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In this paper, water wave interaction with an array of thin submerged horizontal circular
plates is investigated within the framework of linear potential flow theory. To consider
a more general case, the circular plates studied in this paper are not limited to be
rigid and impermeable and, instead, they can be perforated and/or elastic. A Hankel
transform approach is employed to formulate integral equations in terms of unknown
functions related to the jump in velocity potential across each plate. A Galerkin method
is adopted to the solution of these integral equations, and the velocity potential jump
across the plate is expressed in terms of Fourier-Gegenbauer series, incorporating the
known square-root behavior at the edge of the plate in a rapidly convergent numerical
scheme. For elastic plates, the plate motion is expanded in modes of free vibration
with the edge constraint conditions accounted for intrinsically. The unknown coefficients
of the plate motion are further expressed in terms of the unknown coefficients related
to the velocity potential jump. The Hankel transform–based model is found to be valid
for multiple plates distributed arbitrarily, including the staggered arrangement, for which
the traditional eigenfunction matching method would not work. In-depth discussions have
been made to the hydrodynamic responses of staggered arrangement of plates. It is found
that the staggered arrangement of plates can result in notable wave focusing but with less
energy dissipation. The largest principal strain is observed on the front region of the plate
submerged at a shallower depth.
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I. INTRODUCTION

The interaction of linear water waves with plates of small thickness has received considerable
research attention. Possible utilization of such a structure for purposes including but not limited
to mitigating severe wave attack on offshore or coastal facilities, and absorbing and/or dissipating
wave power is promising. Impermeable rigid plates can be used as a wave lens to amplify wave
energy [1] and a heave plate to suppress violent resonant wave frequency motion of an offshore
platform [2]. The resonance of plate bending elastic modes has been proven to be an effective power
extraction mechanism in [3], whereas more recently, Michele et al. [4] and Zheng et al. [5] solved
the case of a floating free-edge flexible circular wave energy converter by means of free-edge dry
mode expansion and dispersion relation for flexural wave propagation, respectively. Liang et al. [6]
considered wave effects on submerged perforated elastic plates numerically by coupling a boundary
element method and dry modes of plates. Elastic perforated plates have potential to be used as a
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FIG. 1. Sketch of three arrangements of a pair of submerged circular plates: (a) coaxial arrangement,
(b) side-by-side arrangement, and (c) staggered arrangement.

power take-off (PTO) device to harness wave power and membrane-type photovoltaic panels [7].
In addition, an elastic plate is also widely used to model natural structures, for example, sea ice,
stingray, etc. [8,9].

The interactions between water waves and submerged circular plates have been extensively
studied because of their potential practical significance as well as theoretical interests. Apart from
experimental and numerical studies, analytical methods have been adequately developed hitherto.
Among various analytical models, the eigenfunction matching method has been widely applied to
deal with the interaction between water waves and a circular plate [10], and multiple plates can
be considered by using Graf’s addition theorem [11,12]. Despite the fact that significant progress
has been achieved, this method has several limitations. First, the square-root singularity at the edge
of the plate is usually disregarded in the eigenfunction matching method. As a consequence, a
large number of terms are required to achieve converged results. Second, it is difficult to apply to
deep water problems due to the fact that the convergence of the expansion series underneath the
plate is slow when water depth is large. Third, if the plates are perforated and/or elastic, complex
dispersion equations will be encountered with the eigenfunction matching method. However, it is a
big challenge to find all the complex roots over a range of parameters, although several methods for
solving the complex dispersion equations have been proposed (see, e.g., [10,13,14]). Last, but not
least, to the best of the authors’ knowledge, the traditional eigenfunction matching method would
end up in some amount of difficulty when the plates overlap horizontally, e.g., see the staggered
arrangement as shown in Fig. 1, particularly due to the noncircular regions encountered in the fluid
domain dividing scheme. A variant of the eigenfunction matching method is the modified residue
calculus method, in which the specific behavior at the edges of the plate can be accounted for.
Readers are referred to [15] for a detailed description of this method.

In contrast to the popular eigenfunction matching method, the Hankel transform approach [16,17]
does not suffer from the aforementioned difficulties. In essence, the Hankel transform approach
amounts to the Galerkin boundary integral method [18]. It adopts the free-surface Green function as
the fundamental solution to the Laplace equation, although not explicitly expressed, and different
types of free-surface Green functions have been thoroughly collected in [19]. This feature enables
the method to account for the deep water problem and without the need to find the complex roots.
By selecting proper basis functions, the square-root singularity can be incorporated, leading to rapid
convergence [17,20,21]. Moreover, this approach can be generalized to consider interactions among
water waves, current, and plates as long as the proper free-surface Green function is used [22].
Other methods, e.g., the Fourier transforms–based method [17] and the Wiener-Hopf technique
[23], which also avoid the need to find the roots of the highly nontrivial dispersion equations, were
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applied in solving the two-dimensional problems of water wave scattering by infinitely long plates
of constant width and semi-infinite submerged thin elastic or poroelastic plates.

The present paper is focused on the problem of water wave interaction with an array of sub-
merged circular plates. Basically, the distribution of an array of submerged plates can be classified
into three types: coaxial arrangement, side-by-side arrangement, and staggered arrangement (i.e.,
overlap laterally) (see Fig. 1). Motivated by the desire to study the hydrodynamics of an arbitrary
arrangement of multiple plates, a Hankel transform–based model is proposed in this paper. A
Galerkin method is applied to the solution of the integral equations to ensure that the behavior
of the fluid velocity at the edges of the plates is captured accurately. The plates in the present model
are not limited to being rigid and impermeable, and instead they can be perforated and/or elastic,
making the model applicable to a wider range of applications. Moreover, the present model enables
us to investigate hydrodynamic responses of plates in a staggered or coaxial configuration.

As a follow-up to the authors’ previous work [6,12], the focus of the present study is mainly
placed on the hydrodynamic responses of two disks in a staggered configuration, which has
been seldom considered in the literature. Besides the wave exciting forces, energy dissipation,
hydroelastic deflections, and free-surface patterns, we also considered the velocity field and the
distribution of principal strain. It is unraveled that the staggered arrangement of plates can result in
notable wave focusing but with less energy dissipation, and the largest principal strain is observed on
the front region of the plate submerged at a shallower depth. Our present model is focused on wave
interaction with plates of clamped edges or simply supported edges, and it can be easily extended
to the case of free-edge plates.

The remainder of this paper is structured as follows: Section II describes the basic Hankel
transform–based mathematical model. Section III presents the theoretical expressions of the velocity
potential jump across the plates and the deformation of the plates should they be flexible. Moreover,
the linear algebraic system for evaluating unknown coefficients and also the expressions of the
free-surface elevation, wave excitation forces, and wave power dissipation are derived. Section IV
supplies the model validation. A multiparameter study is carried out with the validated model, the
results of which and the corresponding discussions are reported in Sec. V. Finally, the conclusions
are outlined in Sec. VI.

II. MATHEMATICAL MODEL

Water wave interaction with an array of N submerged horizontal circular thin plates is considered.
The water is of constant depth h, and the nth circular plate is of radius Rn with submergence dn. The
definition of the coordinate systems follows from that of [12] (see Fig. 2), though we treat the
problem with a different approach. There is a global Cartesian coordinate system Oxyz and N plate
associated local cylindrical coordinate systems Onrnθnz centered on the origin of the nth circular
plate for n = 1, . . . , N . In addition, a global cylindrical coordinate system Or0θ0z (not plotted in
Fig. 2) is defined with its origin coinciding with the Cartesian coordinate system. The mean water
level coincides with the plane z = 0, with the axis z pointing upwards. The horizontal position of
On in the Cartesian coordinate system is (xn, yn). The plates are subjected to incident plane waves
of amplitude A and angular frequency ω propagating at a heading angle β with respect to the Ox
direction.

