
PHYSICAL REVIEW FLUIDS 8, 014603 (2023)

Simple model for the bottleneck effect in isotropic turbulence
based on Kolmogorov’s hypotheses
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We propose a simple model for the bottleneck effect in homogeneous isotropic turbu-
lence as a bump in the compensated energy spectrum, based on Kolmogorov’s hypotheses
(of 1941 and 1962). The model of the longitudinal structure function consists of two
quadratic functions representing large- and small-scale motions. The model parameters
are derived from the asymptotic behavior of the structure function. The Kolmogorov and
intermittency constants are fitted from direct numerical simulation (DNS) and experimental
data. From the model, the height of the spectral bump in the compensated spectrum has a
power-law R−0.0426

λ , and the bump location scaled by the Kolmogorov scale is 0.153, which
generally agree with various DNS results at moderate and large Reynolds numbers Rλ.
Moreover, we derive that the incorporation of the intermittency exponent into the model
leads to the decaying power law of the bump height with Rλ.
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I. INTRODUCTION

Kolmogorov [1] proposed several important hypotheses for homogeneous isotropic turbulence
(HIT) in 1941 (referred to as K41). They imply that the three-dimensional energy spectrum in HIT
can be expressed as

E (k) = Cε2/3k−5/3, (1)

in the inertial range, where k denotes the wave number, ε the mean dissipation rate, and C is a
constant. Later experiments and simulations found that E (k) presents a small hump as an accumu-
lation of energy, between inertial and dissipation ranges. This “bottleneck effect” was reported by
Falkovich and Ryzhenkova [2], and it is then observed in the direct numerical simulation (DNS)
[3]. In terms of the compensated spectrum �(kη) = ε−2/3k5/3E (k), where η = (ν3/ε)1/4 denotes
the Kolmogorov length scale with the kinematic viscosity ν, the bottleneck effect manifests itself as
a spectral bump in �(kη) between the inertial and the dissipation ranges.
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The bottleneck effect has been quantified in DNS and experiments. Dobler et al. [4] pointed
out that the bottleneck effect in the three-dimensional energy spectra is more pronounced than in
one-dimensional ones. The spectral bump in E (k) can be characterized by its peak location kb and
peak height �b ≡ �(kbη).

Several DNS [3,5–7] and experimental [8] studies found that �b decreases with the Reynolds
number. Meyers and Meneveau [9] found �b ∼ Re−μ/12 from DNS data [10], where Re = (L/η)4/3

denotes the Reynolds number, with the integral length scale L = K3/ε, turbulence kinetic-energy K ,
and the intermittency exponent μ [11]. The Re dependence can be reexpressed as �b ∼ R−μ/6

λ with
the widely accepted value of μ ≈ 0.25 [12]. Here, Rλ = (15σ 4/νε)1/2 denotes the Taylor microscale
Reynolds number with the root-mean-square velocity fluctuation σ . Donzis and Sreenivasan [5] an-
alyzed a series of DNS results and concluded �b ∼ R−0.04

λ and kbη ≈ 0.13. Küchler et al. [8] found
the power-law R−0.061±0.007

λ for one-dimensional spectral bumps in recent high-Re experiments.
On the other hand, some DNS [13] and experimental [14] results imply that �b does not notably

decrease with the Reynolds number. These studies [14–17] showed a collapse of one-dimensional
spectra in the inertial range, implying the Rλ independence of energy spectra.

The underlying physics of the bottleneck effect has been explained in various ways. Falkovich
[18] considered the bottleneck effect as a pileup of energy, in a spectral form of (kη)4/3 ln−1(kη),
from viscous suppression of energy transfer of small-scale modes. Kurien et al. [19] also obtained
the k−4/3 scaling for the bottleneck region from helicity dynamics. Verma and Donzis [20] argued
that the pileup of energy is due to insufficient width of the inertial range from energy transfer
between different wave-number shells. Frisch et al. [21] attributed the bottleneck effect to the
incomplete thermalization of high-wave-number modes deduced from hyperviscous Navier-Stokes
equations.

