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Self-sustaining cycle of purely elastic turbulence
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Direct numerical simulation of purely elastic turbulence (ET) in the Taylor-Couette
flow of dilute polymer solutions is used to identify the dominant flow structures, namely,
unsteady diwhirls that almost span the entire gap and axially and azimuthally elastic waves
that occupy the inner rotating cylinder region to midgap. In accord with experiment, the
azimuthal wave speed increases monotonically with enhanced Wi and it travels nearly 50
times faster than the axial waves. The interaction of elastic waves with unsteady diwhirls
leads to stochastic or chaotic cycles of polymer stretch and relaxation and commensurate
fluctuations in elastic stresses over a broad range of spatiotemporal frequency that produce
turbulent kinetic energy and sustain turbulent dynamics. To this end, the self-sustaining
cycle of ET is elucidated. Overall, this study paves the way for mechanistic understanding
of this inertia less turbulence in curvilinear flows.
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I. INTRODUCTION

Turbulence is a ubiquitous phenomenon where the fluid motion exhibits a broad range of spatial
and temporal scales. Turbulent flows typically manifest enhanced flow resistance and mixing when
compared with their laminar flow counterparts. In Newtonian flows, turbulence is realized at high
Reynolds number (Re � 1) where convective effects are dominant [1–3], however, in the flows of
dilute polymeric solutions turbulence occurs even at very low Re � 1 when elastic forces become
significant (Weissenberg number Wi � 1) [4–6]. In the former case, nonlinear inertial forces give
rise to turbulence, whereas in the latter, nonlinear elastic stresses generated by polymer dynamics
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lead to a hierarchy of purely elastic instabilities that give rise to an inertia less purely elastic
turbulence (ET) [5–11]. Unlike inertial turbulence that has been extensively studied for well over a
century, ET in shear flows of dilute polymeric solutions was discovered only two decades ago [12].

Existence of purely elastic instability above a critical Wi and at negligible Re ≈ 10−3 has been
experimentally observed in many flow geometries that are routinely used for rheological character-
ization of complex fluids, namely, the Taylor-Couette (TC), cone-and-plate and parallel plate flow
geometries [10,12–18]. To that end, TC flow has served as a prototypical geometry for study of
bifurcations and pattern formation in curvilinear flows of dilute polymeric solutions [19–24]. To
date, it has conclusively been shown that a purely elastic instability in TC flow occurs due to the
coupling of radial velocity fluctuations and finite hoop stresses that lead to amplification of radial
velocity perturbations, and a banded vortex secondary flow pattern [19,20]. Moreover, axisymmetric
and nonaxisymmetric stability analyses performed by Beris and coworkers have demonstrated that
the most unstable mode is nonaxisymmetric and time dependent [25–27]. Moreover, the possible
flow patterns after the onset of purely elastic instability are shown to be ribbons (standing waves) and
spirals (traveling waves) [25,26]. In fact, many intriguing flow patterns, such as rotating standing
waves, disordered oscillations, oscillatory strips and solitary vortex pairs or “diwhirls” have been
shown to arise as a result of higher-order elastically driven flow transitions in viscoelastic TC
flow [21,28,29]. This hierarchy of elastically driven flow transitions culminated in discovery of
purely ET [12]. Overall, the experimental studies of ET have shown that the flow is essentially
spatially smooth and temporally random and it exhibits a broad range of spatiotemporal scales with a
steep power-law decay in the velocity power spectra at all spatial scales [5,30–32]. Recently, the sim-
ilarity of deviatoric stresses in ET and magneto-hydrodynamics has been used to suggest that elastic
waves observed experimentally in ET are similar to Alfvén waves in magneto-hydrodynamics. This
analogy allows an approximation of the elastic wave speed as cel = [trace(τi j )/ρ]1/2, where τi j is
the polymeric elastic stress. In addition, the predicted increase in wave speed as a function of Wi, is
postulated to exhibit a power-law scaling of Wi0.7 [33].

