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Modeling “crossing sea state” wave patterns in layered and stratified fluids

H. M. Yin , Q. Pan ,* and K. W. Chow
Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong

(Received 3 May 2022; accepted 13 December 2022; published 17 January 2023)

Free surface waves with two or more spectral peaks propagating at an oblique angle
to each other are commonly termed “crossing sea states”. Such crossing patterns have
been suggested as possible causes for rogue waves and maritime accidents. Modulation
instabilities of plane waves using coupled Schrödinger or Zakharov equations have been
adopted as theoretical models in the literature. Here, extensions to layered and stratified
fluids are conducted. For a two-layer fluid with long-wave–short-wave resonance, crossing
patterns with two short waves will enhance instability compared with the single-wave case.
Analytical treatment beyond the linear instability regime is elucidated by a cascading
mechanism. Growth of the higher-order harmonics eventually leads to finite-amplitude
pulsating modes or breathers. Breathers subsequently exhibit a Fermi-Pasta-Ulam-Tsingou
type recurrence. The time for the first formation of breathers predicted by the cascading
mechanism attains excellent agreements with the full numerical simulations. A similar
study is performed for a continuously stratified fluid with constant buoyancy frequency.
Triad resonance with two components as a pair of oblique waves also produces enhanced
instability and a preferred inclination of maximum growth rate. These crossing patterns
will likely play critical roles in many wave-propagation configurations in fluid mechanics.

DOI: 10.1103/PhysRevFluids.8.014802

I. INTRODUCTION

Oceanic waves with two or more spectral peaks propagating obliquely to each other are
commonly known as “crossing sea states”. Such wave systems have been suggested as possible
mechanisms in the generation of large-amplitude displacements and rogue waves. There are the-
oretical studies, numerical simulations, and field datasets supporting this conjecture [1–9]. We
shall focus on deterministic evolution systems as models in studying the dynamics of crossing
sea states. The objective is to investigate such crossing wave patterns in layered and continuously
stratified fluids. A brief review of existing works on “crossing patterns” for surface waves will be
an instructive starting point. One route of investigation is to employ a pair of coupled nonlinear
Schrödinger equations. Modulation instability growth rates are enhanced compared with the single
wave-packet case. New regimes of instability as measured by the angle of inclination between the
packets are possible [1,2].

Additional hydrodynamic effects can be incorporated, e.g., two carrier waves of different fre-
quencies [3] and the influence of surface tension [4]. Stationary wave groups can be described
by using just one Schrödinger equation as “hydrodynamic X waves” [5]. The Zakharov equations
can also be utilized as an alternative in the formulation, and the restriction to a “narrow-band”
assumption can be relaxed [6]. Other perspectives include treating the nonlinear interactions of the
wave components directly [7,8], and performing simulations with long-crested wave models [9]. A
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stochastic approach using the spectral properties of random waves has also been taken [10], but we
shall stay with deterministic systems in this paper.

Crossing sea states can also be studied experimentally, and the importance of statistical param-
eters is pointed out [11]. One of the few scientifically recorded rogue waves, the Draupner Wave,
has been reproduced in the laboratory under carefully controlled condition [12]. In terms of field
data and observations, these crossing sea state scenarios have been tested in numerical “hindcast”
in actual marine accidents involving ship and tanker [13,14].

The main goal here is to examine the interactions of waves propagating at an oblique direction
to each other for layered and continuously stratified fluids. Critical issues include (i) if instability
can be enhanced compared with a single oblique wave, and (ii) whether large transient motions
(breathers and rogue waves) can be triggered. Two models will be employed. The first model
is a two-layer fluid with a resonance between long and short waves. The necessary criterion is
that the group velocity of the short wave matches the phase velocity of the long wave [15,16].
The case of evolution in two horizontal spatial dimensions with just one oblique short-wave
envelope has been treated in the literature [17]. Experimentally, such resonance has been demon-
strated in a laboratory for a layered fluid [18]. In terms of the theoretical aspects, analytical
descriptions of rogue waves in both one [19,20] and two [21–26] spatial dimensions have been
given.

For stratified fluids, slowly varying wave packets modeled by Schrödinger equation and triad
resonance have been studied for many years [16,27,28]. The literature is truly vast. Instabilities
of internal gravity wave beams and parametric subharmonic resonance have received tremendous
attention [29]. We shall just mention a few recent, representative works on resonant triads. The
effects of stratification profile and the rotation of the Earth can be important [30]. Inclusion of a
linear shear in the background generates further intriguing dynamics [31].

The sequence of presentation can now be explained. Formulation of the long-short resonance for
a two-layer fluid will be given (Sec. II). Dispersion relation and nonlinear evolution equations are
derived. Modulation instability is studied. Instead of focusing on a theoretical search of solitons and
rogue waves, we discuss the “cascading mechanism” [32,33]. Higher-order harmonics exponentially
small initially grow at a faster rate than the fundamental mode. Eventually many modes attain
roughly the same magnitude at one instant in time. A breather is formed. This analytical framework
can provide a prediction on the first occurrence of breathers, an issue of significance in optics [34] as
well as fluid mechanics. The breather subsequently decays. Modulation instability resumes when the
amplitude is sufficiently small, triggering the onset of breathers for the second time. This repeating
pattern is commonly associated with the classical problem of Fermi-Pasta-Ulam-Tsingou recurrence
in physics. In the next phase, we study horizontal propagation of waves in a continuously stratified
fluid with a constant buoyancy frequency (Sec. III). Triads with a crossing pattern exist between
modes of different families. Modulation instability is studied. Preferential geometric configurations
exist, i.e., special inclination angles with maximum growth rate can occur. Finally, conclusions are
drawn (Sec. IV).

II. LONG-WAVE–SHORT-WAVE RESONANCE IN A TWO-LAYER FLUID

A. Formulation

A two-layer fluid is considered. We assume that a “nondimensionalization” procedure has been
performed. The upper- (lower-) layer fluid has depth unity (h), respectively. The density of the lower
(upper) fluid is taken as 1 (1–�), respectively (0 < � < 1). Gravity will be scaled to unity (Fig. 1).
Cartesian “z” and “x”, “y” axes will be the vertical and horizontal (streamwise, spanwise) directions.
The linear dispersion relation for small wavy disturbances is given by [17] (ω = angular frequency,
ξ = wave number)

L(ω, ξ ) ≡ ω4[cosh (ξ ) cosh (ξh) + (1 − �) sinh (ξ ) sinh (ξh)]

− ξω2[sinh (ξ ) cosh (ξh) + cosh (ξ ) sinh (ξh)] + �ξ 2 sinh (ξ ) sinh (ξh) = 0. (1)
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FIG. 1. Geometrical configuration of the two-layer fluid.

Two short-wave packets will propagate at an equal oblique angle (ψ ) with respect to (but on the
opposite side of) the x axis. The long-wave component moves along the x direction (Fig. 2). The
specification of “short” and “long” refers to a ratio of the wavelength to the fluid depth. “Long-short
resonance” then occurs when the projection of the group velocity of the short wave matches the
phase velocity of the long wave. Asymptotic scaling requires a group velocity coordinate (Figs. 1
and 2) x = ε2/3(x∗–cpt∗) and a slow time of τ = ε4/3 t∗, with x∗, y∗, t∗, ε being laboratory space
scales, time, (small) nondimensional amplitude parameter, respectively. The relation cp = cgcos(ψ )
holds, where “cp” (“cg”) are the “phase (group)” velocity [15–17]. These slow spatial and temporal
scales are faster than those for the nonlinear Schrödinger equation, which are ε(x∗–cpt∗) and ε2t∗.
Hence, long-short resonance will be observed in a faster timeframe than the four-wave interaction
scenario of the nonlinear Schrödinger equation.

