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In recent years, deep learning approaches have shown much promise in modeling
complex systems in the physical sciences. A major challenge in deep learning of partial
differential equations is enforcing physical constraints and boundary conditions. In this
work, we propose a general framework to directly embed the notion of an incompressible
fluid into convolutional neural networks, and apply this to coarse-graining of turbulent
flow. These physics-embedded neural networks leverage interpretable strategies from nu-
merical methods and computational fluid dynamics to enforce physical laws and boundary
conditions by taking advantage the mathematical properties of the underlying equations.
We demonstrate results on three-dimensional fully developed turbulence, showing that this
technique drastically improves local conservation of mass, without sacrificing performance
according to several other metrics characterizing the fluid flow.
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I. INTRODUCTION

Several practical applications of computational fluid dynamics in engineering, earth, and aero-
nautical sciences are extremely high-dimensional and expensive to compute. Despite the increasing
power of modern computing infrastructure, cost-effective and rapid prediction of fluid flow is
still out of reach, and several research efforts have focused on developing cheaper alternatives
to high-fidelity numerical simulations. Among these, data-driven approaches have become quite
attractive in recent years, as they aim to leverage existing high-fidelity datasets to extract insight
into the statistics and mathematical characteristics of the flow. This insight enables us to develop
reduced-order models (ROMs), which are coarse-grained, low-dimensional approximations of their
high-fidelity counterparts.

From the standpoint of ROM and machine learning, the size of the data has direct ramifications
for engineering problems. For instance, the computer memory available for ROM in engineering
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applications (such as feedback control) is minimal, making three-dimensional (3D) turbulence
challenging to capture in these models. As a result, explicit data compression or coarse-graining
has been a long-sought-after goal in data-driven ROMs. However, purely data-driven algorithms,
such as neural networks, are devoid of physics and do not guarantee primary constraints such
as mass conservation, leading to unphysical ROMs despite reducing data size [1]. Furthermore,
boundary conditions (BCs) are not rigorously imposed, despite being a core component of modern
computational science. Finally, a significant challenge is the construction of nonintrusive ROMs
[2–4]. ROMs have to be nonintrusive when the source or numerical method used in the training
dataset is unavailable or challenging to replicate, such as in the case of experimental data or
simulation from commercial solvers [5]. This scenario is common in many applications, and the
problem is more challenging since we have to rely only on the physics of the problem, not
the numerical/experimental methodology. Therefore, a deep-learning nonintrusive ROM should
constrain physics with minimal knowledge of the process that generated the training data. This work
aims to accomplish nonintrusive learning of high-dimensional data in the context of 3D turbulence
while simultaneously enforcing hard physics constraints and BCs rigorously.

A. Deep learning for high dimensional turbulence

A revolution is underway in computational physics with the promise of deep learning approaches
in modeling unresolved physics, accurate coarse-graining and ROMs. This is particularly attractive
for fluid flow [6–13] and, in particular, turbulence, where the curse of dimensionality coupled with
the complexity of the Navier-Stokes equations have hindered much progress over the decades.
While recent successes of neural networks (NNs) for turbulence ROMs have gained popularity, we
maintain that the curse of dimensionality is as relevant as ever, even in the context of deep learning
for physics. There are two key issues with learning high dimensional physics datasets: (1) The
computational and memory limitations in employing enough training parameters (2) The black-box
nature of NNs that do not guarantee physical laws such as constitutive equations and BCs. Thus,
computational challenges combined with the physics-agnostic nature of NNs can significantly affect
our confidence in the learned high-dimensional physics models.

A simple but important example is the continuity equation, which has several applications in
physics. For incompressible flows, this equation becomes the divergence-free condition for the
velocity field V :

∇ · V = 0 (1)

Consider a standard NN, which is physics-agnostic, trained to model V . In the vast space of
NN parameter sets, only a small subset of models will produce flows that are consistent with
the continuity equation in Eq (1). Some efforts to model turbulence have taken this approach
[6–8], using deep learning as a black box tool. However, this ignores the continuity equation as
a fundamental physical law. A recent approach to incorporate it relies on penalizing the network in
the loss function [9–13] to encourage solutions to obey Eq. (1) as well as known BC’s. We call this
approach a soft constraint for physics-informed modeling. The loss function encourages the network
to find models which are near the physical law, while the overall network remains a black-box. Test
examples beyond the scope of training may violate continuity or BC’s; as the NN model architecture
itself is still blind to the physics. Additionally, the weight of the soft constraint in the loss function
becomes an additional hyperparameter that must be tuned during model selection [14–16]. While
soft constraints have been popular due to their flexibility, they provide no guarantees due to lack
of an inductive bias [17–20] in the model; i.e., a model can be expected to perform better if it has
built-in knowledge concerning the admissible solution space of a problem. In other words, a model
which structurally enforces physical laws is by definition more robust because it offers guarantees on
network behavior for data both inside and outside of the training space. Recent work by Wang [12]
demonstrated the importance of inductive bias in fluid mechanics machine learning, however, Eqn 1
is still implemented as a soft constraint. While useful, utilizing a soft constraint only approximately
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realizes these hard physical laws through the difficult-to-interpret non-convex optimization used for
training.