The lack of experimental techniques for direct and realtime measurement of elastic stresses that
arise from interaction of macromolecules with dominant flow structures has prevented detailed
mechanistic understanding of the self-sustaining cycle that gives rise to ET [5]. Although the
enhanced flow resistance and the steep decay in the velocity energy spectra that are hallmarks
of ET have been observed in two-dimensional direct numerical simulations (DNS) of viscoelastic
Kolmogorov [8,9,11], and TC flows [34], significant quantitative differences exist between the
simulation results and experimental observations. These discrepancies have been attributed to
the approximate nature of the simulated flow, especially its two-dimensionality. Hence, three-
dimensional (3D) DNS of ET can pave the way for unraveling the complete interactions of elastic
waves with coherent flow structures.

Due to the “high-Wi problem,” 3D DNS of purely elastic flow (Re � 1) has remained a
grand challenge problem for the research community engaged in developing first-principle models
and simulations that can predict faithfully the complex spatiotemporal dynamics of polymeric
flows [35–37]. In this study, we present the results of the 3D DNS of ET at Re = 0.01 in TC
flow of polymeric solutions. Specifically, it is demonstrated that, by increasing Wi, the incipient
purely elastic instability gradually leads to a chaotic flow composed of unsteady diwhirls that
originate in the outer wall region and almost span the entire gap as well as axially and azimuthally
traveling elastic wave flow patterns that populate the inner wall region and extend to half of
the gap width. Moreover, the drag enhancement (DE) of flow and the steep power-law decay of
velocity energy spectra are in good agreement with the seminal experimental study of Groisman
and Steinberg [7,12]. More importantly, based on a detailed examination of interactions between
elastic stresses, elastic waves and commensurate velocity fluctuations with broad spatiotemporal
scales, the self-sustaining cycle of ET has been elucidated.
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II. PROBLEM FORMULATION AND COMPUTATIONAL DETAILS

In the present study we have chosen d = Ro − Ri, d/(�Ri ), �Ri, ρ(�Ri )2, and ηp�Ri/d as
scales for length, time, velocity u, pressure P, and polymer stress τ, respectively. Ri and Ro are
the inner and outer cylinder radii, respectively; � denotes the inner cylinder angular velocity, and
ρ the solution density. The polymer stress τ is related to the conformation tensor C through the
finitely extensible nonlinear elastic Peterlin (FENE-P) model [38]. The dimensionless governing
equations for the incompressible flow of FENE-P fluid are

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇P + β

Re
∇2u + 1 − β

Re
∇ · τ, (2)

∂C
∂t

+ u · ∇C = C · ∇u + (∇u)T · C − τ, (3)

where τ = [ L2−3
L2−trace(C)C − I]/Wi, L is the maximum chain extensibility, Re = ρ�Rid/ηt with the

total zero-shear viscosity ηt being the sum of the solvent (ηs) and polymeric (ηp) contributions,
Wi = λ�Ri/d , where λ denotes the polymer relaxation time and the viscosity ratio β = ηs/ηt .