The free surface displacement with two short-wave packets S1, S2, can be expanded asymptoti-
cally as (S1, S2 are functions of slow variables)

εS1 exp [i(ξ1x∗ + ξ2y∗ − ωt∗)] + εS2 exp [i(ξ1x∗ − ξ2y∗ − ωt∗)] + O(ε5/3) . . . , ξ =
√

ξ 2
1 + ξ 2

2 ,

FIG. 2. Top view of the propagation directions of the long and short waves [x, y (z) are the horizontal
(vertical) directions].
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while the long wave (or the mean flow), L, is on the order of ε4/3. A derivation from first principles
for the case of just one short wave in resonance with a long wave (i.e., S2 = 0) had been given in the
literature [17]. An examination of the perturbation calculations shows that a model for two oblique
short waves in resonance with a long wave is given by

i

[
∂S1

∂τ
+ cg sin (ψ )

∂S1

∂y

]
+ a

∂2 S1

∂x2
+ bLS1 = 0, (2a)

i

[
∂S2

∂τ
− cg sin (ψ )

∂S2

∂y

]
+ a

∂2 S2

∂x2
+ bLS2 = 0, (2b)

∂L

∂τ
= r

∂ (|S1|2 + |S2|2)

∂x
, (2c)

where x(= ε2/3[x∗–cg cos(ψ )t∗])/y(= ε4/3y∗) are the slow spatial scales in the group velocity
frame–spanwise directions, and τ = ε4/3t is slow time. “ψ” is the angle of inclination of the
short waves relative to the long wave or x axis. The interaction parameters a, b, r are tabulated in
Appendix A.

A remark on the fluid physics of Eq. (2) is in order, especially in comparison with the classical
dynamics of a weakly nonlinear, complex valued, narrow-banded wave packet (	) governed by the
nonlinear Schrödinger equation [27,35]:

i∂	/∂T2 + ∂2 	/∂w2 ± |	|2	 = 0, T2 = ε2 t∗, w = ε(x∗ − cgt
∗).

Cubic nonlinearity arises from two sources. Firstly, the fundamental frequency interacts with
the second harmonic and regenerates itself at the cubic order [O(ε3)]. Secondly, the mean flow
(		∗, or Stokes drift) will interact with the fundamental frequency (	). For long-wave–short-
wave resonance, the induced mean flow, L, is stronger asymptotically, being on the order of O(ε4/3)
instead of O(ε2). Hence, a product of the form LS1 provides the only feedback to the evolution
of the wave packet S1 in the timescale of ε4/3t∗. The “self-phase” and “cross-phase” modulations
terms like S1S1

∗, S2S2
∗ become higher-order corrections. Similarly, nonlinear term like LS2 will

only affect the phase and development of the packet S2, and will not enter in the evolution dynamics
of the packet S1.

Returning now to the analytical consideration of Eq. (2), the asymptotic scaling parameters in
the x, y directions are different, being ε2/3, ε4/3, respectively. Physically, the modulations in the
spanwise (y) direction are longer than those in the streamwise (x) direction. While having the same
asymptotic scaling parameters in both the x, y directions will be more intuitively plausible, this
balance is not feasible as the group velocities in the y direction will be different in the present
crossing sea state configuration (Fig. 2). There is then no group velocity frame where the two wave
packets can “phase lock” for nonlinear effects to develop. A similar scenario also holds for optical
physics, where solitons along optical fiber exhibit this “walk-off” effect if the group velocities differ
drastically.

There are special parameter regimes where this asymptotic balance will fail or needs to be
modified:

(i) Coefficient of the second-order dispersion in the streamwise direction becomes small or
vanishes (a ≈ 0 in Eqs. (2a), (2b)] − this case is discussed in Appendix B;

(ii) The inclination angle between the two “crossing sea pattern” wave trains becomes small
[ψ ≈ 0 in Eqs. (2a), (2b)] − this case is discussed in Appendix C.

While “long-short resonances” involving multiple short waves have been treated in the literature,
existing works either ignore the second horizontal spatial dimension or focus on the solitons
[19–26]. We go beyond the regime of modulation instability and the calculations of solitons in
the present study. We demonstrate the existence of breathers by direct numerical simulations, and
provide an analytical prediction of the first occurrence of breathers through a cascading mechanism.
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B. Modulation instability

We first study modulation instability by the standard scheme of linearized disturbance of
continuous-wave solutions:

S1 = χ1 exp [i(q1x + q2y − q3τ )], S2 = χ2 exp [i(q1x − q2y − q3τ )], L = χ3, (3)

with q1, q2 being the wave numbers in x, y directions and the angular frequency being q3 =
aq2

1−bχ3 + cgq2 sin(ψ ). The geometry dictates the relation q2 = q1 tan(ψ ). The symbols χ1, χ2,
χ3 denote the amplitudes of the short and long waves.

The modulation instability growth rate is computed by imposing disturbances:

S1 = χ1 exp [i(q1x + q2y − q3τ )]
×{1 + u11 exp [i(κ1x + κ2y + �τ )] + u12 exp [−i(κ1x + κ2y + �∗τ )]}, (4a)

S2 = χ2 exp [i(q1x − q2y − q3τ )]
×{1 + u21 exp [i(κ1x + κ2y + �τ )] + u22 exp [−i(κ1x + κ2y + �∗τ )]}, (4b)

L = χ3 + v1 exp [i(κ1x + κ2y + �τ )] + v∗
1 exp [−i(κ1x + κ2y + �∗τ )], (4c)

where κ1, κ2 denote the modulation wave numbers and � is the modulation frequency.
Linearization of u j,1, u j,2, v1, j = 1, 2 gives the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

m11 0 0 0 b

0 m22 0 0 b

0 0 m33 0 b

0 0 0 m44 b

−irκ1χ
2
1 −irκ1χ

2
1 −irκ1χ

2
2 −irκ1χ

2
2 i�

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

with

m11 = −2aq1κ1 − aκ2
1 − � − cgκ2 sin (ψ ), m22 = 2aq1κ1 − aκ2

1 + � + cgκ2 sin (ψ ), (6a)

m33 = −2aq1κ1 − aκ2
1 − � + cgκ2 sin (ψ ), m44 = 2aq1κ1 − aκ2

1 + � − cgκ2 sin (ψ ), (6b)

and the growth rate can be obtained by insisting on nonzero disturbance amplitude.
There are four degrees of freedom for this linear stability problem, namely, carrier wave number

(q1), angle of inclination of the short waves to the x axis (ψ ), and the streamwise and transverse
perturbation wave numbers (κ1, κ2).