There are two approaches for modeling the bottleneck effect. The straightforward one is to find an
explicit expression for E (k) in spectral space [9,22,23]. Qian [24] derived an approximate solution
for E (k) from two integral equations with the variational method. The result shows the spectral
bump in E (k), but it is Rλ independent. Most others are parametrized from DNS results with multiple
empirical parameters, and they do not consider the Rλ dependence of the bottleneck effect except in
Meyers and Meneveau [9].

The other approach models the structure function Dn(r) in physical space and then calculate
E (k). The K41 hypotheses suggest

Dn(r) ∼ rn/3, (2)

in the inertial range. Batchelor [25] proposed an empirical model of the second-order structure
function as

D2(r)

v2
η

= 1

15

(
r
η

)2

[
1 + (15CB)−3/2

(
r
η

)2]2/3 , (3)

where vη is the Kolmogorov velocity and CB is an empirical constant. The quadratic form of this
model is supported by theoretical [26] and experimental evidence [27], but Eq. (3) is independent
of Rλ.

Lohse and Müller-Groeling [28] argued that besides η used in Batchelor’s model [25], another
length scale should be incorporated to represent large-scale motion, which can introduce the Rλ

dependence. Their model reads

D2(r) = 2σ 2

(
r2

r2 + r2
d

)1−ζ/2( r2

r2 + L2
0

)ζ/2

, (4)

where rd and L0 represent characteristic small and large length scales, respectively, and ζ = 2/3 is
a parameter.
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Furthermore, the intermittency found in experiments and DNS shows deviations from the power
law in Eq. (2). Kolmogorov [11] proposed the refined similarity hypotheses in 1962 (referred to as
K62). The introduction of intermittency leads to D2(r) ∼ r2/3+μ/9 in the inertial range, whereas μ

is not considered in the model Eq. (3) or (4). The deviation from the K41 theory was also explained
by other reasons, such as the finite-Rλ effect [29–32] and the external forcing [33].

Despite the many models for energy spectra and structure functions, there lacks a simple model
to predict the bottleneck effect. In the present paper, we propose such a model solely based on K41
and K62 without extra ad hoc parameters. Next, the model is developed and validated in Sec. II, the
intermittency effect in the model is analyzed in Sec. III, and some conclusions are drawn in Sec. IV.

II. MODELING OF THE BOTTLENECK EFFECT

We develop a simple model based on the second-order longitudinal structure function DLL(r).
Note that DLL(r) was used in the K41 hypotheses [1,22] and is related to the second-order structure
function as D2(r) = 3DLL(r) + r ∂DLL/∂r. Following the empirical quadratic forms in Eq. (3) and
(4), our model takes the form

DLL(r) = CD

(
r2

r2 + Aη2

)α(
r2

r2 + BL2

)β

, (5)

where model constants CD, α, β, A, and B are determined by asymptotic results of DLL(r) in the
K41 hypotheses, and η and L are characteristic small and large length scales in HIT, respectively.

The K41 hypotheses suggest asymptotic expressions for DLL(r) in high-Re HIT as [22]

DLL(r) → ε

15ν
r2, r � η,

DLL(r) → C2(εr)2/3, η � r � L, (6)

DLL(r) → 2σ 2, r � L,

with the Kolmogorov constant C2. Here, the first part is derived from the Taylor expansion of DLL(r)
and the hypothesis of local isotropy [1] in the dissipation range with r � η; the second part is from
the second similarity hypothesis [1] in the inertial range with η � r � L; and the third part is from
the definition of DLL(r). Meanwhile, the model in Eq. (5) has limits,

DLL(r) → CD

(
r2

Aη2

)α(
r2

BL2

)β

, r � η,

DLL(r) → CD

(
r2

BL2

)β

, η � r � L, (7)

DLL(r) → CD r � L.