In this study we have used a proven pseudospectral finite-difference hybrid method [39] to
simulate viscoelastic TC flow. Specifically, in the hybrid method technique, the convective term
in the conformation tensor evolution equation is discretized with a second-order conservative total
variation diminishing finite difference scheme with the MINMOD limiter [40]; the pseudospectral
method discretization is used for all other terms, which maximally preserves accuracy and effi-
ciency. The MINMOD limiter automatically converts the second-order finite-difference scheme to
a first-order upwind scheme to suppress numerical oscillations caused by sharp gradients of C. To
strictly enforce the chain finite maximum extension limit, the time integration of the conformation
tensor equation is performed by a semi-implicit second-order predictor-correction Adams-Bashforth
scheme [41–43], where the linear stress relaxation term is treated implicitly [44,45]. As expected
this algorithm is numerically stable and preserves the symmetric-positive-definite (SPD) nature
as well as the boundedness of the polymer conformation tensor (0 < trace(C) < L2). For more
details about accuracy and validation of this code, the reader is referred to one of our previous
papers [46]. It should be noted that in the study of homogeneous, isotropic turbulence with polymer
additives, Perlekar and coworkers [47,48] also used a hybrid code, namely, a spectral method for
solving the Navier-Stokes equation and a finite difference method for the FENE-P constitutive
equation. Specifically, to preserve the SPD nature of C, they used the Cholesky-decomposition
scheme proposed by Vaithianathan et al. [44]. Moreover, in order to avoid dispersion errors caused
by the sharp gradients of C, they adapted the Kurganov-Tadmor shock-capturing scheme for the
polymer-advection term [49,50]. An explicit fourth-order or sixth-order central-finite-difference
scheme was used for other terms. Finally, to avoid numerical instability, i.e., ensure that trace(C)
remains smaller than L2, the second-order Adams-Bashforth time scheme with very small time steps
were used.

Motivated by our recent DNS study of elasticity-dominated turbulence in TC flows [46,51], ET
is realized by increasing the Wi from 0 to 120 at Re = 0.01 in a large-curvature TC geometry
with η = Ri/Ro = 0.5. To avoid shear thinning effects, we have chosen β = 0.9 and L = 100.
Based on our previous calculations [46,52], a large mesh size of 128 × 128 × 256 for Wi � 30
and 128 × 256 × 512 for Wi � 60 in the r × θ × z directions has been chosen to reliably capture
the velocity and polymer stress fields at the relevant scales. Gauss-Lobatto-Chebyshev polynomials
are used in the wall normal (r) direction and Fourier series in the periodic (θ and z) directions;
grid points are clustered near the inner and outer walls in the r direction, and uniform in the θ and z
directions. The de-aliasing cutoff is not used in the pseudospectral discretization [53]. The initial ve-
locity and conformation fields are the Newtonian base flow and a unit tensor, respectively. A random
perturbation of small amplitude, usually 0.0005 is added to the initial velocity and conformation
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FIG. 1. Time and θ direction averaged vectors of radial (〈ur〉θ,t ) and axial (〈uz〉θ,t ) velocities and contour
plots of streamwise vorticity 〈ωθ 〉θ,t in (r, z) plane for various Wi at Re = 0.01 with 0 � z � πd and Ri � r �
Ro. DE is calculated as the increased angular momentum to the laminar value.

fields to accelerate flow destabilization. As Wi is progressively increased the converged numerical
results at a smaller Wi are used as the initial flow field. It should be noted that, in very-low-Re
simulations, the discretizations of viscous terms (the viscous and polymeric stresses divergence
terms) are very large as compared with other terms in the momentum equation. To balance all the
terms and avoid numerical errors during the calculation of velocities, a very small time step is
needed to multiplied the viscous terms. This has already been demonstrated in the simulation of
ET of von Kármán swirling flow, where Buel and Stark [54] proposed that when the momentum
equations are solved by the time-integrated scheme, the numerical time step has to be smaller than
the vorticity diffusion timescale, i.e., �tv � tv = ρr2/ηs = Rev/�, where Rev = ρ�r2/ηs, ρ is the
density, ηs is solvent shear viscosity, � is the rotating angular velocity, and r is the radius of the plate.
To that end, at a given Wiv = λ�r/d , where λ is the characteristic relaxation time of polymers and d
is the gap width between two plates, the vorticity diffusion timescale is given by tv = Revλr/(Wivd ).
Evidently, the time step depends on both Rev and Wiv; hence, the combination of smallest Rev and
largest Wiv requires the smallest time step. In the numerical calculation, Wi should be defined by
the local characteristic shear rate. Generally, in the low-Re (Re � 1) simulation, the actual time
step should be approximately �t � tv ∼ Re/Wi. Hence in the present simulations with Re = 0.01,
Wi ≈ 100, the small time step of �t ≈ 0.0001 is used. Sufficiently long simulations (typically
of ≈20λ) are executed to ensure that the statistically stationary flow states have been realized.
Moreover, ensemble averages are obtained over a time period of ≈10λ. The governing equations are
supplemented by no-slip boundary conditions at the walls, as well as periodic boundary conditions
in the z direction. The values of the conformation tensor at the walls are directly evaluated from the
integration of the constitutive equation at the solid boundaries [41,55,56].