The case of just one oblique short-wave packet, i.e., χ2 = 0, has been treated in works earlier
(left plot, Fig. 3) [17]. For the present case of crossing wave patterns, we first fix the transverse
perturbation wave number (κ2). The dominant instability occurs when the short and long waves are
nearly parallel (ψ ≈ 0). However, unlike the nonlinear Schrödinger case [1], the most unstable wave
numbers are shifted away from the long-wave regime (right plot, Fig. 3). Moreover, there is another
unstable region around 0.7 < ψ < 0.8 (radian), a “finger”-shaped domain which likely extends to
values of high wave numbers (marked by the white dotted lines in the left plot of Fig. 3). Similar to
the nonlinear Schrödinger case, we shall not elaborate further as high perturbation wave numbers
will eventually make the asymptotic scaling questionable. We concentrate on the range 0 < κ1 < 5.
The right plot of Fig. 3 delineates the case of two short waves and one long wave. The growth rate
has increased. Crossing sea state (two oblique short waves) has thus enhanced instability, perhaps
reinforcing speculation that rogue waves are more likely. Moreover, the unbounded region marked
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FIG. 3. Modulation instability growth rate with respect to κ1 and ψ (in radian) with parameters q1 = 0.2,
χ1 = 1, χ2 = 0 (left) or χ2 = 1 (right), � = 0.5, h = 1, κ2 = 2.

with the red lines becomes broader. This implies that a larger value of ψ makes the system more
unstable.

We shall also examine the instability if the transverse wave number will vary too. For fixed
values of q1(= 0.2) and ψ (= π/4), the most unstable mode actually moves further away from the
long-wave regime (to κ1 ≈ 5, κ2 ≈ 2, left plot of Fig. 4). On the other hand, if we fix both κ1 and κ2,
the modulation instability displays the largest growth rate for nearly parallel short and long waves
at a modest carrier wave number (ψ ≈ 0.06, q1 ≈ 0.6, right plot of Fig. 4).

As there are four possible input parameters (q1, ψ, κ1, κ2), we also illustrate stability plots
which show a preferential position in terms of inclination angle ψ . While there are ranges of
parameters where the growth rates exhibit a monotonic decrease as ψ increases (left plot, Fig. 5),
there are ranges of the transverse wave number κ2 for a local maximum as ψ varies (middle plot,
Fig. 5). Another very remarkable trend is the variation of the carrier wave number q1 (right plot,
Fig. 5). There can be a clear local maximum in terms of growth rate, implying a preferential crossing
sea state wave number for the optimal growth of disturbances. Finally, the growth rates for two
oblique waves (solid lines, Fig. 5) are bigger than those of a single oblique wave, with difference
varying from, say, 10% to more than 100% (dotted lines).

FIG. 4. Modulation instability growth rate with respect to κ1 and κ2, q1 = 0.2, χ1 = 1, χ2 = 1, ψ = π/4,
� = 0.3, h = 1 (left); Growth rate with respect to q1 and ψ with parameters χ1 = 1, χ2 = 1, � = 0.3, h = 1,
κ1 = 2, κ2 = 2 (right).
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FIG. 5. Maximum modulation instability growth rate vs inclination angle ψ or x-axis wave number q1;
Left: q1 = 2, χ1 = 1, χ2 = 1 (solid line, blue) or χ2 = 0 (dotted line, red), � = 0.3, h = 1, κ2 = 2, 0 � κ1 � 5;
Middle: q1 = 2, χ1 = 1, χ2 = 1 (solid line) or χ2 = 0 (dotted line), � = 0.3, h = 1, κ1 = 2, 0 � κ2 � 5; Right:
χ1 = 1, χ2 = 1 (solid line) or χ2 = 0 (dotted line), ψ = π/4, � = 0.3, h = 1, κ2 = 2, 0 � κ1 � 10.

C. Conservation laws

A few remarks on the analytical structures of the governing evolution equations [Eq. (2)] will be
instructive. It is well established that conservation laws exist for nonlinear Schrödinger families of
evolution equations [27,35]. Indeed, the governing equations themselves can usually be retrieved as
variational derivatives of these conservation laws [36]. For the case of unidirectional propagation
with only one short-wave component, i.e., S1 = S, S2 = 0, ψ = 0, i.e.,

iSτ + aSxx + bLS = 0, Lτ = r(SS∗)x,

there exist invariants of motion (with zero time derivative) of the form [27]∫
|S|2dx and

∫
Ldx.

The integrals can be taken over the entire domain or a finite interval, depending on whether
localized or periodic boundary conditions are applied. These invariants correspond roughly to the
“mass” of the system. A quadratic invariant is∫ [|Sx|2 − bL|S|2/a

]
dx,

which corresponds to the “energy” of the system.
For crossing sea states under consideration, we can derive similarly the conservation laws and

the mass of the system: (∫
|S1|2dx

)
τ

+ cg sin ψ

(∫
|S1|2dx

)
y

= 0,

(∫
|S2|2dx

)
τ

− cg sin ψ

(∫
|S2|2dx

)
y

= 0,

(∫
Ldx

)
τ

= 0.

However, we cannot find any quadratic conservation law corresponding to the energy of the
unidirectional case. It is likely that the system Eq. (2) will not possess elegant structures like
multisoliton and elastic collisions of localized modes.

D. Beyond modulation instability: Formation of breathers

Modulation instability is a linear process. While growth can in principle persist indefinitely, in
practice nonlinear effects will eventually need to be restored and will stop the amplification. This
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FIG. 6. Bright, bright, and dark breathers in x, y directions (left, right plot). Parameters are μ = 0.01,
q1 = 0.2, χ1 = 1, χ2 = 1, χ3 = 1, ψ = 0.1, � = 0.3, h = 1, κ1 = 2, κ2 = 2.

phenomenon has been studied extensively in the literature. We shall focus on just one possible
route in the present dynamical evolution, namely, a cascading mechanism [32,33]. Higher-order
harmonics exponentially small initially will grow at a faster rate than the fundamental one. Even-
tually all modes attain roughly the same order of magnitude at one instant in time. A “breather”
is then observed, if we perform the numerical simulations under periodic boundary conditions.
Subsequently the breather decays. On reaching sufficiently small amplitude, modulation instability
is triggered again and growth resumes. The cyclic pattern is repeated and is commonly associated
with the Fermi-Pasta-Ulam-Tsingou recurrence in classical physics. Dissipation or other factors
may destroy this recurrence after a few cycles. This emergence of rogue waves (for unbounded
domains) and breathers (under periodic boundary conditions) has been demonstrated [34,37]:

(i) numerically for many systems, e.g., nonlinear Schrödinger and Hirota equations, and
(ii) experimentally for optical fiber [34].
We shall study this phenomenon for both controlled and random initial conditions.

1. Controlled initial disturbance: One single Fourier mode

We first consider the case where the disturbance consists of one single Fourier mode. This can
highlight the dynamics more effectively. In a real-world situation, the disturbance may consist of
many modes or can be taken as a random noise. These situations will be studied in the future. For
the single-mode case, the effect of the angle ψ will be scrutinized for the emergence of breathers,
under the requirement of periodic boundary conditions.