Owing to the demonstrated successes of these works for 1D/2D problems, we direct attention to
model the full nonlinearity and complexity of turbulence, which is fundamentally a 3D phenomenon
[21] There are significant computational bottlenecks in extending NNs to 3D turbulence datasets for
practical applications. This is an acute problem for approaches like Physics Informed Neural Net-
works (PINNs) [9,22], which need expensive sampling of millions of points for nonchaotic 1D/2D
equations. While there has been recent work in adapting NN architectures to learn 3D turbulence,
they sacrifice explicit physical constraints [1,23–25] for computational efficiency, raising reliability
concerns. A notable work by Kim et al. [26] constrains conservation of mass in 3D fluids via soft
constraints for computer animation applications.

B. Embedding physical operators in convolutional neural networks

Convolutional neural networks (CNNs) are well positioned to ingest high dimensional datasets
because they utilize parameter sharing [27], where a filtering kernel is convolved across the domain
to learn the correlation structure in the data. Early layers in the CNN are sensitive to short-range
correlations, and later layers build on this to learn long-range correlation as well. Because the same
parameters are reused (shared) in convolutions across the spatial domain, CNNs need orders of
magnitude fewer parameters than fully connected NNs. This is paramount for 2D and 3D flow
problems, where the amount of data is exponential in the spatial dimension of the problem, and
a fully connected approach thus requires exponentially more parameters. The reader is referred
to Refs. [28], [27], and [29] for details of CNNs. Recent physics-informed machine learning has
brought into focus the importance of the structure of CNN kernels, as explored in partial differential
equations (PDE)-Net [30] and related works [31–33].

A growing application of CNNs for turbulence is the convolutional autoencoder (CAE) [34] for
coarse-graining of high fidelity turbulence [1,23,35,36]. CAEs provide for compression of high-
dimensional data like turbulence by using an encoder to map the input space into a latent space
of lower dimensionality by interleaving coarse-graining with learnable convolution layers, and a
decoder which learns to map this latent space back to the original data in a similar fashion. As this
compression forms a natural basis for the construction of ROMs [1,11,37–39] of turbulent flow and
other physical systems, this is a useful domain for research into enforcing hard physical constraints.

The divergence operator ∇· represents local mass balance, and is a crucial operator in any model
of fluid flow. A core aspect of embedding the divergence-free condition as a hard constraint in NN
architectures is an accurate and unambiguous definition of an operator which is also amenable to
the backpropagation algorithm used during training. Backpropagation through the physics operators
ensures that the network is not “blind” and has intimate knowledge of the constraints through which
it must make predictions. To this end, there are three major challenges: First, constructing spatial
derivative operators (i.e. ∇×, ∇·, ∇2·, etc.) that are compatible with the backpropagation algorithm
for NN training. Second, the velocity fields are subject to BCs. Third, the realization of divergence
and BC constraints ought to be directly imposed, rather than utilizing soft constraints; We adopt the
philosophy of most PDE solvers, where conservation laws and BC constraints are strictly enforced
at all times.

In this work, we attempt to address these challenges with a stronger approach which constrains
the NN architecture to explore only the physically admissible solution space. We also require that
such networks be designed for high-dimensional, fully turbulent flows for practical applicability.
The primary motivation is that hard constraints can provide physics guarantees [40], since the
NNs are no longer physics-agnostic and the architecture ensures the BCs are prescribed accurately.
However, hard constraints are more challenging to implement; the case of embedding ∇ · V = 0
requires the NN to understand operators such as curl and divergence, while concurrently enforcing
BCs. In this work, we report first attempts on a general methodology to address these challenges
in a CNN framework with strong inductive bias, as applied to 3D turbulence. Our approach does
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FIG. 1. (a) Unconstrained convolutional autoencoder with latent space mapping between V and coarse
grained Ṽ , where encoder learns a parsimonious representation of the velocity, and the decoder learns a
mapping to reconstruct Ṽ from the latent space. (Slice of U-velocity component for illustration). (b) Physics
embedded convolutional autoencoder with hard divergence-free constraints for coarse grained Ṽ . The conven-
tional decoder from (a) is replaced with the physics-embedded decoder, which learns an intermediate potential
Ã that obeys the constraint ∇×Ã which outputs a divergence-free coarse grained velocity field Ṽ through
nontrainable finite difference layers.