It is assumed that both the free-surface steepness and plate motion are small enough so that linear
theory applies and the fluid is inviscid, incompressible, and its motion is irrotational. The governing
equation to be satisfied by the velocity potential φ in the fluid domain is

∇2φ = 0, (1)

where ∇2 denotes the three-dimensional Laplacian.
The velocity potential may be divided into two components as

φ = φI + φD, (2)
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FIG. 2. Definition of the coordinate systems (top view) (after [12]). Rn, j=0, Rn, j � Rn + Rj and 0 <

Rn, j < Rn + Rj correspond to the coaxial arrangement, side-by-side arrangement, and staggered arrangement,
respectively (see Fig. 1).

where φI denotes the undisturbed incident wave velocity potential, and φD is the diffracted velocity
potential.

The incident wave potential φI that satisfies Laplace’s equation and the boundary conditions on
the free surface and seabed can be expressed in the global Cartesian coordinate system Oxyz as [15]

φI (x, y, z) = − igA

ω
Z (z)eik(x cos β+y sin β ), with Z (z) =

{ cosh[k(z+h)]
cosh(kh) , (finite depth)

eKz, (infinite depth)
, (3)

where g is the acceleration due to gravity and k ∈ R+ the wave number, satisfying the dispersion
relation ω2/g ≡ K = k tanh(kh). In the case of infinite depth, the dispersion relation holds in the
limit h → ∞ giving K = k. By using Jacobi-Anger expansion, the incident wave potential φI in the
local cylindrical coordinate systems Onrnθnz is equivalently written as [11]

φI (rn, θn, z) = − igA

ω
Z (z)eik(xn cos β+yn sin β )

∞∑
m=−∞

ime−imβJm(krn)eimθn , (4)

where Jm denotes the mth-order Bessel functions of the first kind.
The diffracted potential φD may be written as

φD =
N∑

n=1

∞∑
m=−∞

φn,m(rn, z)eimθn , (5)

in which φn,m satisfies the Laplace equation in cylindrical coordinates,(
∂2

∂r2
n

+ 1

rn

∂

∂rn
− m2

r2
n

+ ∂2

∂z2

)
φn,m = 0, (6)

the free-surface boundary condition(
∂

∂z
− K

)
φn,m = 0, z = 0, (7)

the boundary condition at the seabed

∂φn,m

∂z
= 0, z = −h, or |∇φn,m| = 0, z → −∞, (8)

depending on whether the fluid is finite or infinite depth, and the Sommerfeld radiation condition at
rn → ∞.
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The continuity of vertical velocity and the kinematic boundary conditions at the nth plate for
n = 1, 2, . . . , N (e.g., see [12]),

∂φI

∂z
+ ∂φD

∂z
= ∂φ+

n

∂z
= ∂φ−

n

∂z
= −ipn(φ+

n − φ−
n ) − iωηn, z = −dn, 0 < rn < Rn, (9)

should also be satisfied, where pn denotes a complex porosity parameter of the nth plate (see [24], for
example), whose real and imaginary parts represent the resistance and inertial effects, respectively.
φ+

n = φ|z=−d−
n

and φ−
n = φ|z=−d+

n
denote the velocity potentials above and below the nth circular

plate, respectively. ηn represents the deformation of the nth plate and ηn = 0 if the plate is rigid
and with its edge fixed. Equation (9) states that the jump in pressure across the plate is proportional
to the velocity of the fluid relative to the velocity of the plate. The imaginary part of pn encodes a
phase lag in this flow law, and pn = 0 if the plate is impermeable. When pn → ∞, the plate has a
vanishing effect, since Eq. (9) implies not only the continuity of the vertical velocity but also the
continuity of the velocity potential (i.e., φ+

n − φ−
n = 0).

The jump in the velocity potential across z = −dn may be written as

φ+
n − φ−

n =
{∑∞

m=−∞ Pn,m(rn)eimθn , rn � Rn

0, rn > Rn
, (10)

where Pn,m(rn) can be further expanded into a series of basis functions, which will be given in
Sec. III.

When the plate is flexible, in addition to the above governing equation and boundary conditions,
the dynamic boundary conditions on the nth circular plate for n = 1, 2, . . . , N ,

g(χn	
2 − Kγn)ηn + iω(φ+

n − φ−
n ) = 0, (11)

should be satisfied (e.g., see [12,25]), in which 	 denotes the Laplacian operator in the horizontal
plane. χn and γn represent the flexural rigidity and the mass per unit area of the plate, respectively,
scaled with respect to the water density. The detailed definitions of those parameters can be
found in [11,12]. For simply supported flexible plates, we have vanishing of the bending moment
and displacement at the edges, while in the case of flexible plates having clamped edges, both
displacement and slope vanish at the edges. The expression of ηn will be given in Sec. III B.

Following [17], the Hankel transform of φn,m is defined by

φ̄n,m(α, z) =
∫ ∞

0
rnφn,m(rn, z)Jm(αrn)drn, (12)

with inverse

φn,m(rn, z) =
∫ ∞

0
αφ̄n,m(α, z)Jm(αrn)dα. (13)

Taking the Hankel transforms of Eqs. (6)–(8) and (10) gives rise to(
∂2

∂z2
− α2

)
φ̄n,m = 0, (14)(

∂

∂z
− K

)
φ̄n,m = 0, z = 0, (15)

∂φ̄n,m

∂z
= 0, z = −h, or φ̄n,m → 0, z → −∞, (16)

depending on whether the fluid has finite or infinite depth, and

φ̄n,m(α,−d−
n ) − φ̄n,m(α,−d+

n ) =
∫ Rn

0
rnPn,m(rn)Jm(αrn)drn ≡ P̄n,m(α). (17)
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It is assumed in what follows that the fluid is of finite depth, and we comment later on the
changes required for infinite depth. It should be noted that φn,m(rn, z) have a continuous z derivative
at z = −dn for all rn, resulting in

∂

∂z
φ̄n,m(α,−d−

n ) = ∂

∂z
φ̄n,m(α,−d+

n ). (18)

On account of φ̄n,m satisfying Eqs. (14)–(18) and applying the method of separation of variables,
we have

φ̄n,m(α, z) = P̄n,m(α) fn(α, z), (19)

where

fn(α, z) =
⎧⎨
⎩

sinh[α(h−dn )][α cosh(αz)+K sinh(αz)]
α sinh(αh)−K cosh(αh) , −dn � z � 0

cosh[α(z+h)][−α sinh(αdn )+K cosh(αdn )]
α sinh(αh)−K cosh(αh) , −h � z � −dn

. (20)

There is a pole on the positive real α axis at α = k, for which the denominator of fn(α, z) equals
zero given the dispersion relation K = k tanh(kh). For the thin plate located on the seabed, i.e., when
dn → h, we have fn(α, z) → 0 and ∂ fn(α, z)/∂z → 0 for −h < z � 0, meaning that the diffracted
velocity potentials turn to vanish as expected.

Taking inverse transforms of the representation in Eq. (19) using Eq. (13) gives

φn,m(rn, z) =
∫ ∞

0
αP̄n,m(α) fn(α, z)Jm(αrn)dα. (21)

To ensure that the diffracted waves are outgoing, the contour of integration is defined to bypass
the pole α = k from below [17]:

φn,m(rn, z) = αP̄n,m(α) fn(α, z)Jm(αrn)dα, (22)

where the integral is interpreted as

s(x)

x − x0
dx = −

∫ ∞

0

s(x)

x − x0
dx + π is(x0), (23)

so that the radiation condition requiring diffracted waves propagating outward is satisfied [19], see
details in Appendix.