By equating corresponding asymptotic expressions in Eqs. (6) and (7), we determine all constants
in Eq. (5) as

A = (15C2)3/2, B =
(

2
√

6

3C2

)3

, CD = 2σ 2, α = 2

3
, β = 1

3
. (8)

The intermittency introduced in the K62 hypotheses [11] suggests

DLL(r) ∼ r2/3+μ/9, (9)

in the inertial range. Comparing Eq. (9) and the asymptotic expressions DLL(r) ∼ r2β in the inertial
range and DLL(r) ∼ r2(α+β ) ∼ r2 in the dissipation range in Eq. (7), we have

α = 2/3 − μ/18 and β = 1/3 + μ/18. (10)
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(a) (b)

FIG. 1. Normalized (a) longitudinal structure function and (b) energy spectrum at a wide range of Rλ.
Lines: model in Eq. (11) with C2 = 2.2 and μ = 0.25; symbols: DNSs [34,35].

Finally, the model of the longitudinal structure function becomes

DLL(r) = 2σ 2

(
r2

r2 + (15C2)3/2η2

)2/3−μ/18(
r2

r2 + [2
√

6/(3C2)]3L2

)1/3+μ/18

. (11)

Note that μ in Eq. (9) can also be introduced in Eq. (6) instead, but we find that the resultant model
cannot predict the bottleneck effect well, which is elaborated in Sec. III A.

We assess the model in Eq. (11) by comparing its corresponding E (k) with DNS and the
experimental results of HIT. The three-dimensional energy spectrum is calculated from DLL(r) by

f (r) = 1 − 1

2σ 2
DLL(r), (12)

E11(k) = 2σ 2

π

∫ ∞

0
f (r) cos(kr)dr, (13)

and

E (k) = 1

2
k3 d

dk

(
1

k

dE11(k)

dk

)
, (14)

where f (r) is the longitudinal correlation function and E11(k) the one-dimensional energy spectrum.
In the numerical implementation, Eq. (13) is calculated by the fast Fourier transform, and the
derivative in Eq. (14) is calculated by the second-order central difference scheme with an adapted
mesh for k. In Eq. (11), we take C2 = 2.2 and μ = 0.25 within widely accepted values [22]. The
sensitivity of values of C2 and μ on modeled E (k) is discussed in Appendix A.

Figure 1 shows profiles of DLL(r) and E (k) at a wide range of Rλ up to 104. In Fig. 1(a), the
model in Eq. (11) and DNS data in Ishihara and co-workers [34,35] agree well at small r/η. The
introduction of the intermittency component captures the slight growth of the normalized DLL in
the inertial range. Otherwise, according to Eq. (6), the profile of the normalized DLL shows a plateau.
In Fig. 1(b), the normalized energy spectrum calculated from the model shows that the inertial range
broadens with Rλ with a power law close to the −5/3 scaling. There exists a small hump between
the inertial and dissipation ranges, where L11 = ∫ ∞

0 f (r)dr denotes the longitudinal integral length
scale.

Figure 2 compares the modeled �(k) from Eq. (11) with those from the DNS of Donzis and
Sreenivasan [5] at a range of Rλ. The modeled �(k) show clear spectral bumps at high wave numbers
and their heights decay with Rλ, consistent with the DNS results. Figure 3 compares the heights �b

and locations kbη of spectral bumps between model and various DNS results [3,5,6]. Figure 3(a)
shows that �b from Eq. (11) agrees well with the DNS results. The linear fits �b = 2.80R−0.0426

λ
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FIG. 2. Comparison of compensated three-dimensional energy spectra with Rλ = 140, 240, 400, 650, and
1000. Symbols: DNS [5]; lines: model in Eq. (11) with C2 = 2.2 and μ = 0.25.

for the model and �b = 2.84R−0.0473
λ for the DNS are close where the power-law exponents are

about 20%–30% smaller than that in R−0.061±0.007
λ reported in the experiment [8] with Rλ up to

5000. Figure 3(b) shows that the averaged kbη = 0.153 from the model is 20% larger than the
averaged kbη = 0.128 from the DNS. As discussed in Appendix B, the modeling of kbη can be
further improved by introducing an additional parameter in Eq. (11).

III. DEPENDENCE OF THE BOTTLENECK EFFECT ON Rλ

A. Peak height

We derive a scaling of �b with respect to Rλ from the model in Eq. (11) to show the Rλ depen-
dence in the bottleneck effect. First, E (k) is reexpressed in terms of DLL(r) using Eqs. (12)–(14).