not modify the number of trainable parameters. Furthermore, it adds explainability by interpreting
time-tested strategies from numerical methods and computational fluid dynamics (CFD) as specific
instances of CNN kernels, and so can thus be used to design network architectures that include
derivative expressions. This offers a way to improve model performance which is completely
separate from hyperparameter search. In the next section, we describe our approach for embedding
incompressibility into a CNN. In the third section, we describe our experiments and results in
implementing this strategy. Finally, we offer conclusions and directions for future work.

II. PHYSICS EMBEDDED CNN ARCHITECTURE WITH HARD CONSTRAINTS

To demonstrate the aforementioned physics embeddings, we choose a CAE for coarse-graining
of high fidelity turbulence. Figure 1(a) shows the standard, physics-agnostic CAE architecture, with
the 3D velocity field training dataset as input V . The CAE encoder learns a compressed latent
space, significantly smaller than V . The velocity field is reconstructed from the latent space by
a CAE decoder that is learned simultaneously with the encoder. However, this data compression
is accompanied by some loss of information, and therefore the reconstructed V is denoted as
Ṽ . Therefore we can consider Ṽ as a coarse-grained approximation of V . Since the CAE is
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unconstrained, the challenge is to embed physical constraints to ensure that the CAE only learns
a latent space such that ∇ · Ṽ = 0.

Since embedding Eq. (1) requires computing derivatives on a field that resides on a discretized
solution mesh, it is pragmatic to adopt strategies from well-known finite difference (FD)/finite
volume (FV) numerical methods. These FD/FV algebraic discretizations can be analytically derived
from Taylor series expansions around a fixed point [41,42]. These discretizations can further be
expressed in matrix form called stencils. Upon examination, it is apparent that the CNN kernels are
structurally equivalent to the FV stencils [30–32]. This simple, but powerful connection allows us
to embed these stencils as CNN layers with fixed kernel weights to compute spatial derivatives. For
details on this approach, see Appendix B. We employ a technique to enforce BCs in the CNN using
the idea of ghost cells [43–45] from CFD, as outlined in Appendix C. This allows us to implement
BCs to a given order of discretization accuracy. Both these techniques involve a close fusion of
concepts from neural networks, numerical methods and CFD.

Having implemented spatial derivatives, we model the flow using a potential formulation [46,47]
based on the Helmholtz decomposition of the velocity field, with vector potential A and scalar
potential ψ :

V = ∇×A + ∇ψ. (2)

The divergence constraint annihilates all terms associated with the vector potential A, giving rise
to a Laplace constraint only on the scalar potential: ∇2ψ = 0. For steady boundary conditions, the
scalar potential corresponds to a steady background flow, which can be subtracted from the data so
that the learning problem is restricted to the turbulent fluctuations. In particular, for data analyzed
here, the boundary conditions are periodic, so ψ = 0 is a valid solution. The key idea is as follows:
Instead of only predicting a velocity field, we choose to make an intermediate prediction for vector
potential Ã, while framing the final network prediction Ṽ in the target velocity space via the curl,
implemented as a numerical stencil:

V = ∇×A. (3)

Then, predictions Ṽ will automatically obey Eq. (1) up to the accuracy of the stencil.
Figure 1(b) shows the autoencoder with a physics-embedded CNN AutoEncoder (PhyCAE)

where this strategy is implemented, in addition to those in Appendix B. The CAE encoder learns
a latent space from V , from which the decoder constructs Ã. While the flow dataset itself does not
directly contain A (and A itself can only be defined up to gauge transformations), the network can
implicitly learn Ã; we constrain the learning by requiring that the curl of the decoder prediction Ã be
equal to Ṽ . The physics is thus embedded in the modified decoder, which consists of a CNN layer
enforcing BCs with ghost cells (Appendix C), followed by another CNN layer which computes all
the spatial derivatives necessary to define a curl operator (Appendix B). The last CNN layer uses
these to compute the curl operator on the Ã field. Therefore, all layers after the decoder CNN in the
PhyCAE are nontrainable and fully explainable, as they merely construct Eq. (3) with numerical
methods.

III. RESULTS

A. Training

To illustrate the performance of the physics embedded autoencoders, we train two cases: The
standard CAE with zero padding in Fig. 1(a), and the PhyCAE in Fig. 1(b). The dataset is high-
fidelity direct numerical simulation (DNS) of a 3D homogeneous isotropic turbulence (HIT), which
is described in Appendix A and Ref. [48].