The diffracted potential is ultimately expressed in terms of P̄n,m as

φD =
N∑

n=1

∞∑
m=−∞

φn,m(rn, z)eimθn =
∞∑

m=−∞
φn,m(rn, z)eimθn +

N∑
j=1
j �=n

∞∑
m=−∞

φ j,m(r j, z)eimθ j

=
∞∑

m=−∞
eimθn αP̄n,m(α) fn(α, z)Jm(αrn)dα

+
N∑

j=1
j �=n

∞∑
m=−∞

αP̄j,m(α) f j (α, z)
∞∑

m′=−∞
Jm−m′ (αRj,n)ei(m−m′ )α j,n Jm′ (αrn)eim′θn dα. (24)

Note that Graf’s addition theorem for Bessel functions [26],

Jm(kr j )e
imθ j =

∞∑
m′=−∞

Jm−m′ (kRj,n)ei(m−m′ )α j,n Jm′ (krn)eim′θn , (25)

has been adopted in Eq. (24); Rj,n and α j,n represent the module and the angle, respectively, of−−−→
OjOn. It should be pointed out that Eq. (25) has no geometric restrictions in its use, in contrast to the
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application of Graf’s addition theorem to Hankel functions, which is required in other approaches
involved in circular scattering problems (see, e.g., [11,12,27]). Therefore, the present model is avail-
able for arbitrary distributions of the plates, including the staggered arrangement. For the particular
case when the plates are coaxial, i.e., Rj,n = 0, Eq. (25) reduces to Jm(kr j )eimθ j = Jm(krn)eimθn , i.e.,
no transform is required as expected, and for this particular case, the final expression of φD, i.e.,
Eq. (24), can be further simplified.

III. NUMERICAL METHOD

The Galerkin method can be employed to solve the hydrodynamic problem. In the linearized
hydrodynamic model, the fluid velocity and the hydrodynamic pressure are square-root singular
at the edge of a thin plate. To incorporate the known null velocity potential jump and the square-
root behavior of velocity at the edge of the plate, Pn,m may be expressed as (see Refs. [16,17], for
example)

Pn,m(rn) =
∞∑

q=0

α(n)
m,q


(|m|)
q

(
rn

Rn

)
, (26)

in which αn,m
q are the unknown coefficients to be determined, and


(m)
q (x) = q!�[m + (1/2)]√

2π�[q + m + (3/2)]
xmCm+1/2

2q+1 (
√

1 − x2), (27)

where Cm+1/2
2q+1 is the Gegenbauer polynomial and � the Gamma function. It is noted that the functions


(m)
q (x) incorporate the correct square-root behavior at x = 1, and it has the orthogonal property

[26], satisfying

∫ 1

0

(|m|)

q (x)
(|m|)
l (x)

x√
1 − x2

dx=
⎧⎨
⎩

0, q �= l,
(2|m|+2q+1)!(q!)2

4|m|+1(2q+1)!
(
|m|+2q+ 3

2

)[
�

(
|m|+q+ 3

2

)]2 , q = l. (28)

By applying the identity [16]∫ 1

0

(|m|)

q (x)Jm(ξx)xdx = μm
J|m|+2q+3/2(ξ )

ξ 3/2
, (29)

where μm= 1 and (−1)m for m � 0 and m < 0, respectively, we obtain

P̄n,m(α) =
∫ Rn

0
rnPn,m(rn)Jm(αrn)drn = R2

n

∞∑
q=0

α(n)
m,qμm

J|m|+2q+3/2(αRn)

(αRn)3/2
. (30)

A. Rigid circular plates

For fixed rigid circular plates, we have ηn = 0 in Eq. (9). After multiplying each side of
Eq. (9) by e−iτθn


(|τ |)
ζ ( rn

Rn
)rn and integrating over θn ∈ [0, 2π ] and rn ∈ [0, Rn], and making some

rearrangements, we have

1

Rn

∞∑
q=0

α(n)
τ,q F τ,τ,ζ

n,n,q (α)dα

+
N∑

j=1
j �=n

∞∑
m=−∞

μτμmei(m−τ )α j,n
R1/2

j

R3/2
n

∞∑
q=0

α( j)
m,q F m,τ,ζ

n, j,q (α)Jm−τ (αRj,n)dα
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+ ipn

∞∑
q=0

α(n)
τ,q

q!ζ !
[
�
(|τ | + 1

2

)]2

2π�
(
q + |τ | + 3

2

)
�
(
ζ + |τ | + 3

2

) ∫ 1

0
C

|τ |+ 1
2

2q+1 (x)C
|τ |+ 1

2
2ζ+1 (x)(1 − x2)|τ |xdx

= igA

ω
Z ′(−dn)μτ iτ e−iτβeik(xn cos β+yn sin β ) J|τ |+2ζ+3/2(kRn)

(kRn)3/2
, (31)

where

F m,τ,ζ
n, j,q (α) = ∂ f j (α, z)

∂z

∣∣∣∣
z=−dn

J|τ |+2ζ+3/2(αRn)J|m|+2q+3/2(αRj )

α2
, (32)

in which

∂ f j (α, z)

∂z

∣∣∣∣
z=−dn

=
⎧⎨
⎩

α sinh[α(h−d j )][−α sinh(αdn )+K cosh(αdn )]
α sinh(αh)−K cosh(αh) , dn � d j

α sinh[α(h−dn )][−α sinh(αd j )+K cosh(αd j )]
α sinh(αh)−K cosh(αh) , dn � d j

, (33)

and the first and second lines on left-hand side of Eq. (31) involve two semi-infinite integrands with
the decays of α−2 and e−|d j−dn|αα−2.5, respectively.

In order to evaluate the unknown coefficients α(n)
m,q, we truncate all infinite series of q at L, i.e.,

(L + 1) terms (q = 0, 1, . . . , L), and we take (2M + 1) angular terms (m = −M, . . . , 0, . . . , M ),
resulting in N (2M + 1)(L + 1) unknown coefficients to be determined. After taking (τ =
−M, . . . , 0, . . . , M ) and (ζ = 0, 1, . . . , L) in Eq. (33), N (2M + 1)(L + 1) equations are obtained,
which can be used to determine the exact same number of unknown coefficients.

The case of infinite depth can be treated in a similar manner and leads to exactly the same type
of formulation but with

fn(α, z) =
⎧⎨
⎩

e−αdn [α cosh(αz)+K sinh(αz)]
α−K , −dn � z � 0

eαz[−α sinh(αdn )+K cosh(αdn )]
α−K , −h < z � −dn

, (34)

and

∂ f j (α, z)

∂z

∣∣∣∣
z=−dn

=
⎧⎨
⎩

αe−αd j [−α sinh(αdn )+K cosh(αdn )]
α−K , dn � d j

αe−αdn [−α sinh(αd j )+K cosh(αd j )]
α−K , dn � d j

. (35)

The present work is focused on the finite water depth; hence hereafter the fluid is assumed to be of
finite depth.