(a) (b)

FIG. 3. Comparisons of (a) peak heights and (b) locations of spectral bumps from the model (�) and DNS
data (◦: Ref. [3]; ×: Ref. [5]; ♦: Ref. [34]; �: Ref. [6]) with their linear fits or averages (lines). The model
results are calculated from Eq. (11) with C2 = 2.2 and μ = 0.25.
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Letting κ = kη and ξ = kr, we rewrite Eqs. (13) and (14) as

E11(κ ) = 2σ 2η

πκ

∫ ∞

0
f (ξ, κ ) cos ξ dξ, (15)

and

E (κ ) = 1

2
κ3 d

dκ

(
1

κ

dE11

dκ

)
, (16)

with

f (ξ, κ ) = 1 −
(

ξ 2

ξ 2 + Aκ2

)α(
ξ 2

ξ 2 + (20/3)−3/2R3
λBκ2

)β

. (17)

In the derivation of Eq. (17), L/η = (20/3)−3/4R3/2
λ implied from the K41 and Eq. (11) are used.

With Eqs. (15) and (16) and Rλ = (15σ 4/σε)1/2, the compensated spectrum is written as

�(κ ) = Rλ√
15π

κ14/3 d

dκ

(
1

κ

d

dκ

∫ ∞

0

f (ξ, κ )

κ
cos ξ dξ

)
. (18)

Assuming κb ≡ kbη is a constant for simplicity [also see Fig. 3(b)], we consider the relation between
�(κb) and Rλ by estimating the effect of Rλ on the integral in Eq. (18). The integral can be taken as
a limit,

I (Rλ, κ ) ≡ lim
L→∞

∫ L

0

f (ξ, κ )

κ
cos ξ dξ . (19)

If the limit exists, the integral can be evaluated by taking a certain series of L = 2nπ → ∞ for∫ 2nπ

0 cos ξ/κ dξ = 0. In this way, the constant term in Eq. (17) vanishes in Eq. (19), and then
Eq. (19) becomes

I (Rλ, κ ) = − lim
n→∞

∫ 2nπ

0

(
ξ 2

ξ 2 + Aκ2

)α(
ξ 2

ξ 2 + (20/3)−3/2R3
λBκ2

)β

cos ξ dξ . (20)

Applying the mean value theorem for integrals to Eq. (20), the ratio of integrals for different Rλ,
i.e., Rλ1 and Rλ2, can be approximated by

I (Rλ1, κ )

I (Rλ2, κ )
∼

(
ξ 2 + 15−3/2R3

λ2Bκ2

ξ 2 + 15−3/2R3
λ1Bκ2

)β

. (21)

Since the integrand in Eq. (19) is a decaying oscillatory function, I is dominated by the integration
for small ξ . Thus, Eq. (21) can be approximated by

I (Rλ1, κ )

I (Rλ2, κ )
∼

(
Rλ1

Rλ2

)−3β

, ξ 2 � (20/3)−3/2R3
λBκ2. (22)

From Eqs. (18) and (22) with Eq. (10), we obtain the scaling,

�b ∼ RλR−3β

λ = R−μ/6
λ ≈ R−0.042

λ (23)

for μ ≈ 0.25.
The power law in Eq. (23) derived from the model of DLL(r) is useful to explain the dependence

of �b on Rλ, although Eqs. (21) and (22) are based on strong approximations. The scaling R−μ/6
λ is

consistent with (kη)−(5/3+μ/9)R−μ/6
λ for the normalized spectrum with the intermittency correction

[5]. The power-law exponent −0.042 in Eq. (23) agrees with that in Meyers and Meneveau [9] and
is close to −0.0426 [see Fig. 3(a)] computed from the modeled DLL(r) in Eq. (11). In particular,
the power law implies that the decay of �b with Rλ is related to the intermittency characterized
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by μ in the K62. For μ = 0, Eq. (23) has no Rλ dependence, which is close to a weak power-law
�b ∼ R−0.007

λ computed from the modeled DLL(r).
Note that if μ is introduced in Eq. (6) as mentioned in Sec. II, the constants in Eq. (8) become A =

[15C2(15/R2
λ)μ/12]1/α and B = [2

√
6/(3C2)]1/β , and the scaling in Eq. (23) with Eq. (10) becomes

�b ∼ RλRμ/6
λ R−3β

λ = 1. (24)

This result suggests that the peak height has no dependence on Rλ and is inconsistent with the DNS
results, so we introduce μ later in Eq. (10).