The CAE architecture has three layer encoder-decoder with an ADAM optimizer and L2 loss,
with six filters at each level, and was evaluated for turbulence by Mohan [1]. We intentionally use
fewer filters to avoid over-training and illustrate the effects of physics input in the NNs. In this work,
we define the compression ratio as the ratio between the size of a raw flow snapshot tensor to its
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compressed version, as it focuses on reduction in the amount bytes needed to store and compute
the snapshot. In the present work, the size of a single flow snapshot with three flow variables is
(3×1283) and that of the latent space (6×153), as it contains six latent channels. The compression
ratio is therefore ≈310. The PhyCAE architecture comprises of the CAE layers above with the
same hyperparameters, but with the addition of the physics embedded layers in the decoder. We
emphasize again that these layers add no extra learnable parameters to the network. Since the dataset
is statistically stationary with a total of 12 eddy turnover times, we train both networks on 0–0.75
eddy times. The test dataset is from 4–4.75 eddy times, so that we test if the network has learned
the statistical behavior of the fluid correlations at future time. We also note that all calculations here
are performed with single precision, hence the relative numerical precision is ≈10−7.

B. Effect of hard constraints on training

In this section, we investigate how stringently CAE and PhyCAE adhere to the ∇ · V constraint,
and explore the characteristics of PhyCAE from the perspective of accuracy, computational effi-
ciency, training speed, and reliability.

NNs make predictions every epoch, and if the training loss converges to a minima with (typically
several thousand) more epochs, we expect the predictions to have “learned” some physical laws.
One of the key expectations from any physics-embedded hard constraint, is that the network must
be cognizant of these physical laws from the very first epoch and the predictions never deviate far
from the imposed constraints, i.e., the stay on the physical subspace. In other words, while improved
optimization methods (adaptive regularization, optimizers, optimal hyperparameters, minimization
tricks etc.) can assist the physics embeddings in finding minima with the desired physical laws,
the hard constraints should ensure that the network predictions stay in the physically constrained
subspace by design and not solely by learning. As a result, we should expect PhyCAE to find minima
faster and be more consistent with the physics than the CAE. To quantify how well the constraint
is realized, we measure the total absolute divergence (TAD) across each example averaged over
the examples, given by the formula

∑ |∇ · Ṽ |. A model which perfectly enforces incompressible
flow minimizes this quantity. However, the TAD is not zero even in the PhyCAE due to the second-
order discretization stencils used to apply derivative operators and the limitations of single-precision
floating-point arithmetic.

Figure 2 shows the TAD on the training data as a function of the network training time for both the
CAE and PhyCAE. For CAE, we see a spike in the divergence as high as ∼10−1, and approaches
to a final value of ∼10−2, although, in principle, it might increase with additional training. The
TAD for the PhyCAE starts at ∼10−2 and trends downward during training, even oscillating near
numerical zero, and typically between 10−4 and 10−5. We remark that much like any PDE solver,
the discretization errors affect the accuracy of the hard constraint, such as the second-order scheme
used in this work. However, such deviations are to be expected when constructing nonintrusive
ROMs, since we are (a) using a ROM numerical method that is not the same as that used to
generate the training data; this in turn affects (b) stochastic optimization solvers in neural network
backpropagation, which is a nondeterministic process affected by several numerical factors that are
hard to control.

Despite these intrinsic challenges, we see that the robustness of our approach shines through:
The best-case for the CAE divergence is comparable to the worst-case for the PhyCAE, and after
training, the PhyCAE performs more than two orders of magnitude better with respect to TAD.
We have likewise computed the TAD after training on the test dataset after training. In this case,
the TAD for the PhyCAE is ∼10−5, while CAE is ∼10−2, further emphasizing the generality and
robustness of our physics embeddings. The physics-aware inductive bias of the PhyCAE allows it
to perform far better than the CAE, while training with identical hyperparameters and number of
trainable parameters. Due to the interpretable hard-constraint approach of the PhyCAE, this could
be further decreased by improving the spatial discretization method in Eq. (B1) from a second- to a
higher-order scheme. This extension is straightforward since the CNN allows for kernels of larger
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FIG. 2. Variation of total absolute divergence
∑ |∇ · Ṽ | with training epochs for CAE vs PhyCAE. Final

divergence: ≈10−5 for PhyCAE vs ≈10−2 for CAE, showing that the constraint is always strongly enforced in
comparison, despite oscillations arising from different numerical schemes being used as a nonintrusive ROM.

sizes produced by higher order numerical schemes. This would require a corresponding change in
the number of ghost cells, which can be implemented as outlined in Eq. (C1) in Appendix C.