B. Flexible circular plates

For the cases of flexible circular plates, the deformation of the nth plate ηn excited by water
waves can be expressed as (see Ref. [28])

ηn =
∞∑

m=−∞

∞∑
l=0

[
A(n)

m,l Jm

(
μ

(n)
m,l

rn

Rn

)
+ B(n)

m,l Im

(
μ

(n)
m,l

rn

Rn

)]
eimθn , (36)

where Im denotes the modified Bessel functions of the first kind and mth order. μ
(n)
m,l = μ

(n)
−m,l ,

and μ
(n)
|m|,l ∈ R+ are the eigenvalues of plate free vibration numbered in ascending order of their

magnitude. A(n)
m,l and B(n)

m,l are the unknown coefficients to be determined. In the present work, the
circular plates are assumed to have either a simply supported or a clamped edge condition, i.e.,
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ηn = 0 should be satisfied at rn = Rn, resulting in

B(n)
m,l = −Jm

(
μ

(n)
m,l

)
Im
(
μ

(n)
m,l

)A(n)
m,l . (37)

The eigenvalues μ
(n)
m,l depend on both the plate shape and the edge conditions of the plate. In

particular, for the circular plates with clamped edges, we have⎧⎨
⎩

A(n)
m,l Jm

(
μ

(n)
m,l

)+ B(n)
m,l Im

(
μ

(n)
m,l

) = 0,

A(n)
m,l J

′
m

(
μ

(n)
m,l

)+ B(n)
m,l I

′
m

(
μ

(n)
m,l

) = 0.
(38)

To have nonzero solutions of A(n)
m,l and B(n)

m,l , the determinant of the coefficient matrix should be

equal to 0, and μ
(n)
m,l for m � 0 are the roots of

Jm(x)I ′
m(x) − J ′

m(x)Im(x) = 0, (39)

i.e.,

Jm(x)Im+1(x) + Jm+1(x)Im(x) = 0. (40)

For the simply supported edge conditions (for example, see [11]), we have⎧⎨
⎩

A(n)
m,l Jm + B(n)

m,l Im = 0,

A(n)
m,l

[(
μ

(n)
m,l

)2
J ′′

m + μ
(n)
m,lνJ ′

m − m2νJm
]+ B(n)

m,l

[(
μ

(n)
m,l

)2
I ′′
m + μ

(n)
m,lνI ′

m − m2νIm
] = 0,

(41)

where ν denotes Poisson ratio. ν = 0.3 is employed in this paper for the sake of example, and the
argument μ

(n)
m,l in Bessel functions has been omitted for brevity.

Therefore the eigenvalues, μ
(n)
m,l for m � 0, associated with the circular plates with the simply

supported edge conditions are the roots of

[x2I ′′
m(x) + xνI ′

m(x) − m2νIm(x)]Jm(x) − [x2J ′′
m(x) + xνJ ′

m(x) − m2νJm(x)]Im(x) = 0, (42)

i.e.,

2xIm(x)Jm(x) − (1 − ν)[Im+1(x)Jm(x) + Jm+1(x)Im(x)] = 0. (43)

After multiplying each side of Eq. (11) by

e−iτθn

[
Jτ

(
μ

(n)
τ,ζ

rn

Rn

)
− Jτ

(
μ

(n)
τ,ζ

)
Iτ
(
μ

(n)
τ,ζ

) Iτ

(
μ

(n)
τ,ζ

rn

Rn

)]
rn

and integrating over θn ∈ [0, 2π ] and rn ∈ [0, Rn], utilizing the orthogonality of the dry modes of
the plates, and making some rearrangements, we have

A(n)
τ,ζ

[(
μ

(n)
τ,ζ

)4 − ω2R4
nγn

gχn

] ∫ 1

0
x

[
Jτ

(
μ

(n)
τ,ζ x

)− Jτ

(
μ

(n)
τ,ζ

)
Iτ
(
μ

(n)
τ,ζ

) Iτ
(
μ

(n)
τ,ζ x

)]2

dx

+ iωR4
n

gχn

∞∑
q=0

α(n)
τ,q

⎡
⎣μτ

J|τ |+2q+3/2
(
μ

(n)
τ,ζ

)
(
μ

(n)
τ,ζ

)3/2 − (−1)q
Jτ

(
μ

(n)
τ,ζ

)
Iτ
(
μ

(n)
τ,ζ

) I|τ |+2q+3/2
(
μ

(n)
τ,ζ

)
(
μ

(n)
τ,ζ

)3/2

⎤
⎦ = 0, (44)

with which A(n)
τ,ζ can be expressed in terms of α(n)

τ,q.
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After multiplying each side of Eq. (9) by e−iτθn

(|τ |)
ζ ( rn

Rn
)rn and integrating over θn ∈ [0, 2π ] and

rn ∈ [0, Rn], and making some rearrangements, we have

1

Rn

∞∑
q=0

α(n)
τ,q F τ,τ,ζ

n,n,q (α)dα

+
N∑

j=1
j �=n

∞∑
m=−∞

μτμmei(m−τ )α j,n
R1/2

j

R3/2
n

∞∑
q=0

α( j)
m,q F m,τ,ζ

n, j,q (α)Jm−τ (αRj,n)dα

+ ipn

∞∑
q=0

α(n)
τ,q

q!ζ !
[
�
(|τ | + 1

2

)]2

2π�
(
q + |τ | + 3

2

)
�
(
ζ + |τ | + 3

2

) ∫ 1

0
C

|τ |+ 1
2

2q+1 (x)C
|τ |+ 1

2
2ζ+1 (x)(1 − x2)|τ |xdx

+iω
∞∑

l=0

A(n)
τ,l

⎡
⎣μτ

J|τ |+2ζ+3/2
(
μ

(n)
τ,l

)
(
μ

(n)
τ,l

)3/2 − (−1)ζ
Jτ

(
μ

(n)
τ,l

)
Iτ
(
μ

(n)
τ,l

) I|τ |+2ζ+3/2
(
μ

(n)
τ,l

)
(
μ

(n)
τ,l

)3/2

⎤
⎦

= igA

ω
Z ′(−dn)μτ iτ e−iτβeik(xn cos β+yn sin β ) J|τ |+2ζ+3/2(kRn)

(kRn)3/2
. (45)

After inserting Eq. (44) into Eq. (45) and truncating the series of α(n)
m,q, the unknown coefficients

α(n)
m,q can be solved numerically in a similar way as reported in Sec. III A, and A(n)

m,l can then be
calculated from Eq. (44).

C. Free-surface elevation

Once the velocity potential in the fluid domain is predicted, the free-surface elevation E can be
calculated in a straightforward manner:

E = iω

g
φ|z=0 = iω

g

[
φI |z=0 +

N∑
n=1

∞∑
m=−∞

φn,m(rn, 0)eimθn

]

= Aeik(x cos β+y sin β ) + iω

g

N∑
n=1

∞∑
m=−∞

⎡
⎣ ∞∑

q=0

α(n)
m,q J|m|+2q+3/2(αRn)

× (αRn)1/2 sinh[α(h − dn)]

α sinh(αh) − K cosh(αh)
J|m|(αrn)dα

⎤
⎦eimθn . (46)

D. Velocity vector of the fluid

The components of the velocity vector 
u = (ux, uy, uz ) may be expressed as

ux = ∂φ

∂x
= ∂φI

∂x
+

N∑
n=1

∞∑
m=−∞

[
∂φn,m(rn, z)

∂rn
cos θn − imrnφn,m(rn, z) sin θn

]
eimθn

= gkA cos β

ω
Z (z)eik(x cos β+y sin β ) +

N∑
n=1

∞∑
m=−∞

⎡
⎣ ∞∑

q=0

α(n)
m,q J|m|+2q+3/2(αRn)

× (Rn)1/2 fn(α, z)