B. Peak location

The peak location κb of the spectral bump satisfies � ′(κb) = ∂�/∂κ|κ=κb = 0, and it is written
in terms of E11 from Eq. (16) as

− 4
3κbE ′

11 + 4
3κ2

b E ′′
11 + 1

2κ3
b E ′′′

11 = 0. (25)

As shown in Fig. 2, there are multiple stationary points for �(κ ), the location for the bottleneck
bumps is nearly constant, whereas the locations for other stationary points vary with Rλ. Substituting
Eq. (15) into Eq. (25) yields∫ ∞

0

(
f − κb f ′ − 1

6
κ2

b f ′′ + 1

2
κ3

b f ′′′
)

cos ξ dξ = 0, (26)

with shorthands f for f (ξ, κb), f ′ for ∂ f (ξ, κ )/∂κ|κ=κb , and so on. Taking Eq. (26) as an implicit
function F (κb, Rλ) = 0, we regard the effect of Rλ on the peak location as κb = κb(Rλ). Similarly,
f (ξ, κ ) can be written as f (ξ, κ, Rλ). Taking the derivative of κb with Rλ and using Eq. (26), we
have

dκb

dRλ

= −
∂F
∂Rλ

∂F
∂κb

= −
∫ ∞

0

(
fR − κb f ′

R − 1
6κ2

b f ′′
R + 1

2κ3
b f ′′′

R

)
cos ξ dξ∫ ∞

0

(− 4
3κb f ′′ + 4

3κ2
b f ′′′ + 1

2κ3
b f ′′′′) cos ξ dξ

, (27)

with the shorthand f ′
R for ∂2 f (ξ, κ, Rλ)/∂κ ∂Rλ|κ=κb and so on.

Theoretical analysis for Eq. (27) appears to be difficult, so instead we seek numerical ap-
proximations for Eq. (27) by calculating ∂F/∂Rλ and ∂F/∂κb for Rλ = 100–10 000 and κb =
0.1510–0.1539, respectively. The numerical results exhibit linear relations,

∂F

∂Rλ

≈ 387.6R−2.0414
λ κb − 59.26R−2.0414

λ and
∂F

∂κb
≈ −1012R−1.0422

λ κb − 218.4R−1.0412
λ (28)

for Rλ � 500 where the Rλ dependencies imply power laws of R−2−μ/6
λ and R−1−μ/6

λ , respectively.
Substituting Eq. (28) into Eq. (27) yields

dκb

dRλ

= 1

Rλ

387.6κb − 59.26

1012κb + 218.4
. (29)

The constant κb observed in Fig. 3 corresponds to an unstable solution κb = 59.26/387.6 ≈ 0.153,
consistent with the model results in Fig. 3(b). For smaller κb, Eq. (29) has dκb/dRλ < 0, corre-
sponding to the other stationary points of �(kη).

IV. CONCLUSIONS

We propose a simple model for the bottleneck effect in the energy spectrum of HIT solely based
on the K41 and K62 hypotheses. The model of the longitudinal structure function DLL(r) in Eq. (11)
consists of two quadratic functions of r representing large and small length scales. The model
parameters are derived from the asymptotic behavior of DLL(r). The Kolmogorov and intermittency
constants (i.e., C2 and μ in the K41 and K62 hypotheses) are fitted from DNS and experimental
data.
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(a) (b)

FIG. 4. Effects of the variation in C2 on modeling the (a) height and (b) location of the spectral bumps of
�(kη) at a range of Rλ with μ = 0.25. Lines in (a): linear fits of modeling results with C2 = 2.0, 2.05, . . . , 2.40,
from bottom to top; lines in (b): averages of modeling results with C2 = 1.6, 1.7, . . . , 2.4, from top to bottom;
symbols: DNS results (◦: Ref. [3], ×: Ref. [5], ♦: Ref. [34], and �: Ref. [6]).