C. Turbulence diagnostics

We now briefly describe three important tests of 3D turbulence which are used as diagnostic
metrics for the accuracy of the flow predicted by the trained model. While these metrics do not
explicitly address the divergence of the velocity, they target specific properties of turbulence and are
important to provide confidence in the accuracy of the predicted model.

1. Kinetic energy spectra

A main statement of the Kolmogorov theory of turbulence is that asymptotically in the inertial
range, i.e. at L � r � η, where L is the largest (so-called energy-containing) scale of turbu-
lence and η is the smallest (so-called Kolmogorov or viscous) scale of turbulence, the statistics
of motion have a universal form that is uniquely dependent on the kinetic energy dissipation,
ε = ν〈(∇ (i)v( j) )(∇ (i)v( j) )〉/2, and does not depend on viscosity, ν. Self-similarity hypothesis results
in the expectation that within the inertial range, the energy spectrum, E (k), scales as k−5/3.

Figure 3 shows the energy spectrum of the coarse grained Ṽ predicted by the CAE and PhyCAE
compared with the ground truth value from the DNS test data V . The results show excellent large
scale (low wave numbers) and inertial range accuracy by the PhyCAE, very similar to that of
CAE. Most of the discrepancies are localized at the small scales (high wave numbers), due to the
information loss that occurs during coarse graining. However, since most practical applications of
ROMs focus only on large/inertial scales, we find these discrepancies acceptable.

2. PDF of longitudinal velocity gradient

Small scale turbulence is highly intermittent and departs from self-similar scalings. One measure
of this departure can be seen in the PDF of the longitudinal velocity gradient, which presents
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FIG. 3. Energy spectra of Ṽ for CAE and PhyCAE vs DNS V . The spectra show the effect of coarse-
graining is restricted to highest wave numbers and some regions of the inertial range. PhyCAE obtains
comparable statistics with the added benefit of the hard constraint being strictly enforced, without additional
parameters to train.

non-Gaussian tails and nonzero skewness [49]. The skewness is related to the 3D structure of
turbulence, which is further discussed in the next section.

The longitudinal velocity gradient PDFs are computed for both Ṽ and V in Fig. 4. Once again,
we see excellent matches between predicted PhyCAE and DNS velocities, with minor discrepancies
in the tails, which are likely a manifestation of the small scale errors. CAE is quite close to PhyCAE
in observed accuracy, with the latter being slightly more accurate in the tails.

FIG. 4. PDFs of longitudinal velocity gradient of Ṽ for CAE and PhyCAE vs DNS V . The effect of coarse-
graining is seen at the tails of the PDF, where discrepancies indicate small-scale feature loss.
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FIG. 5. Q − R plane PDFs of Ṽ for CAE and PhyCAE vs DNS V at different scales, where r is measured
in grid spaces, such that r = 1 corresponds to viscous scales, r = 8 corresponds to inertial range, and r = 32
corresponds to large scales. The axes are normalized by Qw = Wi j Wi j/2, where W is the rotation tensor.
Coarse-graining causes loss in accuracy primarily in the small scales (r = 1) and some inertial scales (r = 8),
with only minor deviations in the large scales (r = 32), which are important for ROMs.

3. Statistics of coarse-grained velocity gradient: Q − R plane

To further address the 3D turbulence structure, we utilize isolines of probability in the Q − R
plane, which expresses intimate features of the turbulent flow topology, having a nontrivial shape
documented in literature [50,51]. Here, Q and R are the second and third invariants of the anisotropic
part of the filtered, at scale r, velocity gradient tensor. Different parts of the Q − R plane are
associated with different structures of the flow. Thus, lower right corner (negative Q and R),
which has higher probability than other quadrants, corresponds to a pancake type of structure (two
expanding directions, one contracting) with the direction of rotation (vorticity) aligned with the
second eigenvector of the stress. This tear-drop shape of the probability isoline becomes more
prominent with decrease of the observation scale r. Here, we study the Q − R plane filtered at
different scales r, to examine large (r = 32), inertial (r = 8), and small scale (r = 1) behaviors
[52]. This allows us to selectively analyze the accuracy of our predictions at different scales, since
we are interested in modeling primarily the large and inertial ranges.