α1/2
[αJ ′

|m|(αrn) cos θn − imrnJ|m|(αrn) sin θn]dα

⎤
⎦eimθn ,

(47)
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uy = ∂φ

∂y
= ∂φI

∂y
+

N∑
n=1

∞∑
m=−∞

[
∂φn,m(rn, z)

∂rn
sin θn + imrnφn,m(rn, z) cos θn

]
eimθn

= gkA sin β

ω
Z (z)eik(x cos β+y sin β ) +

N∑
n=1

∞∑
m=−∞

⎡
⎣ ∞∑

q=0

α(n)
m,q J|m|+2q+3/2(αRn)

× (Rn)1/2 fn(α, z)

α1/2
[αJ ′

|m|(αrn) sin θn + imrnJ|m|(αrn) cos θn]dα

⎤
⎦eimθn , (48)

and

uz = ∂φ

∂z
= ∂φI

∂z
+

N∑
n=1

∞∑
m=−∞

∂φn,m(rn, z)

∂z
eimθn

= −igA

ω
Z ′(z)eik(x cos β+y sin β ) +

N∑
n=1

∞∑
m=−∞

⎡
⎣ ∞∑

q=0

α(n)
m,q J|m|+2q+3/2(αRn)

× (Rn)1/2

α1/2

∂ fn(α, z)

∂z
J|m|(αrn)dα

⎤
⎦eimθn , (49)

respectively.

E. Strain on the plate

The strain of the plate could be an important physical parameter to predict the fracture and
breakup of the plate. The strain tensor matrix of the nth plate can be written as [29,30]

εn = h2

A

[
ε(n)

rnrn
ε

(n)
rnθn

ε
(n)
rnθn

ε
(n)
θnθn

]
= h2

A

⎡
⎣ ∂2Wn

∂r2
n

∂2Wn
rn∂rn∂θn

− ∂Wn
r2

n ∂θn

∂2Wn
rn∂rn∂θn

− ∂Wn
r2

n ∂θn

∂Wn
rn∂rn

+ ∂2Wn
r2

n ∂θ2
n

⎤
⎦, (50)

where Wn = Re{ηne−iωt }.
The eigenvalues ς

(n)
1 and ς

(n)
2 of the strain tensor matrix εn can be obtained as

ς
(n)
1,2 = h2

2A

{(
∂2Wn

∂r2
n

+ ∂Wn

rn∂rn
+ ∂2Wn

r2
n∂θ2

n

)

±
[(

∂2Wn

∂r2
n

− ∂Wn

rn∂rn
− ∂2Wn

r2
n∂θ2

n

)2

+ 4

(
∂2Wn

rn∂rn∂θn
− ∂Wn

r2
n∂θn

)2
]1/2}

. (51)

The maximum principal strain ε(n)
max at a given location may be then determined as the maximum

value of |ς (n)
1,2 | as t varies from 0 to 2π/ω [30].

F. Wave excitation forces

The wave excitation forces acting on each plate can be calculated by integrating the velocity
potential jump over the plate area. The heave excitation force on the nth plate is given by

F (n)
3 = −iωρ

∫ 2π

0

∫ Rn

0
Pn(rn, θn)rndrndθn = −2

3
iωρ

√
2πR2

nα
(n)
0,0, (52)
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where



(0)
0 (x) = �(1/2)√

2π�(3/2)
C1/2

1 (
√

1 − x2) =
√

2/π
√

1 − x2, (53)

together with the orthogonal property given in Eq. (28), is applied.
The roll excitation moment on the nth plate is given by

F (n)
4 = −iωρ

∫ 2π

0

∫ Rn

0
Pn(rn, θn)(rn sin θn)rndrndθn = 2

15
ωρ

√
2πR3

n

(
α

(n)
1,0 − α

(n)
−1,0

)
, (54)

in which



(1)
0 (x) = �(3/2)√

2π�(5/2)
C3/2

1 (
√

1 − x2) =
√

2/πx
√

1 − x2, (55)

together with the orthogonal property given in Eq. (28), is utilized. The pitch excitation moment on
the nth plate is given by

F (n)
5 = iωρ

∫ 2π

0

∫ Rn

0
Pn(rn, θn)(rn cos θn)rndrndθn = 2

15
iωρ

√
2πR3

n

(
α

(n)
1,0 + α

(n)
−1,0

)
. (56)

G. Wave power dissipation

Due to the resistance effect of the porosity, wave power can be dissipated by the array of
perforated plates.

1. Direct method

The time-averaged energy dissipated by the plates Pdiss can be calculated in a straightforward
manner by integrating the power dissipated per unit area over the plates:

Pdiss = ρω

2

N∑
n=1

Re(pn)
∫ Rn

0

∫ 2π

0
|φ+

n − φ−
n |2rndrndθn

= ρω

2

N∑
n=1

Re(pn)R2
n

∞∑
m=−∞

∞∑
q=0

∞∑
ζ=0

α(n)
m,qα

(n)∗
m,ζ

q!ζ ![�(|m| + (1/2))]2

�[q + |m| + (3/2)]�[ζ + |m| + (3/2)]

×
∫ 1

0
(1 − x2)|m|C|m|+1/2

2q+1 (x)C|m|+1/2
2ζ+1 (x)xdx. (57)

The wave power dissipation can be further nondimensionalized as

κdiss = kPdiss

Pin
, (58)

in which Pin denotes the incoming wave power per unit width of the wave front:

Pin = ρgA2

2

ω

2k

[
1 + 2kh

sinh(2kh)

]
. (59)

2. Indirect method

For krn → ∞ we find

φn,m(rn, z) ∼ An,mHm(krn)Z (z), (60)
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where Hm = Jm + iYm represents the first kind Hankel functions of the mth order, and

An,m = iπk sinh[k(h − dn)] cosh(kh)P̄n,m(k)

2hN0

= iπk sinh[k(h − dn)] cosh(kh)

2hN0
R2

n

∞∑
q=0

α(n)
m,qμm

J|m|+2q+3/2(kRn)

(kRn)3/2
.

(61)

Following [11], the time-averaged power dissipated by the array of plates can be expressed
indirectly in terms of the Kochin functions [31],

Pdiss = ρωD(kh)

k

{
Ag

2ω
Re[HR(β )] − 1

8π

∫ 2π

0
|HR(θ0)|2dθ0

}
, (62)

where

D(kh) =
[

1 + 2kh

sinh(2kh)

]
tanh(kh), (63)

and HR is the Kochin function, which can be expressed in terms of An,m or α(n)
m,q:

HR(θ0) = 2
N∑

n=1

∞∑
m=−∞

An,me−ikR0,n cos(α0,n−θ0 )(−i)m+1eimθ0

= π cosh(kh)

khN0

N∑
n=1

∞∑
m=−∞

(−i)me−ikR0,n cos(α0,n−θ0 )eimθ0 sinh[k(h − dn)](kRn)1/2

×
∞∑

q=0

α(n)
m,qμmJ|m|+2q+3/2(kRn). (64)

Another way to derive the expression of the wave power dissipation in terms of An,m or α(n)
m,q, i.e.,

Eq. (64), is to separate the propagating modes of the velocity potential at the far field into incoming
waves and outgoing waves, the difference of the power of which is the power lost to the plates.
Readers can refer to [32] for a detailed derivation.

IV. CONVERGENCE ANALYSIS AND MODEL VALIDATION

The validation of the developed model is now considered. Prior to carrying out any case studies, a
convergence analysis should be applied to ensure the results are converged. Figures 3 and 4 illustrate
the impact of the angular and radial truncated cutoffs (i.e., in terms of M and L), respectively, on the
wave excitation forces and moments acting on a pair of submerged rigid and impermeable circular
plates in a staggered arrangement. In order to obtain the converged results, M > 8 and L > 4 are
suggested. In this paper, M = 10 and L = 6 are adopted in order to obtain the converged results.

