂u
∂t

+ (u · ∇)u|xL (t )

= −∇Peff − (1 − λ0)(u × ω) − (α + β|u|2)u + �0∇2u − �2∇4u|xL (t ), (9)

where the effective pressure Peff = P − 1
2 (1 − λ0)u · u; the component of this acceleration along the

tracer’s trajectory yields aL, whence we get pL [Eq. (2)] and its normalized PDF P ( pL

〈p2
L〉1/2 ). From

the time series of particle energies (Fig. 4) we obtain the energy-increment PDFs P ( W (τ )
〈W 2(τ )〉1/2 ), for

various values of τ < TI . Both these PDFs have zero mean [Figs. 3(a) and 3(b)], because we are
considering a statistically steady state in which the mean energy input is balanced by dissipation,
but they are asymmetrical; we characterize this asymmetry by computing the skewnesses

PSk =
〈
p3

L

〉
〈
p2

L

〉 3
2

and WSk(τ ) = 〈W 3(τ )〉
〈W 2(τ )〉 3

2

, (10)
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FIG. 2. Plots vs α of (a) urms/v0, (b) LI/	, (c) TI/θ , (d) ReLI , (e) the skewness PSk, and (f) WSk (τ ) for
τ/θ = 0.025; in (e) and (f), blue and pink shading indicate ranges of α in which the skewnesses are positive
and negative, respectively.

which we plot versus α in Figs. 2(e) and 2(f), respectively. We observe that PSk > 0 in the large-
activity, α < −2, and extreme-friction, α > 3.5, regions (shaded blue). This is in stark contrast to
2D fluid turbulence [11], where PSk < 0. The values of α for which PSk < 0 lead to NESSs that are
characterized by flight-crash events in which, on average, E (t ) builds up slowly but decays rapidly.
(In 2D Faraday-wave experiments, PSk > 0 has been attributed to the temporal coherence of these
waves and has been removed by filtering [47].) For runs B and D we also find PSk > 0. Runs B and

FIG. 3. Plots for run B: Semilog plot of the normalized PDFs (a) P (pL ) and (b) P (W (τ )), with τ/θ going
from 0.025 to 0.08 to 0.13 to 0.25 to 0.38 to 0.50, as we move from the outermost to the innermost curve; in
(a), negative values of pL (dashed curve) are reflected about the vertical axis to highlight the asymmetry of
P (pL ). (c) Log-log (base 10) plot vs τ/θ of the skewness WSk (τ ). Inset: for the same range of τ/θ , a log-log
plot vs τ/θ of 〈W 3(τ )〉/〈E〉3; the dashed black line is a fit to 〈W 3(τ )〉/〈E〉3 ∼ (τ/θ )3.
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FIG. 4. (a)–(c) Plots of the normalized energy E (t )/〈E〉 vs the normalized time t/θ along a representative
particle trajectory from run A1; the colors along the trajectory indicate the value of pL .

C, which are similar to runs A1 and A8, respectively, but with smaller time steps δt , illustrate that
the sign of PSk is robust and does not change with δt . We find PSk > 0 in other parameter regimes
too (see the illustrative simulations outlined in Table I of the Supplemental Material [48]); so the
positive skewness, for the active turbulence in the high-activity regime, is a robust result.

In Fig. 4(a) we plot the time series of E/〈E〉 of a typical particle. We also show magnified regions
of this time series to exhibit a flight-crash event [Fig. 4(c)], of the type that is predominant in fluid
turbulence, and an event in which E (t ) builds up faster than it decays [Fig. 4(b)]. In the large-activity
and extreme-friction regions mentioned above, the predominance of events such as the one shown in
Fig. 4(b) leads to PSk > 0 and, for small τ/θ , WSk(τ ) = 〈W 3(τ )〉

〈W 2(τ )〉 3
2

> 0, because limτ→0 W (τ, t ) ∼
pL(t ). Furthermore, for τ/θ � 1, we obtain the Taylor-expansion result 〈W 3(τ )〉 ∼ τ 3, for which
we give a representative plot in the inset of Fig. 3(c). As τ decreases, the tails of P ( W (τ )

〈W 2(τ )〉1/2 ) widen,
as in fluid turbulence [11,49].

We find that that fast-gain and slow-loss events [Fig. 4(b)] occur on the particle-acceleration time
scale τa, which we obtain from the first zero crossing of the normalized acceleration autocorrelation
function. Therefore, if we average pL(t ) over times O(τa), we obtain PSk < 0 (see the Supplemental
Material for details).

The sign of PSk [and, for small τ/θ, the sign of WSk(τ )] displays the following correlation with
the scale-by-scale energy budget in Fourier space, where we can identify the k dependence of the
energy contributions from the terms with coefficients α, �0, and λ0 in Eq. (3). The contributions
of the first two terms dominate over those of the third term when PSk > 0, as we show in detail
in the Appendix. In 2D incompressible flows, the Okubo-Weiss parameter [40,50–52] distinguishes
between vortical and strain-dominated regions. We define this, along particle trajectories, as follows:

QL(t ) = ω2 − σ 2

4

∣∣∣∣
xL (t )

, (11)

where ω2 = 1
2

∑
i, j (∂iu j − ∂ jui )2 and σ 2 = 1

2

∑
i, j (∂iu j + ∂ jui )2, with i, j = 1, 2. QL > 0 (≡ Q+

L ),

in vortical regions, and QL < 0 (≡ Q−
L ), in strain-dominated regions. The PDF P ( QL