The Q − R plane PDFs in Fig. 5 show a clear picture of the PhyCAE predictive capability. Both
the networks show that large scale flow topology is captured extremely well, with inertial scales
having minor, but acceptable, discrepancies. The small scale error is quite significant, as seen from
the energy spectra and longitudinal velocity PDF. Overall, the Q − R plane shows that we are indeed
capable of predicting coarse-grained 3D fields that have excellent large scale resolution. We note
that the unconstrained CAE also produces results of comparable accuracy, but lacks in conserving
continuity. On the other hand, PhyCAE shows excellent predictive capability while also closely
adhering to the divergence-free criterion as outlined in the previous section.

4. Baseline comparison for coarse-graining accuracy

In order to provide context for the coarse-graining capabilities provided by PhyCAE, we cre-
ate a baseline comparison with filtering performed with Fourier bases. With the PhyCAE, each
compressed flow snapshot, i.e., the latent space, has 153×6 = 20250 floating point values, and
it encapsulates all three velocity components. For Fourier based filtering, we employ a sharp
cutoff for wave numbers above the cutoff value. Neural network autoencoders with nonlinear
activation functions are considered as a nonlinear modal decomposition techniques compared to
linear methods [53] like Fourier decomposition. Therefore, a direct comparison with the Fourier
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basis is not feasible. Instead, we study this from the lens of coarse graining, where the size (in
number of floating point values) of the coarse-grained snapshot matrix relative to the accuracy is the
metric of interest. We compare the two methods by keeping the size of the latent space consistent.
Considering the three velocity components as independent, a cut-off wave number kcutoff = 11.5,
would lead to a total of 20469 floating point values to store the three components in the complex
space (where a complex number was counted as two floating point values), which is close to the
size of autoencoder latent space. While this comparison would make sense in general, only two
velocities are independent in the particular case of the zero velocity divergence constraint. Thus,
the third component can be found from the divergence condition. Accounting for this, a cut-off
wave number kcutoff = 13.2 would lead to a total of 20646 floating point values storing the two
independent velocity components in the complex space.

We now compare the L2 reconstruction error between the Fourier filtering and PhyCAE recon-
structions, since we use it as a training metric in the neural networks. The Fourier filtering has
an L2 error of 701.688, while the PhyCAE neural network has an error of 1476.886. The lower
L2 error in the Fourier filtering is a characteristic of how compression is accomplished in each
approach. The Fourier modes perfectly capture the large scales by retaining the corresponding
basis, while completely ignoring the other scales beyond the cutoff wave number. In contrast, the
PhyCAE approach aims to model as many scales as possible, with higher errors in the smaller
scales than the larger scales, as seen in Fig. 5. Therefore, the Fourier approach accomplishes
compression by explicit truncation of the original flow, while the PhyCAE approach accomplishes
the same by explicit modeling of the flow. Since L2 error is an averaged quantity over all scales
of the flow, even minor discrepancies in the larger scales can lead to massive fluctuations in L2
error. Therefore, PhyCAE does not outperform Fourier filtering in compression, concerning L2
reconstruction, despite showing excellent statistical properties.

IV. CONCLUSION

Our work introduces and demonstrates the effectiveness of a simple and interpretable method
of enforcing incompressibility of a fluid flow within CNNs. Since this is enforced as a structural
aspect of the CNN, the method is a hard constraint rather than a soft constraint, and so yields no
additional hyperparameters to tune. Another useful consequence is that the constraint is enforced
through the training procedure. This is accomplished by utilizing static, nontrainable layers for
spatial derivatives, whose kernels are stencils that can be derived using the standard discretizations.
Likewise, we implement boundary conditions by modifying the padding operation of a CNN. Using
these tools, we train the decoder to output a vector potential that describes perturbations around
a background flow. We demonstrate this scheme for a CAE architecture; however, it is generally
applicable to any task where a CNN should output an incompressible velocity field, for example,
flow forecasting [1,37] or generative modeling of flows. A comparison with Fourier-based filtering
shows that the PhyCAE approach is able to retain more scales in the turbulence spectra at the same
degree of compression, despite minor discrepancies.

Another interesting feature of this scheme is the gauge ambiguity of the vector potential Ã.
In traditional vector potential approaches to PDEs, a gauge invariance needs to be resolved by
fixing a gauge in which computations take place. Our approach did not specify a gauge, and future
work might explore the effective gauge conditions learned by the model and characterize them in
relation to the classical body of work on gauge fixing. Problems involving incompressible fluids are
common, but further work could seek to extend the context of this strategy. Thus, future work could
focus on addressing more general constraints of the form