Figure 5 presents the frequency response of the wave excitation forces acting on a pair of
submerged rigid and impermeable circular plates in a staggered arrangement. The present semi-
analytical results are found to agree well with the numerical ones [33], which are predicted by
solving a hypersingular integral equation.

Figures 6 and 7 compare the present semianalytical results of the contours of the deflection of
a single submerged elastic perforated circular plate with simply supported edge conditions and the
corresponding wave amplitude above it with the published data by using the eigenfunction matching
method [12]. Again, an excellent agreement between them is observed.

The examined cases all demonstrate that the present Hankel transform–based model works well
in solving water wave interaction with an array of submerged circular plates.
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FIG. 3. Impact of the angular cutoffs (i.e., in terms of M) on dimensionless wave excitation force or
moment acting on a pair of submerged rigid and impermeable circular plates in a staggered arrangement for
L = 6, R1/h = 0.5, d1/h = 0.2, R2/h = 0.3, d2/h = 0.1, x1 = y1 = y2 = 0, x2/h = 0.5, β = π/6, kh = 2.0
and 5.0: (a) and (d) heave excitation forces; (b) and (e) roll excitation moments; (c) and (f) pitch excitation
moments. (a)–(c) plate 1; (d)–(f) plate 2.

V. RESULTS AND DISCUSSION

The present model can be employed to study wave interaction with an array of any number of
submerged circular plates, i.e., N = 1, 2, 3 . . . . Nevertheless, in this section the validated model is
applied to run a series of case studies on the performance of a pair of identical submerged elastic
perforated circular plates (N = 2). For the sake of simplification, Rn = R, pn = p, χn = χ , and
γn = γ are employed hereafter. p, χ , and γ can be nondimensionalized as p̄ = ph, χ̄ = χ/h4, and
γ̄ = γ /h, respectively. One of the two plates is placed in a shallow position below the mean water
level, i.e., d1/h = 0.1, whereas the other is placed at a deeper position with d2/h = 0.2. In the
examined cases, the radii, the flexural rigidity, and the mass per unit area of the plates are fixed with
R/h = 2.0 and χ̄ = γ̄ = 0.01.

The performance of the pair of plates depends on the distance between them (R1,2 = x2 − x1), the
incident wave direction (β), the porosity parameter ( p̄), and wave number (kh). The present Hankel
transform–based model enables us to study the performance of the pair of circular plates with any
values of R1,2. Hereafter the cases with 0 � R1,2/h � 8 are examined in which R1,2/h = 0 de-
notes the coaxial arrangement and 0 < R1,2/h < 4 represents the staggered arrangements, whereas
R1,2/h > 4 denotes the side-by-side arrangements.

Figure 8 presents the contours of the wave power dissipation (κdiss) and heave excitation forces
(|F ( j)

3 |/(ρgπh2A) for j = 1 and 2) acting on the plates with the incident wave direction (β) ranging
from 0 to π and the distance between the two plates (R1,2/h) for p̄ = 1.0 and kh = π/2. For
any specific arrangement subjected to a certain wave incident wave direction, the plates with
clamped edge conditions are found to dissipate much more wave power compared to those with
simply supported edge conditions. Similar results were also reported for a single submerged elastic
perforated circular plate [12]. The maximum wave power dissipation can be achieved by the
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FIG. 4. Impact of the radial cutoffs (i.e., in terms of L) on dimensionless wave excitation force or moment
acting on a pair of submerged rigid and impermeable circular plates in a staggered arrangement for M = 10,
R1/h = 0.5, d1/h = 0.2, R2/h = 0.3, d2/h = 0.1, x1 = y1 = y2 = 0, x2/h = 0.5, β = π/6, kh = 2.0 and 5.0:
(a) and (d) heave excitation forces; (b) and (e) roll excitation moments; (c) and (f) pitch excitation moments.
(a)–(c) plate 1; (d)–(f) plate 2.

side-by-side arrangement (R1,2/h > 4), with incident waves propagating roughly perpendicular
to the deployment line of the two plates (0.2π < β < 0.7π ). As the distance between the plates
becomes smaller, i.e., the arrangement changes from side by side into staggered or even coaxial
and/or the incident waves propagating at a smaller angle relative to the deployment line of the plates,
a dramatic drop of κdiss is observed, particularly for the cases with the clamped edge conditions. The
smallest heave excitation forces acting on the two plates with clamped edge conditions both occur

FIG. 5. Variation of dimensionless wave excitation force or moment acting on a pair of submerged rigid
and impermeable circular plates in a staggered arrangement vs wave number in terms of kh for R1/h = 0.5,
d1/h = 0.2, R2/h = 0.3, d2/h = 0.1, x1 = y1 = y2 = 0, x2/h = 0.5, and β = π/6: (a) heave excitation forces,
(b) roll excitation moments, and (c) pitch excitation moments. Lines: numerical results [33]; symbols: present
semianalytical results.
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FIG. 6. Contour of the deflection of a single submerged elastic perforated circular plate |η1|/A for
R1/h = 2.0, d1/h = 0.2, χ̄ = γ̄ = 0.01, p̄ = 1.0, β = 0, kh = π/2 and simply supported edge conditions:
(a) published result based on the eigenfunction matching method [12], and (b) present semianalytical result.

for the staggered arrangement with 1 < R1,2/h < 2, for which the heave excitation forces are even
smaller than those for the cases with simply supported edge conditions. For R1,2/h < 3 the heave
excitation forces, especially for the clamped edge cases, are insensitive to the change of incident
wave direction. For the side-by-side arrangement (R1,2/h > 4) with the clamped edge conditions,
a fluctuation change of the heave wave excitation forces is observed with the change of R1,2 and
β, except for |F (1)

3 |/(ρgπh2A) around β = π and |F (2)
3 |/(ρgπh2A) around β = 0, respectively, i.e.,

the heave wave excitation forces acting on the leeward side plate, which are rather small due to the
shadowing effect of the weather side plate and are insensitive to the change of plate distance in the
computed range of R1,2.

In Fig. 9 the contours of κdiss and |F ( j)
3 |/(ρgπh2A) for j = 1 and 2 with p̄ ranging from 0

to 4 and R1,2/h are plotted for β = π/2 and kh = π/2. For any specified arrangement, as p̄

−4 −2 0 2 4
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2
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y
/h
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FIG. 7. Contour of the wave amplitude above a single submerged elastic perforated circular plate |E |/A
for R1/h = 2.0, d1/h = 0.2, χ̄ = γ̄ = 0.01, p̄ = 1.0, β = 0, kh = π/2 and simply supported edge conditions:
(a) published result based on the eigenfunction matching method [12], and (b) present semianalytical result.
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FIG. 8. Contours of wave power dissipation, κdiss [(a) and (d)], heave excitation forces acting on plate 1,
|F (1)

3 |/(ρgπh2A) [(b) and (e)] and 2, |F (2)
3 |/(ρgπh2A) [(c) and (f)] with the incident direction β and the distance

between the two plates R1,2 = x2 − x1 for y1 = y2 = 0, R/h = 2.0, d1/h = 0.1, d2/h = 0.2, χ̄ = γ̄ = 0.01,
p̄ = 1.0, and kh = π/2: (a)-(c) simply supported edge conditions; (d)-(f) clamped edge conditions.