〈Q2
L〉1/2 ) is posi-

tively skewed; its skewness QSk decreases with increasing α but remains positive throughout the
range of α for runs A1–A12 [inset of Fig. 5(a)]. For high activities, the cumulative PDF C(Q+

L ),
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FIG. 5. (a) Semilog plots of P (QL ) for runs A1 (blue) and A13 (green). The inset gives the plot vs α of
skewness, QSk, for P (QL ). (b) Log-log plot of C(Q+

L ) for run A1; the shaded region shows a power law, and the
solid black line gives the fit C(Q+

L ) ∼ [Q+
L ]−ϑ , with ϑ = 0.37 ± 0.04. (c) Plots vs α of PSk for the conditioned

PDFs (see text) P (pL|Q+
L ) (violet) and P (pL|Q−

L ) (maroon).

shows a power-law tail for Q+
L [Fig. 5(b)], a unique feature of the bacterial-turbulence model we

study [53]; in contrast, for the high-friction regime (α > 2), the tail of P (QL ) has a faster-than-
exponential decay, for small and positive values of QL, as in 2D fluid turbulence. Furthermore, in
the large-activity regime α � −2, the positivity of PSk arises from vortical regions, whereas, in the
high-friction regime α � 2, this positive skewness comes from the strain-dominated regions, which
we surmise from Fig. 5(c), where we plot PSk for the conditioned PDFs P (pL|Q+

L ) and P (pL|Q−
L ).

This is an important insight.

IV. DISCUSSION

We have shown that, in 2D bacterial turbulence in the mean-bacterial-velocity model, the
positivity of these skewnesses occurs because of the activity, which we tune via the parameter α. If
the spectral energy transfer, because of the advective nonlinearity, is dominant or is comparable to
the spectral energy contributions from other active terms, the signs of these skewnesses are the same
as in 3D and 2D Navier-Stokes turbulence; otherwise, they are positive (see Fig. 1). This indicates
the presence of an energy-transfer mechanism that is different from 3D Navier-Stokes turbulence
but similar to the one discussed in the context of active-nematic turbulence [54].

Quasi-2D experiments on dense suspensions of aerobic bacteria, e.g., B. subtilis, show that
the average speed of bacterial flow increases with the oxygen concentration [5,6,55]. We can
increase the activity by making α large and negative. In experiments, the activity can be increased

by enhancing the oxygen concentration, because the polar-ordered velocity scale vp =
√

|α|
β

is

a measure of the swimming speed of bacteria. urms ∝ α (cf. Ref. [43]), and in the frictional or
α > 0 regime, the value of α can be tuned in experiments by changing the bottom friction or the
air-drag-induced friction (see Supplemental Material [48] for details). Therefore experiments on
dense bacterial suspensions should be able to examine irreversibility in bacterial turbulence as a
function of the activity as we have done in Fig. 2. It is important to use the methods we describe
here to explore irreversibility of bacterial turbulence in other models [27,31,32] and also in models
for active fluids [56,57] and active nematics [33,34,54]. We propose to carry out such studies in the
near future.
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FIG. 6. Semilog plots vs k	 of T a(k) (yellow), −2αE (k) (blue), and −2�0k2E (k) (orange); the gray-
shaded areas indicate the ranges of k for which νeff (k) < 0 for (a) run A1, (b) run A7, (c) run A8, and (d) run
A11.

APPENDIX: ENERGY BUDGET

For the shell-averaged energy spectrum

E (k) = 1

2

k′=k+1/2∑
k′=k−1/2

〈̃u(k′) · ũ(−k′)〉t

we have [30]

∂tE (k) = T a(k) − T c(k) − 2αE (k) − 2�0k2E (k) − 2�2k4E (k), (A1)

where T a(k) and T c(k), the k-shell averaged contributions from the advective and cubic terms in
Eq. (3), respectively, are

T a(k) = −λ0

k′=k+1/2∑
k′=k−1/2

〈̃u(−k′) · P(k′) · ( ˜u · ∇u)(k′)〉t ,

T c(k) = β

k′=k+1/2∑
k′=k−1/2

〈̃u(−k′) · P(k′)( ˜|u|2u)(k′)〉t , (A2)

with Pi j (k) = δi j − kik j

k2 being the transverse projector and 〈·〉t being the average over time t . The
flux of energy arising from the advective term is

�(k) = −
k′=k∑
k′=0

T a(k′). (A3)

The effective viscosity

k2νeff (k) = (
α + 2βu2

rms + �0k2 + �2k4)
can be used to rewrite Eq. (3), in a form that resembles the Navier-Stokes equation, with the constant
viscosity ν replaced by νeff (k). To obtain Eq. (5), we use the approximation T c(k) � −4βu2

rmsE (k)
suggested in Ref. [30]; here, urms must be obtained from our calculation. Clearly, the wave numbers
k at which energy is injected (dissipated) are those with νeff (k) < 0 [νeff (k) > 0].

The sign of PSk [and, for small τ/θ, the sign of WSk(τ )] displays the following correlation with
the scale-by-scale energy budget in Fourier space, where we can identify the k dependence of the
energy contributions from the terms with coefficients α, �0, and T a(k) from Eqs. (A1) and (A2),
which we show in Fig. 6: The contribution to the energy budget (A1) from the active term, −2αE (k),
is significantly greater than T a(k), for values of α < −2. For values of α > 2, where PSk > 0, the
other active term, −2�0k2E (k), dominates over T a(k).
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