L(V ) = 0, (4)

for more general differential operators L and physical fields V , by enforcing them as CNN layers;
work on soft constraints has identified this as a general target for physics-informed machine learning
[9,22], and we concur with this direction.
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While this work is directly applicable to uniform and structured meshes, some limitations exist
in its current form. For instance, the CNN architecture implicitly requires a structured mesh, which
may not be possible in several complex geometries, such as flight vehicles. A valuable avenue of
research would be an extension to unstructured meshes, possibly exploiting recent developments in
GraphCNNs [54]. Furthermore, additional research is needed to make CNNs efficiently compress
3D datasets, since dimensionality reduction with CNN kernels requires loading the entire dataset
into GPU memory. This can be computationally prohibitive for large CFD simulations of even a
few terabytes in size, which is still comparatively small in the era of exascale computing. Another
direction of future work is to explore the accuracy and stability of this approach with different
numerical schemes used as hard constraint embeddings, especially in the context of nonintrusive
ROMs. In conclusion, although much work needs to be done, research addressing such problems
with hard constraints, i.e., inductive bias through structural aspects of model architecture, would
make ROMs of many physical systems more robust, interpretable, and practically applicable.
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APPENDIX A: 3D HOMOGENEOUS ISOTROPIC TURBULENCE DATASET

The dataset consists of a 3D DNS of homogeneous, isotropic turbulence, in a box of size 1283.
We denote this dataset as HIT for the remainder of this work. We provide a brief overview of the
simulation and its physics in this section, and a detailed discussion can be found in Daniel et al.
[48]. The ScalarHIT dataset is obtained using the incompressible version of the CFDNS [48,55]
code, which uses a classical pseudospectral algorithm. We solve the incompressible Navier-Stokes
equations:

∂xivi = 0, ∂tvi + v j∂x j vi = − 1

ρ
∂xi p + ν�vi + f v

i ,

where f v is a low band forcing, restricted to small wave numbers k < 1.5 [1]. The 1283 pseudospec-
tral simulations are dealiased using a combination of phase-shifting and truncation to achieve a
maximum resolved wave number of kmax = √

2/3×128 ∼ 60.
For illustration, Fig. 6(a) shows the turbulent kinetic energy at a time instant. Figure 6(b) shows

the variation in the Taylor-microscale-based Reynolds number with the eddy turnover time, which
characterizes the large turbulence scales. Finally, the variances in all 3 velocity components are
shown in Fig. 6(c). Based on the sampling rate, each eddy turnover time τ consists of 33 snapshots.
The training dataset uses 22 snapshots ≈0 − 0.75τ and test dataset also consists of 22 snapshots in
≈4 − 4.75τ .

APPENDIX B: SPATIAL DERIVATIVE COMPUTATION IN CNN KERNELS

In deep learning, CNNs are used to learn the spatial features with a (symmetric or nonsymmetric)
kernel f as a convolution operation throughout the domain of interest g at a layer n. The nth CNN
layer thus computes a field y as yn = f ∗ gn−1, where gn−1 is the domain computed by the (n − 1)th

layer. Therefore, yn = gn at layer n + 1, such that yn+1 = f ∗ gn. The kernel translation is also
an important hyperparameter, called striding, that can be performed for every point in the mesh
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FIG. 6. Representative statistics of the DNS dataset of homogeneous isotropic turbulence.

(1-step), or by skipping over a two or more points every time the kernel is translated (2-step and
higher), as shown in the illustration in Fig. 7. Subsequently, these kernel weights are iteratively
learned by backpropagation and gradient-based optimization.

Since we intend to compute derivatives on a field that resides on a discretized solution mesh, it is
pragmatic to adopt strategies from well-known FD/FV numerical methods to compute derivatives,
which can be analytically derived from Taylor series expansions around a fixed point [41,42]. These
forward, backward, upwind or central difference discrete numerical approximations of a continuous
derivative can be approximated to a desired mth order [56,57] of accuracy. Consider a variable
of interest φ that resides on a 3D mesh. A standard second-order central difference FV scheme
for partial derivatives is shown in Eq. (B1). Its coefficients can be expressed as a matrix, called a
numerical stencil as shown in Eq. (B2):

∂φ

∂x
= φ(x + δx) − φ(x − δx)

2δx
+ O(δx)2,

∂φ

∂y
= φ(y + δy) − φ(y − δy)

2δy
+ O(δy)2,

∂φ

∂z
= φ(z + δz) − φ(z − δz)

2δz
+ O(δz)2, (B1)