The modeling of the bottleneck effect by Eq. (11) with C2 = 2.2 and μ = 0.25 is validated using
DNS and experimental data at moderate and high Reynolds numbers. The height of the spectral
bump calculated from the model has the power-law �b = 2.8R−0.0426

λ , which has a good agreement
with �b = 2.84R−0.0473

λ in the DNS [3,5,6]. The location of the spectral bump from the model is
kbη = 0.153 is 20% larger than kbη = 0.128 in the DNS, and the further model improvement is
discussed in Appendix B. Note that to show the predictability, all parameters in the model are fixed
for various HIT cases with a wide range of Rλ. The sensitivity of C2 and μ on modeling results is
discussed in Appendix A, and the present model and existing ones are compared in Appendix C.

To demonstrate the Rλ dependence in the bottleneck effect, we theoretically derive that the incor-
poration of the intermittency exponent into the model leads to the power-law �b ∼ R−μ/6

λ ≈ R−0.042
λ ,

consistent with modeling and DNS results. In addition, the model implies that kbη approaches to a
constant at large Rλ.
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APPENDIX A: SENSITIVITY OF EMPIRICAL CONSTANTS IN THE BOTTLENECK EFFECT

There are two empirical constants, the Kolmogorov constant C2 and the intermittency exponent
μ, in the K41 and K62 hypotheses, respectively. Scattered values of C2 and μ were reported within
moderate ranges in the literature due to uncertainties in determining them in high-Re experiments
[8] or DNS [5,6]. Hence, we examine the sensitivity of them on �b and kb computed from the
modeled DLL(r) in Eq. (11).

First, we vary C2 from 1.6 to 2.4 based on its values reported in the literature [5,6,13]. The
resultant heights and locations of the bottleneck are shown in Fig. 4. Figure 4(a) shows that �b

increases with C2 because the total energy in the inertial range grows linearly with C2 implied
by Eq. (1) with the relation C = 55C2/[27�(1/3)] [27]. Moreover, the power-law exponent γ in
�b ∼ Rγ

λ remains almost constant as the theoretical result in Eq. (23). Figure 4(b) shows that kbη

decreases with increasing C2. The bottleneck effect can be considered as an accumulation of energy
between inertial and dissipation ranges when the energy transfers from larger to smaller length
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(a) (b)

FIG. 5. Effects of the variation in μ on modeling the (a) height and (b) location of the spectral bumps of
�(kη) at a range of Rλ with C2 = 2.2. Lines in (a): linear fits of modeling results with μ = 0.20, 0.22, . . . , 0.30,
from top to bottom; lines in (b): averages of modeling results with μ = 0.20, 0.22, . . . , 0.30, from top to
bottom; symbols: DNS results (◦: Ref. [3], ×: Ref. [5], ♦: Ref. [34], and �: Ref. [6]).

scales. Increasing C2 causes a uniform rise of E (k) in the inertial range, and then the pileup of
energy could occur earlier in the energy transfer, i.e., kbη becomes smaller.

Second, we vary μ from 0.2 to 0.3 [12] to show the intermittency effect on �b and kbη in Fig. 5.
In Fig. 5(a), �b and the power-law exponent decrease with increasing μ. From the scaling E (k) ∼
k−(5/3+μ/9) with the intermittency correction [5], the growth of μ appears to suppress the energy at
large k. In Fig. 5(b), kbη only slightly decreases with μ, indicating that the intermittency has a minor
influence on the location of the spectral bump.

Based on the sensitive study, we choose C2 = 2.2 and μ = 0.25 in the model of DLL(r) in
Eq. (11) for the overall best fit of DNS data.

APPENDIX B: IMPROVEMENT ON MODELING THE BOTTLENECK LOCATION

To further improve the modeling results in Figs. 2 and 3, we introduce two parameters p and q
to Eqs. (5) and (11) as

DLL(r) = CD

(
rp

rp + Ap/2ηp

)2(α−μ/18)/p( rq

rq + Bq/2Lq

)2(β+μ/18)/q

. (B1)

The asymptotic expressions of Eq. (B1) with μ = 0 are the same as Eq. (6), so the values of CD, A,
B, α, and β in Eq. (8) remain in Eq. (B1). For the compensated spectrum calculated from Eq. (B1),
we find that �b and kb grow with increasing p, whereas �(kη) at small k is almost unchanged.
Similarly, �(kη) only grows at small k with q.