We select the initial condition as

S1 = χ1 exp [i(q1x + q2y − q3τ )] + μ cos (κ1x + κ2y), (7a)

S2 = χ2 exp [i(q1x − q2y − q3τ )] + μ cos (κ1x + κ2y), (7b)

L = χ3 + μ cos (κ1x + κ2y), (7c)

where μ denotes the amplitude of the perturbation. The breathers in the short-wave components
display a “bright”-type pattern (peak displacement above a mean level), while the long wave shows
a “dark” pattern (largest displacement below a mean level) (Fig. 6). To verify our numerical simu-
lations, we compare the analytical and numerical spectra for the first- and second-order harmonics,
i.e., the growth rate of the sideband. From Eq. (4), the amplification of the first-order harmonic of
S1 component is described by

B1(τ ) = μ exp (|�I |τ ) = exp

{
|�I |

[
τ −

(
− ln (μ)

|�I |
)]}

, (8)
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where the growth rate �I denotes the imaginary part of �. Equation (8) can be rewritten as

F = ln [B1(τ )] = |�I |(τ − τ0), τ0 =
(

− ln (μ)

|�I |
)

, (9)

where τ0 represents an indicator for the “formation time of a breather,” i.e., time needed for B1 to
grow from an initial value of μ (small disturbance) to unity. With the typical parameters chosen as
illustrative example, q1 = 0.2, χ1 = 1, χ2 = 1, χ3 = 1, ψ = 0.1, � = 0.3, h = 1, κ1 = 2, κ2 = 2,
we have |�I | = 0.812, τ0 ≈ 6.

We shall also compute the spectra given by

f1,0(y, τ, κ1, κ2) = 1

L1

∫ L1/2

−L1/2
S1(x, y, τ )dx, (10a)

f1, j (y, τ, κ1, κ2) = 1

L1

∫ L1/2

−L1/2
S1(x, y, τ ) exp (i jκ1x)dx, j = 1, 2, 3 . . . , (10b)

where f1,0 denotes the “pump” (a term borrowed from optics) of S1 component, and f1, j represents
the jth sideband.

(i) The cascading mechanism is clearly illustrated. The pump, first, second, and third harmonic
all “intersect” or attain the roughly same magnitude at one particular instant in time (τ0 ≈ 6).
That time value also agrees with the first formation of breather from a full numerical
simulation (top plot, Fig. 7).

(ii) A remark on the contrast with other classical systems is in order. For the present case, the
pump reaches the minimum value at τ ≈ τ0. The sidebands also attain their peaks, but at
a slightly different time instant (top plot, Fig. 7). For the extensively studied case of the
nonlinear Schrödinger equation, the pump and the first sideband reach the turning points
almost simultaneously at the formation time of the breather [32]. We can suggest possible
explanations for this time lag. There is movement of energy among the two short waves and
the long wave (middle plot, Fig. 7). There is also a transfer of energy between the x and y
directions (bottom plot, Fig. 7).

Before we proceed to other types of wave profiles, a remark on the classification of breathers
based on geometric appearance is in order. We again borrow terminology from optics. Bright (dark)
pulses refer to a peak (valley) with maximum displacement above (below) the mean level. A “four-
petal” mode refers to a configuration with two peaks and two valleys symmetrically placed with a
saddle point in the center.

The geometric configurations of the breathers in the short-wave components also vary with the
magnitude of the modulation instability. We have a sequence of pattern changes from

(i) bright (dark) breathers for S1, S2 (L) in the x direction (Fig. 6) to
(ii) bright (bright) breathers for S1, S2 (L) in the x (y) directions (Fig. 8), and finally to
(iii) four-petal (bright) breathers for S1, S2 (L) in the x (y) directions (Figs. 9, 10).

2. Symmetry breaking

As the two short waves are placed symmetrically with respect to the long wave, identical initial
conditions for the short waves will lead to the same modulus for these two wave envelopes. However,
asymmetric initial conditions for the two short waves can lead to a symmetry-breaking phenomenon,
i.e., different subsequent temporal evolution for S1, S2. As example, we choose a cosine perturbation
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FIG. 7. Numerical and analytical spectra (top); Comparison between the x-axis maxima of |S1| and |L|
(middle); Comparison between x- and y-axis maxima of |L| (bottom), with μ = 0.01, q1 = 0.2, χ1 = 1, χ2 = 1,
χ3 = 1, ψ = 0.1, � = 0.3, h = 1, κ1 = 2, κ2 = 2.

for one and a sine function for the other:

S1 = χ1 exp [i(q1x + q2y − q3τ )] + μ1 cos (κ1x + κ2y) (11a)

S2 = χ2 exp [i(q1x − q2y − q3τ )] + μ2 sin (κ1x + κ2y) (11b)

L = χ3 + μ3 cos (κ1x + κ2y), (11c)

where μ1, μ2, μ3 denote the amplitude of the perturbation. This asymmetry triggers a scenario of
S1 (solid curve in Fig. 11) and S2 (dashed curve) being distinct from each other. While the S1, S2

envelopes maintain the same qualitative shapes, the magnitude can differ by about 5% at the first
formation time of the breather at time τ ≈ 10.28.
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FIG. 8. Bright breather on x-τ (top) and y-τ (bottom) planes. Parameters are μ = 0.01, q1 = 0.2, χ1 = 1,
χ2 = 1, χ3 = 1, ψ = 0.8, � = 0.3, h = 1, κ1 = 2, κ2 = 2.

FIG. 9. Four-petal, four-petal, and bright breather on x-τ plane. Parameters are μ = 0.01, q1 = 2, χ1 = 1,
χ2 = 1, χ3 = 1, ψ = 0.78, � = 0.3, h = 1, κ1 = 2, κ2 = 2.

FIG. 10. Comparison between the x-axis maxima of |S1| and |L| (left); Comparison between x- and y-axis
maxima of |L| (right). Parameters are μ = 0.01, q1 = 2, χ1 = 1, χ2 = 1, χ3 = 1, ψ = 0.78, � = 0.3, h = 1,
κ1 = 2, κ2 = 2.
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FIG. 11. Symmetry breaking: Contour plot of |S1| (left); Comparison between |S1| and |S2| in x axis (middle
plot) or y axis (right plot) with τ ≈ 10.28. Parameters are q1 = 0.2, χ1 = 1, χ2 = 1, χ3 = 1, ψ = π/4, � =
0.3, h = 1, κ1 = 2, κ2 = 0.5, μ1 = 0.1, μ2 = 0.1, μ3 = 0.01.