increases from 0 to 4, κdiss first increases and then decreases after reaching the maximum around
p̄ = 0.6. Similarly, for any specified porosity parameter p̄, in the computed range of R1,2, as R1,2/h
increases from 0 towards 8, κdiss generally increases first and then decreases after reaching the
maximum around R1,2/h = 6. The peak values of κdiss are 7.02 and 10.2 for the simply supported
and clamped edge conditions, respectively, both happening at ( p̄, R1,2/h)=(0.6, 6.0). For p̄ < 1,
the heave excitation force acting on the plate, which is located at a shallower position, is found to
significantly decrease with the increase of p̄, regardless of the edge conditions. |F (1)

3 |/(ρgπh2A) for
p̄ > 1.5 and |F (2)

3 |/(ρgπh2A) for all the computed range of p̄ are rather small.
Figure 10 illustrates the contours of κdiss and |F ( j)

3 |/(ρgπh2A) for j = 1 and 2, with kh ranging
from 0.01π to 1.0π and R1,2/h for β = π/2 and p̄ = 1.0. As kh → 0, κdiss and |F ( j)

3 |/(ρgπh2A)
for j = 1 and 2 both vanish, regardless of the edge conditions or the values of R1,2, as expected. For
any specified arrangement, κdiss increases monotonically with increasing kh. In the computed range
of R1,2, the side-by-side arrangements dissipate more wave power than the staggered and coaxial
ones. As kh increases from 0.01π to 0.5π , an obvious fluctuation change of |F ( j)

3 |/(ρgπh2A) for
j = 1 and 2 is observed, with the peaks occurring around kh = 0.23π and 0.28π for the simply
supported and clamped edge conditions, respectively. This could be explained from the perspective
of resonance. The more strictly the circular plates are constrained at their edges, the larger the
stiffness of the plates, resulting in larger wave frequencies where the peaks of the heave excitation
forces occur.

Finally, in Figs. 11 and 12 we showcase the fields of the amplitude of the free surface and the
amplitude of the plate deflection, respectively, for p̄ = 1.0, β = π/2, kh = π/2, and R1,2/h = 0,
2.0, 4.0, and 6.0 with simply supported edge conditions. The waves above the plates, after shoaling
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FIG. 9. Contours of wave power dissipation, κdiss [(a) and (d)], heave excitation forces acting on plate
1, |F (1)

3 |/(ρgπh2A) [(b) and (e)] and 2, |F (2)
3 |/(ρgπh2A) [(c) and (f)] with the porosity parameter p̄ and the

distance between the two plates R1,2 = x2 − x1 for y1 = y2 = 0, R/h = 2.0, d1/h = 0.1, d2/h = 0.2, χ̄ = γ̄ =
0.01, β = π/2, and kh = π/2: (a)–(c) simply supported edge conditions, and (d)–(f) clamped edge conditions.

into the much shallower region over the plates, undergo complicated transformation processes,
including the refraction and the reflection due to the phase interaction between the flows over and
below the plates. In all four cases the pattern of the wave amplitude distribution obviously shows a
phenomenon of wave focusing near the rear of the circular plates. The most significant of the focus-
ing process occurs for the coaxial arrangement, i.e., R1,2/h = 0 [Fig. 11(a)]. As the two plates depart
from one another horizontally, the coaxial arrangement switches into the staggered arrangement case
[Fig. 11(b)] and the wave focusing is weakened; as the horizontal distance between the two plates
is further increased, the side-by-side arrangement is achieved [Figs. 11(c) and 11(d)], resulting in a
strengthened wave focusing. In addition to wave focusing, it is noted that there is a wave attenuation
area of |E |/A < 0.75 surrounding the wave focusing region and extending to the leeward side of
the plates. In the plotted domain, with the increase in R1,2/h starting from 0, the wave attenuation
area of |E |/A < 0.75 gets larger and separates into two regions ultimately when the arrangement
becomes side by side. The strongest wave attenuation area with |E |/A < 0.25 is observed above the
overlap region of the two plates for the coaxial and staggered arrangements [Figs. 11(a) and 11(b)].
The deflection of the plates for the coaxial and staggered arrangements [Figs. 12(a) and 12(b)] is
less dramatic compared to that of the side-by-side arrangements [Figs. 12(c) and 12(d)]. This is due
to the fact that the plates are both constrained at the edges, and hence the fluid at the vertical gap
between the plates for the coaxial and staggered arrangements is more likely to be restricted to flow
horizontally, leading to a smaller plate deformation.

To have a better understanding of the hydrodynamic characteristics of the case of staggered
arrangement, the instantaneous velocity vector field at four selected cross sections, i.e., x/h = 0,±1
and y/h = 0, is plotted in Fig. 13. The fluid velocity close to a sharp corner of the structure or an
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FIG. 10. Contours of wave power dissipation, κdiss [(a) and (d)], heave excitation forces acting on plate 1,
|F (1)

3 |/(ρgπh2A) [(b) and (e)] and 2, |F (2)
3 |/(ρgπh2A) [(c) and (f)] with the wave frequency kh and the distance

between the two plates R1,2 = x2 − x1 for y1 = y2 = 0, R/h = 2.0, d1/h = 0.1, d2/h = 0.2, χ̄ = γ̄ = 0.01,
β = π/2, and p̄ = 1.0: (a)–(c) simply supported edge conditions, and (d)–(f) clamped edge conditions.

edge of a plate is singular, because of which the approach with special consideration of the edge
singularity can achieve rapid convergence [34]. In the present model, the square-root singularity at
the edge of the thin plate is incorporated by using Eq. (26). Indeed, dramatic velocities are observed
at the edge of the pair of plates as shown in Fig. 13, as expected. The near field velocities at the front
edges of the plates are generally stronger than those at the rear edges. The velocities of the fluid
at the region around (x/h, y/h) = (0, 0), where the two plates overlap one another, are relatively
weak due to the restriction effect of the plates. A similar effect is also observed on the free-surface
oscillation, as plotted in Fig. 11(b).

Distribution of the maximum principal strain ε(n)
max is plotted in Fig. 14. The ε(n)

max is found to
be relatively small at the simply supported edge, especially at the front and rear segments. For the
plate submerged at a shallower depth (plate 1), the central region of the plate closer to the rear
edge is found to be another region with small principal strain, where for some particular points the
principal strain (ε(1)

max < 0.5) is even smaller than that observed at the edge. The largest principal
strain (ε(1)

max > 3.5) occurs at the front region of plate 1. It predicts the region where the fracture and
breakup of the plate are likely to happen.