Based on the sensitivity analysis in Appendix A, we vary only p and C2 and keep q = 2 and
μ = 0.25 in Eq. (B1), and obtain p = 1.8 and C2 = 2.3 for the best fit of �b and kb with the DNS
results. In Fig. 6, the spectral bumps calculated from the model of Eq. (B1) show a better agreement
with the DNS result [5] than the model of Eq. (11) at kη � 0.1, whereas,�(kη) from the model of
Eq. (B1) is overestimated at kη < 0.1.

In Fig. 7(a), the estimations of �b from Eqs. (11) and (B1) are very close, and they agree well
with the DNS results [3,5,6]. In Fig. 7(b), the model of (B1) performs better than Eq. (11), showing
excellent agreement with the DNS results at large Rλ. Moreover, the model of Eq. (B1) has the same
scaling of �b = R−μ/6

λ in Eq. (23), and its dκb/dRλ in Eq. (27) has an unstable solution κb ≈ 0.1271.
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FIG. 6. Comparison of compensated three-dimensional energy spectra with Rλ = 140, 240, 400, 650, and
1000. Symbols: DNS [5]; lines: model in Eq. (B1) with p = 1.8, q = 2, C2 = 2.3, and μ = 0.25.

APPENDIX C: COMPARISON OF MODELS FOR THE BOTTLENECK EFFECT

We compare the present model with typical existing ones on the prediction of the bottleneck
effect. Starting from Eq. (1) in the K41, it is straightforward to model the bump of E (k) in spectral
space. Pope [22] introduced a simple model spectrum,

E (k) = Cε2/3k−5/3 fL(kL) fη(kη), (C1)

where fL and fη are nondimensional functions for energy-containing and dissipation ranges, re-
spectively. Since fη in Eq. (C1) is in the form of exponential decay, this simple model does not
show the spectral bump. Lamorgese et al. [23] developed an empirical model of fη to represent the
bump using a complicated function with several model parameters fitted from the DNS. However,
we find that, in this model, the major Rλ dependency comes from fL, so the spectral bump is almost
independent of Rλ at moderate and large Rλ. Meyers and Meneveau [9] introduce the intermittency
to Eq. (1), and parametrized the bottleneck in the functional form of E (k), containing five model

(a) (b)

FIG. 7. Comparisons of (a) peak heights and (b) locations of spectral bumps from the model (�) and DNS
data (◦: Ref. [3]; ×: Ref. [5]; ♦: Ref. [34]; �: Ref. [6]) with their linear fits or averages (lines). The model
results are calculated from Eq. (B1) with p = 1.8, q = 2, C2 = 2.3, μ = 0.25, and Eq. (8).
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parameters computed from five constraints and DNS data. We find that the height and location of
the bottleneck from this model agree well with those in DNS.

For modeling in physical space, Eqs. (3) and (4) without the intermittency exponent show the
independence and weak dependence of Rλ of the bottleneck effect, respectively. Antonia et al.
[36] proposed an empirical model for the second-order structure function without the intermittency
exponent. This model has two parameters that can be adjusted in different flows and achieves
good agreement with experimental results in both small and large scales. However, we find that
�b computed from this model is almost independent on Rλ. Gravanis and Akylas [37] proposed a
generalized Bachelor model [25]. The expansion of f (r) contains a series of quadratic functions
of r, and each term represents a length scale and has two empirical parameters, which can be fitted
from the data. Their model with two scales can capture the bottleneck in DNS well, but the empirical
parameters are not universal for different Rλ.

Thus, compared to the simple model in Eq. (11), some of the existing models can also achieve
good agreement on the bottleneck effect with the DNS data, but they contain much more functional
forms and empirical parameters fitted from the DNS, and they show no explicit dependence of the
bottleneck effect on Rλ as in Eq. (23).
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