III. STRATIFIED FLUIDS WITH A CONSTANT BUOYANCY FREQUENCY

A. Formulation

Next we turn to crossing patterns which may occur for continuously stratified fluids. For
simplicity, we employ a resonant triad in fluids with a constant buoyancy frequency as an illustrative
example. Two components of the triad are equally inclined to the third one. The governing equations
of an inviscid, incompressible, stratified fluid in usual notations are

ux + vy + wz = 0, ρt + uρx + vρy + wρz = 0,

ρ(ut + uux + vuy + wuz ) = − px, ρ(vt + uvx + vvy + wvz ) = −py,

ρ(wt + uwx + vwy + wwz ) = − pz − ρg, (12)

with x, y (z) denoting the horizontal (vertical) directions.
We first establish the linear theory for small-amplitude waves. The nonlinear dynamics of the

system is then studied via the standard multiple-scale perturbation theory. The velocity component
u is expanded as

u = ε
∑

m

u(m)
1 exp (iθm) + ε2

∑
m

u(m)
2 exp (iθm), θm = kmx + βmy − ωmt, m = 1, 2, 3, (13)

where m represents the three participating components of the triad, ε is the small parameter defined
via the ratio of wave amplitude to channel depth. The other velocity components, density and
pressure, will be expanded in similar schemes. In particular, the vertical velocity is written as
w

(m)
1 = Am(X,Y, T )φm(z), with Am(X,Y, T ) being the slowly varying wave envelope in the slow

spatial (temporal) variables X = εx, Y = εy, T = εt , and φm(z) being the eigenfunction. With the
Boussinesq approximation, the vertical structure of a (small-amplitude) linear wave is dictated by
the eigenvalue problem for the angular frequency ωm:

(φm)zz − (
k2

m + β2
m

)
φm + k2

m + β2
m

ω2
m

N2φm = 0, (14)

where N2 = − g
ρ0

d ρ̄(z)
dz is the square of buoyancy frequency for the background density profile ρ̄(z),

with the constant ρ0 being the characteristic density under the Boussinesq approximation. We now
assume a nondimensional coordinate system such that gravity is unity. We consider horizontal wave
propagation in a rigid-wall channel of depth H. The boundary conditions are φm(0) = φm(H ) = 0.
The corresponding eigenfunction of Eq. (14) is

φm(z) = sin
(nπz

H

)
(15)
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FIG. 12. Top view of three wave vectors in a stratified fluid (z axis is the vertical direction).

with integer n being the mode number. The dispersion relation then takes the form of

ω2
m =

(
k2

m + β2
m

)
N2

k2
m + β2

m + n2π2

H2

. (16)

We now search for modes which will satisfy the triad resonance condition
⇀

k1 +
⇀

k2 =
⇀

k3, ω1 + ω2 = ω3. (17)

Component 3 is termed as “parent wave,” while components 1, 2 are termed as “daughter wave.”
The terminology in naming parent and daughter is not uniform in the literature. To achieve a crossing
sea state, the wave numbers of two daughter waves are taken as oblique ones equally inclined to

a mean position, i.e.,
⇀

k1 = (k, β ),
⇀

k2 = (k,−β ). The wave number of the parent wave is
⇀

k3 =
(2k, 0). The two daughter wave-number vectors are inclined at an angle of θ on either side of the
the x axis, with tan(θ ) = β

k (Fig. 12).
When the two daughter waves are from the same mode family n1, and the parent wave is from

mode family n3, the triad resonance condition is written as√√√√ (k2 + β2)N2

k2 + β2 + n2
1 π2

H2

+
√√√√ (k2 + β2)N2

k2 + β2 + n2
1 π2

H2

=
√√√√ (2k)2 N2

(2k)2 + n2
3 π2

H2

. (18)

Straightforward calculation then gives

3k4 +
(

3β2 + n2
3π

2

H2
− n2

1π
2

H2

)
k2 + n2

3π
2

H2
β2 = 0, (19)

with the solution

k2 =
−
(

3β2 + n2
3π

2

H2 − n2
1π

2

H2

)
±
√(

3β2 + n2
3π

2

H2 − n2
1π

2

H2

)2
− 12 n2

3π
2

H2 β2

6
. (20)

To guarantee the existence of triad resonance, Eq. (20) must possess real roots. More precisely,

3β2 + n2
3π

2

H2 − n2
1π

2

H2 < 0 and (3β2 + n2
3π

2

H2 − n2
1π

2

H2 )
2−12 n2

3π
2

H2 β2 > 0 must be satisfied. Accordingly,
the constraints on β will be

−
√

3π

3H
(n1 − n3) < β <

√
3π

3H
(n1 − n3), (21)
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FIG. 13. All possible triads with the parameters N2 = 1, H = 1, n1 = 3, n3 = 1.

and hence we need n1 > n3 to ensure a real β. In other words, the mode number of the daughter
wave should be bigger than that of the parent wave.

The allowed combinations of k and β for buoyancy frequency N2 = 1, channel depth H = 1,
parent wave (daughter wave) mode number n3 = 1(n1 = 3) are illustrated (Fig. 13). The modulus of
the wave vector varies with the inclination angle θ (dotted curve in Fig. 13). The maximum value of
β is 3.63, and the corresponding horizontal wave number is k = 2.56 with θ = 54.8◦. There is only
one set of triad for one fixed angle of inclination. This angle can range from 0◦ at the right end of
the curve (Fig. 13) to about 70.5◦ near the origin. We should also remark on the resonance condition
for the vertical wave number. The channel with rigid walls prevents vertical wave propagation and
enforces standing-wave patterns as defined by Eq. (15). The choice of parent (n3 = 1) and daughter
(n1 = 3) modes will not trigger any resonance in the vertical direction.

B. Nonlinear analysis

The nonlinear development is investigated by multiple-scale perturbation method. The scheme
is used widely in the literature and thus the presentation here will be brief. The first-order vertical
velocity structure is given by w

(m)
1 = Am(X,Y, T )φm(z), with the corresponding expressions for the

velocity components and density given as

u(m)
1 = ikm

k2
m + β2

m

Am
dφm

dz
, v

(m)
1 = iβm

k2
m + β2

m

Am
dφm

dz
, ρ

(m)
1 = − i

ωm

d ρ̄(z)

dz
Amφm. (22)

In a perturbation calculation of the equations of motion, the fluid quantities, e.g., velocities and
density, are expanded in ascending powers of ε (a small nondimensional parameter measuring the
amplitude):

u = ε
{
u(1)

1 exp [i(kx + βy − ω1t )] + u(2)
1 exp [i(kx − βy − ω2t )]

+ u(3)
1 exp [i(2kx − ω3t )]

}+ ε2 U2 + . . . ,

where the leading-order terms [O(ε)] contain three distinct waves. The general form of
the second-order term U2 will contain quadratic product of the exponential phase factors
exp[i(km + kn)x + i(βm + βn)y–(ωm + ωn)t], where km, kn; βm, βn can be ±k, ±β, respectively.
The perturbation calculations now require a linear differential operator of the higher-order terms
to be solved with products of the lower-order terms as “forcing.” Normally this process should
be straightforward. Exceptions arise if the resonance condition [Eq. (19)] is satisfied. As example,
in deriving Eq. (23a), a term A3A2

∗ will generate an exponential phase factor identical to that of
A1. This resonance condition will contribute to the dominant terms in the second order or O(ε2)
calculations of the asymptotic expansion. The Fredholm alternative theorem must now be applied
as the solvability conditions. Such derivations of the resonant three-wave interactions for inviscid
hydrodynamic waves and even for viscous modes in a boundary layer have been documented in
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FIG. 14. Variation of the interaction coefficients with the y component of wave number β, with parameters
H = 1, N2 = 1. The two daughter waves are of the same mode number n1 = 3, while the parent wave is from
mode n2 = 1.

monographs and works in the literature [27]. The evolution equations are then derived as

∂A1

∂T
+ V1x

∂A1

∂X
+ V1y

∂A1

∂Y
= r1A3A∗

2

∂A2

∂T
+ V2x

∂A2

∂X
+ V2y

∂A2

∂Y
= r2A3A∗

1 (23)

∂A3

∂T
+ V3x

∂A3

∂X
+ V3y

∂A3

∂Y
= r3A1A2,

where Vmx, Vmy are the x, y components of the group velocity of the three members of the triad. The
interaction coefficients rm are determined by lengthy formulas given in Appendix D. The interaction
coefficients vary with the parameters of the fluid flow configuration, e.g., the spanwise component
of the wave number β, the buoyancy frequency N , the channel depth H , as illustrated in Figs. 14–16.