VI. CONCLUSIONS

In this paper we have considered water wave interaction with an array of submerged circular
plates. The plates can be rigid or elastic and impermeable or perforated. The main focus of the paper
has been to develop a theoretical model based on the linear potential flow theory and the Han-
kel transform to study wave scattering by an array of circular plates. The superiority over the
eigenfunction matching method is that the plates can be deployed arbitrarily without any specific
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FIG. 11. Contour of the wave amplitude above a pair of elastic perforated circular plates, simply sup-
ported edge conditions, R1,2 = x2 − x1 for y1 = y2 = 0, R/h = 2.0, d1/h = 0.1, d2/h = 0.2, χ̄ = γ̄ = 0.01,
p̄ = 1.0, β = π/2, and kh = π/2: (a) R1,2 = 0, i.e., coaxial; (b) R1,2/h = 2.0, i.e., staggered; (c) R1,2/h = 4.0;
(d) R1,2/h = 6.0, i.e., side by side.

limit, i.e., the arrangement could be coaxial, staggered, or side by side. The velocity potential
jump across each plate is expressed as a Fourier-Gegenbauer series composed of Fourier series
in the circumferential direction and Gegenbauer polynomial in the radial direction. The Gegenbauer
polynomial resolves the square-root behavior at the edge of the plate, resulting in rapid convergence.
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FIG. 12. Contour of the deflection of a pair of submerged elastic perforated circular plates, simply sup-
ported edge conditions, R1,2 = x2 − x1 for y1 = y2 = 0, R/h = 2.0, d1/h = 0.1, d2/h = 0.2, χ̄ = γ̄ = 0.01,
p̄ = 1.0, β = π/2, and kh = π/2: (a) R1,2 = 0, i.e., coaxial; (b) R1,2/h = 2.0, i.e., staggered; (c) R1,2/h = 4.0;
(d) R1,2/h = 6.0, i.e., side by side.
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FIG. 13. The instantaneous velocity vector field around a pair of submerged elastic perforated circular
plates with simply supported edge conditions at x/h = 0, ±1 and y/h = 0 for t = 0, y1 = y2 = 0, R/h = 2.0,
d1/h = 0.1, d2/h = 0.2, χ̄ = γ̄ = 0.01, p̄ = 1.0, β = π/2, kh = π/2, and R1,2/h = 2.0, i.e., the staggered
arrangement corresponding to Figs. 11(b) and 12(b).

Apart from evaluating the wave power dissipation with a straightforward method, an indirect method
is derived with the employment of the Kochin functions.

Results are tested against the numerical results [33] for wave scattering by a pair of rigid
impermeable circular plates, and good agreement is reached, as expected. Results are also compared
to the eigenfunction matching method–based semianalytical solution of a single or pair of elastic
perforated circular plates based on the work of Zheng et al. [12], again showing excellent agreement.

The validated model is then applied to a series of case studies of water wave interaction with
a pair of submerged elastic perforated circular plates with the horizontal distance between them
ranging from 0 to R1,2 = 8h, which covers all the three types of arrangements, i.e., coaxial, stag-
gered, and side by side. In the computed range of R1,2, the side-by-side arrangements are found to
dissipate more wave power than the staggered and coaxial ones. The smallest heave excitation forces
acting on the two plates with clamped edge conditions both occur for the staggered arrangement.
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FIG. 14. Distribution of the maximum principal strain of a pair of submerged elastic perforated circu-
lar plates with simply supported edge conditions, R1,2 = x2 − x1 for y1 = y2 = 0, R/h = 2.0, d1/h = 0.1,
d2/h = 0.2, χ̄ = γ̄ = 0.01, p̄ = 1.0, β = π/2 and kh = π/2, R1,2/h = 2.0, i.e., the staggered arrangement
corresponding to Figs. 11(b), 12(b), and 13.
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FIG. 15. Three integration paths across the pole.

From the point of view of free-surface pattern, a phenomenon of wave focusing near the rear of
the circular plates is observed. Meanwhile, there is a wave attenuation area surrounding the wave
focusing region and extending to the leeward side of the plates. The strongest wave attenuation
area occurs above the overlap region of the two plates for the coaxial and staggered arrangements.
For the staggered arrangement, the largest normalized principal strain of the plates (ε(1)

max > 3.5) is
observed at the front region of the plate submerged at a shallower depth.

The model proposed in this paper can be easily extended to evaluate the performance of circular
plate-shaped structures. An extension of the present work being considered by the current authors
involves developing an array of wave energy converters, which captures wave power with the
employment of either a piezoelectric PTO system or a conventional hydraulic or electrical linear
PTO system. Another direction is to extend the present model to study wave scattering of an array
of plates, some of which could float on the free surface.
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APPENDIX: CHOICE OF THE INTEGRATION PATH AT α = K

In Eq. (21) there is a pole along the integration path at α = k, and we have three selections as
illustrated in Fig. 15. Each choice corresponds to a specific scenario. Thus Eq. (21) can be rewritten
as

φn,m(rn, z) = −
∫ ∞

0
αP̄n,m(α) fn(α, z)Jm(αrn)dα + εχn,mJm(krn), (A1)

where ε = −1, 0, and 1, which correspond to the integrating paths along L1, L2, and L3, respectively,
and

χn,m = iπk sinh[k(h − dn)] cosh[k(z + h)]P̄n,m(k)

2hN0
, (A2)

with

N0 = 1

2

(
1 + sinh(2kh)

2kh

)
. (A3)
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The asymptotic forms for the Bessel functions with rn → ∞ are

Jm(αrn) ∼
√

2

αrn
cos

(
αrn − mπ

2
− π

4

)

=
√

2

αrn

{
cos

(
krn − mπ

2
− π

4

)
cos[(α − k)rn] − sin

(
krn − mπ

2
− π

4

)
sin[(α − k)rn]

}
.

(A4)

Further, we have the following two formulations:

−
∫ ∞

0

√
2

αrn
αP̄n,m(α) fn(α, z) cos[(α − k)rn]dα

=
(∫ k−ε

0
+
∫ ∞

k+ε

)√
2α

rn
P̄n,m(α) fn(α, z)(α − k)

cos[(α − k)rn]

α − k
dα

� max[
√

2αP̄n,m(α) fn(α, z)(α − k)]

√
1

rn

(∫ k−ε

0
+
∫ ∞

k+ε

)
cos[(α − k)rn]

α − k
dα

= max[
√

2αP̄n,m(α) fn(α, z)(α − k)]

√
1

rn

(∫ −εrn

−krn

+
∫ ∞

εrn

)
cos x

x
dx ∼ O

(
r−1.5

n

)
, (A5)

and

∫ ∞

0

√
2

αrn
αP̄n,m(α) fn(α, z) sin[(α − k)rn]dα

=
(∫ k+ε

k−ε

+
∫ k−ε

0
+
∫ ∞

k+ε

)√
2

αrn
αP̄n,m(α) fn(α, z)(α − k)

sin[(α − k)rn]

α − k
dα

=
√

2

krn

χn,m

iπ

∫ k+ε

k−ε

sin[(α − k)rn]

α − k
dα + O

(
r−1.5

n

)

= 2

√
2

krn

χn,m

iπ

∫ εrn

0

sin x

x
dx + O

(
r−1.5

n

) ∼ −i

√
2

krn
χn,m + O

(
r−1.5

n

)
, (A6)

because [26]

si(x) = −
∫ ∞

x

sin α

α
dα ∼ −cos x

x
, x → ∞, (A7)

and

Ci(x) = −
∫ ∞

x

cos α

α
dα ∼ sin x

x
, x → ∞. (A8)
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With the employment of Eqs. (A4)–(A6), φn,m(rn, z) with rn → ∞ can be expressed as

φn,m(rn, z) ∼ χn,m

√
2

krn

[
i sin

(
krn − mπ

2
− π

4

)
+ ε cos

(
krn − mπ

2
− π

4

)]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
√

2
krn

e−i(krn− mπ
2 − π

4 )χn,m, ε = −1, i.e., path L1

i
√

2
krn

sin
(
krn − mπ

2 − π
4

)
χn,m, ε = 0, i.e., path L2√

2
krn

ei(krn− mπ
2 − π

4 )χn,m, ε = 1, i.e., path L3

.

(A9)

Accounting for the time-harmonic oscillator e−iωt , the integration paths L1, L2, and L3 correspond
to the inward-propagating waves, standing waves, and outward-propagating waves, respectively. To
ensure that the diffracted waves are outgoing, the contour of integration is defined to bypass the pole
α = k from below, i.e., the integrating path along L3 and ε = 1.
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