∂φ

∂x
=

⎡
⎢⎢⎣

− 1
2δx 0 1

2δx

− 1
2δx 0 1

2δx

− 1
2δx 0 1

2δx

⎤
⎥⎥⎦,

∂φ

∂y
=

⎡
⎢⎢⎣

− 1
2δy − 1

2δy − 1
2δy

0 0 0
1

2δy
1

2δy
1

2δy

⎤
⎥⎥⎦,

∂φ

∂z
=

⎡
⎢⎢⎣

− 1
2δz 0 1

2δz

− 1
2δz 0 1

2δz

− 1
2δz 0 1

2δz

⎤
⎥⎥⎦. (B2)

Upon examination, it is apparent that the CNN kernels are structurally equivalent to the FV
stencils [30–32]. Therefore, FV stencils are essentially CNN kernels with fixed, nontrainable
weights that compute a derivative to the desired order of accuracy. Furthermore, the CNN kernel and
numerical stencil operations are mathematically identical in the context of 1-step striding. Similar
to the CNN convolution operator above, domain g is the numerical mesh and f is the FV kernel. The
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FIG. 7. Illustration of 1-step and 2-step striding mechanisms in convolutional neural networks for dimen-
sionality reduction.

derivative y′ is then computed as y′ = f ∗ g, at any layer n. Subsequent layers can be constructed
to compute higher-order derivatives with appropriate stencil kernels.

This simple, but powerful, connection allows us to embed these stencils as CNN layers with
fixed kernel weights to compute our derivatives of interest. Furthermore, we can explicitly define
the order of accuracy in derivative computation by leveraging higher order numerical schemes. This
allows us to trade off compute costs and accuracy while simultaneously being interpretable.

APPENDIX C: ENFORCING PERIODIC BOUNDARY CONDITIONS

Boundary conditions are a critical physics component that any computational approach, tradi-
tional PDE solvers or deep learning based, must rigorously impose in order to preserve the physics
of the flow. The HIT flow has spatially periodic BCs in all three directions. In order to perform
realistic physics embedding in CNNs, we present here a method to enforce BCs in CNNs, to a
desired order of discretization accuracy.

Figure 8 shows the CNN kernel defined by a numerical stencil as described in Appendix B.
The (3×3×3) kernel performs convolution on the mesh, with 1-step striding. As a result, the
outermost column/row of cells in the domain are forfeited. Due to the loss of boundary cells, the
kernel is not able to accurately compute the derivative with the BCs, which can cause significant
inaccuracies in the solution. In the machine learning community, a popular fix is to recover the
original dimensionality by “padding” these dimensions by a constant valued scalar (typically zero)
or replicate with the value of adjacent cells.

However, this is a well-known issue in the CFD community, and is more pronounced
when using higher-order numerical stencils [43] with kernel sizes of (5×5×5) or (7×7×7).
A standard approach to resolve this discrepancy while simultaneously satisfying the BCs, is
by employing ghost cells [43–45]. Ghost cells are “virtual” cells which are defined at mesh
boundaries, so that a derivative of the desired order consistent with the numerical stencil can
be computed.

In the solution domain illustrated in Fig. 8, x, y, and z have dimensions of N + 1, M+1 and L+1,
respectively, which reduce to N , M and L due to the (3×3×3) convolution kernel. Therefore, ith

direction now ranges from 0 → M, the jth from 0 → N and kth direction from 0 → L. The kth

direction in the 3D domain is not shown here for convenience. Periodic BCs imply the flow leaving
the domain in one direction enter the domain in the opposite direction. Ghost cells (N + 1) are now

014604-13



MOHAN, LUBBERS, CHERTKOV, AND LIVESCU

FIG. 8. CNN kernel in the physics embedded decoder in Fig. 1(b) computing numerical derivative in
interior nodes (also shown periodic BCs prescribed as ghost cells).

created to mimic this behavior at the boundaries, shown as the yellow cells in Fig. 8. The solution
at (N + 1) is set as φi,N+1,k = φi,0,k , which exactly satisfies the periodic BC constraint. Likewise
in the ith axis, φM+1, j,k = φ0, j,k and φi, j,L+1 = φi, j,0 are the BCs in the kth axis.

Figure 9 shows the net effect of the ghost cells, with the CNN kernel computing derivatives with
BCs. It is important to note that the ghost cells are flexible for higher-order numerical schemes as
well, by adding more cells to account for the larger kernel. For instance, in the jth axis we can add

FIG. 9. CNN kernel in the physics embedded decoder in Fig. 1(b) computing numerical derivative at ghost
cells boundary nodes with periodic BCs.
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three columns of ghost cells with periodic BCs such that

φi,N+1,k = φi,0,k,

φi,N+2,k = φi,1,k,

φi,N+3,k = φi,2,k. (C1)

We can thus specify BCs via ghost cells by developing a custom padding based on the desired order
of numerical accuracy.
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