The interaction coefficients can be demonstrated mathematically to be independent of the span-
wise wave number β and channel depth H. Take r3 as an example. Employing the formulation
given in Appendix D, the nonlinear terms defined through the symbols H (1,2)

1 , H (1,2)
2 , H (1,2)

3 can be
simplified. In the numerator, the integral involving those terms will be zero from the mathematical
identity (l , m, n being integers):

∫ H

0
cos

lπz

H
sin

mπz

H
sin

nπz

H
dz.

FIG. 15. Variation of the interaction coefficients with the buoyancy frequency N, with parameters H = 1,
β = 1. The two daughter waves are from mode n1 = 3, while the parent wave is from mode n3 = 1.
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FIG. 16. Variation of the interaction coefficients with the channel depth H, with parameters N2 = 1, β = 1.
The two daughter waves are from the same mode number n1 = 3, while the parent wave is from mode n3 = 1.

Thus, the expression of r3 can be further simplified:

r3 =
∫ H

0

g
(

k2
3+β2

3

)
ρ̄ω3

H (1,2)
0 φ3dz

∫ H
0 − 2iN2

(
k2

3+β2
3

)
ω2

3
φ2

3dz

= − gω3

2iN2

∫ H
0

H (1,2)
0 φ3

ρ̄
dz∫ H

0 φ2
3dz

.

We are working with a crossing pattern with three wave numbers of the triad as
⇀

k1 = (k, β ),
⇀

k2 = (k,−β ),
⇀

k3 = (2k, 0), and hence r3 can be further reduced as

r3 = − gω3

2iN2

∫ H
0

H (1,2)
0 φ3

ρ̄
dz∫ H

0 φ2
3dz

= ω3N2

gω2

∫ H
0 sin2

( n1πz
H

)
sin

( n2πz
H

)
dz∫ H

0 sin2
( n2πz

H

)
dz

.

Since ω3
ω2

= 2 holds for all values of β, the interaction coefficients will thus be independent of
the spanwise wave number when the mode number (n1, n2), buoyancy frequency (N ), and channel
depth (H ) are all fixed.

Evolution system Eq. (23) also permits exact solution for special circumstances, e.g., propagation
in one spatial dimension only, i.e., ∂/∂Y ≡ 0. Research efforts in the 1980s and 1990s had revealed
exact localized solutions (“solitons”) and periodic solutions in terms of the Jacobi elliptic functions
[27,38]. More recent works demonstrate that Eq. (23) also possesses algebraic rogue-wave modes
[39,40]. Even the lowest-order rogue wave may exhibit a quadratic or fourth-order polynomial in
the denominator of the exact solutions, which will display one or two peak(s), respectively, in the
wave profile.

C. Modulation instability

The plane-wave solution of Eq. (23) is

A1 = a1 exp [i(α1X + γ1Y − λ1T )], A2 = a2 exp [i(α1X − γ1Y − λ2T )],

A3 = ia3 exp [i(2α1X − (λ1 + λ2)T )]. (24)

The dispersion relation is

λ1 = V1X α1 + V1Y γ1 − r1a3a2

a1
, λ2 = V2X α1 − V2Y γ1 − r2a3a1

a2
, λ1 + λ2 = 2α1V3X + r3a1a2

a3
.

(25)
On imposing small perturbations a′

1, a′
2, a′

3 in the plane-wave solution [Eq. (24)],

A1 = a1
(
1 + a′

1
)

exp [i(α1X + γ1Y − λ1T )],

A2 = a2
(
1 + a′

2
)

exp [i(α1X − γ1Y − λ2T )], (26)

A3 = ia3
(
1 + a′

3
)

exp [i(2α1X − (λ1 + λ2)T )],
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FIG. 17. Variation of group velocities of three wave components vs inclination angle θ (in °).

we formulate the small disturbances in the following form:

a′
m = Pm exp [i(KX + BY − GT )] + iQm exp [i(KX + BY − GT )], m = 1, 2, 3, (27)

with K, B, and G being the X-, Y-wave numbers and angular frequency of the perturbations. Standard
linearization will yield the requirement (superscript T = transpose)

Mtriad[P1 P2 P3 Q1 Q2 Q3]T = 0. (28)

The instability condition is a zero determinant for coefficient matrix Mtriad (Appendix D).
For the parameters n1 = 3, n2 = 1, H = 1, and N2 = 1, the interaction coefficients are given

by r1 = r2 = −0.1637, r3 = 1.3096. The constraint on the inclination angle θ is from 0◦ to 70.5◦.
In Eq. (23), the group velocities are defined as Vmx = ∂ωm

∂kmx
, Vmy = ∂ωm

∂kmy
. The curves of V1x,V2x,V3x

intersect at θ = 54.8◦ (Fig. 17), and the corresponding spanwise wave number of the two daughter
waves reaches the maximum value (Fig. 13). For 0◦ < θ < 54.8◦, the x component of the group
velocity of daughter waves is greater than that of the parent wave. Conversely, we have V1x,V2x <

V3x for the range 54.8◦ < θ < 70.5◦. Concidentally, the modulation instability reaches a minimum
value at this inclination angle of θ = 54.8◦.

Turning to the more important question of maximum growth rate, there are two input parameters,
the streamwise and spanwise perturbation wave numbers [K and B of Eq. (27)]. We plot the angle
of inclination against K (Fig. 18) and B (Fig. 19). In both cases, the maximum growth rate occurs in
the neighborhood of θ = 70.5◦ or the maximum angle of inclination possible.

FIG. 18. Contour plot of the modulation instability growth rate: Angle of inclination θ vs the x-direction
perturbation wave number K, with a1 = a2 = a3 = 1, r1 = r2 = −0.1637, r3 = 1.3096 and y-direction pertur-
bation wave number B = 1.
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FIG. 19. Contour plot of the modulation instability growth rate: Angle of inclination θ versus the
y-direction perturbation wave number B, with a1 = a2 = a3 = 1, r1 = r2 = −0.1637, r3 = 1.3096 and x-
direction perturbation wave number K = 2.

Verification of these modulation instability calculations can be achieved by looking at a special
case, namely, the “pump-wave” approximation regime. For simplicity, we take one-dimensional
propagation, i.e., ∂/∂Y = 0 in Eq. (23). If we have |A1|, |A2| � 1 and |A3| = O(1), |A3| is ap-
proximately constant (= |A30|, say), since its derivative is quadratically small. Since ∂2 A1/∂T 2 =
r1r2|A30|2 A1, the growth rate of a disturbance is then (r1r2)1/2|A30|. Such pump-wave or “pump-
beam” (a term borrowed from optics) approximation has been used extensively in the literature over
the years [38,41].

In the present case, the agreement between our modulation instability calculations and values
obtained from the pump-wave approximation is excellent. As an illustrative example, we choose
a1 = a2 = 0.1 and a3 = 1, i.e., two “small” daughter waves and a “large” parent wave. The maxi-
mum growth rate from modulation instability analysis is 0.161 (Fig. 20). If we take the pump-wave
approach, the growth rate with the same parameters will give |a3(r1r2)1/2| or 0.1637. The error is
about 1.6%. Even better accuracy is achieved for smaller a1, a2, say, 0.02, with errors of only 0.1%.

D. Breathers

Similar to the two-layer situation, breathers will be formed beyond the stage of modulation
instability. To highlight the emergence of these pulsating modes, a scaling transformation is first
performed:

A1 = �1√|r2||r3|
, A2 = �2√|r1||r3|

, A3 = �3√|r1||r2|
, T = t, x = kxX, y = kyY, (29)

FIG. 20. Modulation instability with parameters a1 = a2 = 0.1 and a3 = 1, θ = 70◦, r1 = r2 = –0.1637,
r3 = 1.3096.
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FIG. 21. Emergence of breathers for the triad resonance, with amplitude of one component |�1| as exam-
ple. Parameters are a1 = a2 = 1, α1 = 2, γ1 = 1, V1x = 0.0709, V1y = 0.0125, V2x = 0.0709, V2y = −0.0125,
V3x = 0.0084, V3y = 0, kx = 28, ky = 8, μ = 0.01, K = 2, B = 2.

which will convert Eq. (23) to the normalized form (r1 < 0, r2 < 0, r3 > 0):

∂�1

∂t
+ kxV1x

∂�1

∂x
+ kyV1y

∂�1

∂y
= − �3�

∗
2 ,

∂�2

∂t
+ kxV2x

∂�2

∂x
+ kyV2y

∂�2

∂y
= − �3�

∗
1 , (30)

∂�3

∂t
+ kxV3x

∂�3

∂x
+ kyV3y

∂�3

∂y
=�1�2,

with kx and ky being arbitrary constants. Initial condition is chosen as

�1 = a1 exp [i(α1x + γ1y − λ1t )] + μ cos (Kx + By), (31a)

�2 = a2 exp [i(α1x − γ1y − λ2t )] + μ cos (Kx + By), (31b)

�3 = ia3 exp [i(2α1x − (λ1 + λ2)t )] + μ cos (Kx + By), (31c)

where μ is the perturbation intensity. A numerical simulation with θ = 10◦ confirms the occurrence
of breathers (Fig. 21). Symmetry breaking and cascading mechanism are expected to follow similar
lines of development as outlined in previous sections.

IV. CONCLUSIONS

Crossing sea patterns with two (or more) surface waves propagating at an oblique angle with
each other have been suggested as possible causes of large displacements and marine accidents. We
conjecture that such crossing patterns should also be dominant factors for other hydrodynamic wave
configurations. In this work, we have tested this hypothesis for the case of layered and continuously
stratified fluids under long-short and triad resonances, respectively. Instability is enhanced compared
with the situation of a single wave packet. There is one (or more) preferred inclination angle(s)
which permit(s) a maximum amplification rate. This property of enhanced modulation instability is
commonly associated with the occurrence of rogue waves.

We go beyond the calculation of instability. We perform numerical simulations in the nonlinear
regime and demonstrate the onset of breathers under periodic boundary conditions in a finite
domain. Furthermore, analytical calculations leading to a cascading mechanism are demonstrated.
Higher-order harmonics exponentially small initially grow faster than the fundamental mode.
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Eventually all modes attain roughly the same magnitude at one instant of time. This prediction on
the formation time of breathers attains excellent agreement with that from the full numerical simu-
lations. In terms of subsequent evolution, Fermi-Pasta-Ulam-Tsingou–type recurrence is observed.
The geometric configurations can change from a “bright-pulse” wave profile to a four-petal type.

We believe that similar crossing wave patterns will also enhance instability in other fluid-flow
situations. One example is an improved layered-fluid model where the density is continuous and
only piecewise differentiable, instead of exhibiting an abrupt jump like our present two-layer fluid
[42]. This three-layer fluid will provide a better approximation for an oceanic pycnocline. Another
example is the “AB” system arising in geophysical flows [43,44]. The mathematical structure of
the AB equations is remarkably similar to that of the long-short case. The physics of crossing
wave patterns of these situations remains to be worked out. Further exciting results are awaiting
researchers.
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APPENDIX A

The interaction coefficients in Eq. (2) for the case of one single short wave are given in earlier
works [17] “cp” (“cg”)= “phase” (“group”) velocity of the long (short) wave. A brief outline of the
derivation can be given. Typically any fluid physics entity (density, velocity, or surface displacement,
denoted by G) can be expanded as (θ = phase of the fast oscillation)

G = εG1eiθ + ε5/3G2,1eiθ + ε7/3G3,1eiθ + cc + ε4/3G0 + . . . . . . c.c. = complex conjugate.

Substitution in the equations of motion will give the linear dispersion relation and group velocity
from consideration of G1 and G2,1 respectively. For calculations on G3,1, a Fredholm alternative
theorem must be applied to the inhomogeneous terms of the differential operator, leading to the
evolution equation. The quantity G0 represents the mean-flow effect. For the interfacial displace-
ment, this will correspond to the long-wave component. Further details of such calculations can be
found in Ref. [17] or the monographs on hydrodynamic waves [27,35].

The dynamics for the case of two short-wave packets can be worked out in a similar manner. The
coefficients for the nonlinear evolution equations in the text are given by

ξ1

ξ
cg = cg cos (ψ ) = cp, c4

p − (1 + h)c2
p + �h = 0, (A1)

a = 1

2

[
dcg

dξ
cos (ψ )2 + cg

ξ
sin (ψ )2

]
, (A2)

b = ω cos (ψ )

[
�p cg

cp

(
1 − ξ 2

ω4

)
(σ2 − σ1) + 2�ξ

ωcp

(
ξσ1

ω2 − 1
)]

[
4(1 + (1 − �)σ1σ2) − 2ξ

ω2 (σ1 + σ2)
]

+ω cos (ψ )
cp

c2
p − 1

[
− 2ξ

ω
(1 − �)(1 + σ1σ2) − 2�ξ 2

ω3 σ1
(
1 − ξ

ω2 σ2
)]

[
4(1 + (1 − �)σ1σ2) − 2ξ

ω2 (σ1 + σ2)
] (A3)

r = h

2
[
(1 + h)c2

p − 2�h
]
[

(1 − �)cp

(
ω2 − ξ 2

ω2

)
− 2(1 − �)

αc2
p

ω

]

− h

2
[
(1 + h)c2

p − 2�h
]{2ξ1ω

ξ
c2

p(1 − �)

[
cosh (ξ ) − ξ

ω2
sinh (ξ )

][
sinh (ξ ) − ξ

ω2
cosh (ξ )

]}
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FIG. 22. Second derivative of the dispersion relation [related to the coefficient a in Eqs. (2a), 2(b)] vs the
spanwise wave number m(H = 1, k = 1, � = 0.1).

+ h

2
[
(1 + h)c2

p − 2�h
][ω2 cp

(
1 − c2

p

)( 1

σ 2
2

− 1

)
+ 2αω

ξσ2

(
� − c2

p

)][
cosh (ξ ) − ξ

ω2
sinh (ξ )

]2

(A4)

cg = dω

dξ
, σ1 = tanh (ξ ), σ2 = tanh (ξh), (A5)

where ξ1 denotes wave number in x direction, and ξ can be evaluated with Eq. (A1).

APPENDIX B

With the scaling of x = ε2/3[x∗–cg cos(ψ )t∗] and y = ε4/3 y∗,

(i) ∂2/∂y2[∼ O(ε8/3)] and ∂2/∂x∂y[∼ O(ε2)] will normally be much smaller than ∂2/∂x2;

(ii) values from the mixed partial derivatives (∂2/∂x∂y) of functions will vanish for crossing
sea state patterns: Summing mixed partial derivatives of functions using a pair of wave
numbers, ξ+ = ξ1i + ξ2j, ξ− = ξ1i − ξ2j, tan ψ = ξ2/ξ1, will give zero due to symmetry of
the configuration.

It will be instructive to examine the value of the coefficient “a” in Eqs. (2a) and (2b), coefficient
of the second spatial derivative in the streamwise direction (Fig. 22, plotted for typical values of
depth and density ratios). In general, there is a special value of wave number where the second
derivative in x will vanish. Under such circumstances, an initial attempt is to adopt a different
asymptotic scaling in the evolution of the short wave,

x = ε2/3[x∗ − cg cos(ψ )t∗], y = ε2 y∗, τ = ε2 t∗.

The corresponding governing equations might be

i(∂S1/∂τ + cg sin ψ ∂S1/∂y) + a3∂
3 S1/∂x3 + b3LS1 = 0,

i(∂S2/∂τ − cg sin ψ ∂S2/∂y) + a3∂
3 S2/∂x3 + b3LS2 = 0.

However, such a scaling will fail as the long-wave component cannot achieve a correct balance.
The precise dynamics remains to be worked out in the future. One special case which permits
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analytical advances is the regime of a small angle of inclination between the two crossing wave
packets, to be described in Appendix C.

APPENDIX C

If the inclination angle between the wave trains in the crossing sea pattern is small, we can
achieve a different scenario of asymptotic balance. We can also drastically reduce the walk-off
effect, as the difference in group velocities in the y direction is then small. More precisely, if ψ =
ε2/3 �0, where the angle �0 is of order 1, we can maintain the same asymptotic scaling for both x
and y. We assume (again, ∗ = order 1 laboratory coordinates)

x = ε2/3[x∗ − cg cos(ψ )t∗], Y1 = ε2/3y∗, τ = ε4/3t∗,

and the governing equations are

i(∂S1/∂τ + cg sin �0 ∂S1/∂Y1) + χ1∂
2 S1/∂x2 + χ2∂

2 S1/∂x∂Y1 + χ3∂
2 S1/∂Y 2

1 + b3LS1 = 0,

i(∂S2/∂τ − cg sin �0 ∂S2/∂Y1) + χ1∂
2 S2/∂x2 + χ2∂

2 S2/∂x∂Y1 + χ3∂
2 S2/∂Y 2

1 + b3LS2 = 0,

∂L/∂τ = r3x[∂ (S1S∗
1 )/∂x + ∂ (S2S∗

2 )/∂x] + r3y[∂ (S1S∗
1 )/∂Y1 + ∂ (S2S∗

2 )/∂Y1].

For crossing sea state pattern (Fig. 2), χ2 will vanish due to symmetry and χ3 will be calculated
by the second derivative of the dispersion relation with respect to the spanwise wave number:

χ1 = [(∂2ω/∂k2)|(k,m) + (∂2ω/∂k2)|(k, − m)]/2,

χ3 = [(∂2ω/∂m2)|(k,m) + (∂2ω/∂m2)|(k,− m)]/2,

χ2 = 0.

The new coefficients for nonlinear interaction, r3x, r3y, b3 must be obtained from a new perturba-
tion calculation.

Under this asymptotic regime, vanishing of the second derivative in the streamwise direction
(χ1 = 0) will not present special difficulty. The second derivative in the transverse direction will
provide a dispersive operator. The precise nonlinear dynamics, e.g., existence of solitons, will be
examined in the future.

This analysis is based purely on asymptotic scaling. There have been many studies earlier on
obliquely interacting wave trains and reflection of solitary waves from rigid walls [45]. Novel
features like “Mach stem” may appear. A detailed analysis on the fluid physics when the separation
angle is small should be undertaken in the future.

APPENDIX D

The interaction coefficients of the triad equations can be calculated through a standard multiple-
scale perturbation method, but the precise formulation typically involves lengthy expressions [27].
Take coefficient r3 as an example:

r3 = r3n

r3d
,

r3n =
∫ H

0

[
g
(
k2

3 + β2
3

)
ρ̄ω3

H (1,2)
0 − k3

∂H (1,2)
1

∂z
− β3

∂H (1,2)
2

∂z
+ i

(
k2

3 + β2
3

)
H (1,2)

3

]
φ3dz,

r3d =
∫ H

0
−2iN2

(
k2

3 + β2
3

)
ω2

3

φ2
3dz. (D1)
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The nonlinearities are

H (1,2)
0 = u(1)

[
ik2ρ

(2)
]+ u(2)

[
ik1ρ

(1)
]+ v(1)

[
iβ2ρ

(2)
]+ v(2)

[
iβ1ρ

(1)
]+ w(1)ρ (2)

z + w(2)ρ (1)
z ,

H (1,2)
1 = u(1)[ik2u(2)]+ u(2)[ik1u(1)]+ v(1)[iβ2u(2)]+ v(2)[iβ1u(1)]+ w(1)u(2)

z + w(2)u(1)
z ,

H (1,2)
2 = u(1)

[
ik2v

(2)
]+ u(2)

[
ik1v

(1)
]+ v(1)

[
iβ2v

(2)
]+ v(2)

[
iβ1v

(1)
]+ w(1)v(2)

z + w(2)v(1)
z ,

H (1,2)
3 = u(1)

[
ik2w

(2)
]+ u(2)

[
ik1w

(1)
]+ v(1)

[
iβ2w

(2)
]+ v(2)

[
iβ1w

(1)
]+ w(1)w(2)

z + w(2)w(1)
z .

The coefficient matrix Mtriad as defined in the text [Eq. (28)] is (superscript T = transpose)

Mtriad = [
MT

1 MT
2 MT

3 MT
4 MT

5 MT
6

]
, (D2)

M1 = [ia1(−G + V1X K + V1Y B) r1a2a3 0 −r2a1a3 −r3a1a2 0],

M2 = [0 −r1a2a3 ia2(−G + V2X K + V2Y B) r2a1a3 −r3a1a2 0],

M3 = [0 −r1a2a3 0 −r2a1a3 −r3a1a2 ia3(−G + V3X K + V3Y B)],

M4 = [−r1a2a3 ia1(−G + V1X K + V1Y B) −r2a1a3 0 0 −r3a1a2],

M5 = [−r1a2a3 0 −r2a1a3 iρ2(−G + V2X K + V2Y B) 0 −r3a1a2],

M6 = [r1a2a3 0 r2a1a3 0 iρ3(G − V3X K − V3Y B) r3a1a2].
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