III. RESULTS AND DISCUSSIONS

In the limit of vanishing inertia, as Wi surpasses a critical value of Wic ≈ 10, the azimuthal
Couette flow depicted in Fig. 1(a) becomes unstable and a large-scale banded vortex secondary
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FIG. 2. (a)–(c) Axial space-time plots of radial velocity ur and (d)–(f) polymer chain extension trace(C)
obtained along an axial line near the inner wall (r̃ = 0.01) showing the traveling waves-like flow patterns; at
the middle gap (r̃ = 0.5) the disordered oscillations, and near the outer wall (r̃ = 0.99) diwhirls, respectively,
with θ = π for ET at Re = 0.01, Wi = 30. Hereafter, r̃ = (r − Ri )/d is the dimensionless distance to the inner
cylinder wall.

flow is realized. In concert with experimental observation, the increase in Wi leads to higher-order
flow transitions and eventual appearance of solitary vortex pairs or diwhirls [see Figs. 1(b)–
1(c)] [28,29,57]. Further increase in Wi leads to a “chaotic” flow, especially near the inner cylinder
and the ET flow state is attained at Wi � 30 [see Figs. 1(d)–1(f)]. Specifically, in the ET flow
state, in addition to the two pairs of unsteady diwhirls that nearly span the entire gap, numerous
small-scale streamwise vortices populate the inner cylinder wall region. As shown earlier, these
small-scale streamwise vortices are elastic Görtler vortices [46,58]. Surprisingly, these vortices are
wrapped up on the inner half side of the diwhirls much like high-Re inertial Görtler vortices formed
over the convex inner wall that are nested with large-scale Taylor vortices [59]. This similarity is
intriguing due to the fact that the driving mechanism for formation of the dominant flow structures
in ET, namely, diwhirls and elastic Görtler vortices, arise as Wi is progressively increased above a
critical value in absence of inertia. Finally, a commensurate monotonic increase in DE is observed
with increasing Wi (see Fig. 1). The maximum DE, namely, 113% is obtained at Wi = 120, which
is much smaller than the 4 times flow resistance (in comparison with the corresponding laminar
flow) at Wi ≈ 40 observed in the original experiments [12]. However, it should be noted that
lack of detailed characterization of the experimental fluid used in the experiments [12] precludes
a one-to-one comparison of experimental and simulation findings.

The turbulent flow that is realized as a result of a sequence of hoop-stress driven flow transitions,
namely, ET, exhibits complex spatiotemporal dynamics with a strong radial dependence (see Figs. 2
and 3). Specifically, near the inner cylinder wall [see Fig. 2(a)], in addition to localized rotating
standing waves also known as ribbons, traveling-wave-like patterns are observed. It is well known
that ribbons arise due to superposition of an upward and downward spiral traveling wave of the
same amplitude [28,53,60]. In the ET flow state these waves have slightly different amplitudes
much alike the disordered oscillations seen in experiments [28]. These disordered oscillations are
nonaxisymmetric, as evinced by the distinct traveling-wave patterns in azimuthal space-time plots
(see Fig. 3). At the middle of the gap axially traveling-wave-like flow patterns are hard to discern
since the flow is essentially a spatiotemporally chaotic flow [see Fig. 2(b)]. However, from the
middle of the gap to surface of the rotating inner cylinder the azimuthal and axial traveling-wave
patterns are the dominant flow structures [see Figs. 3(a) and 3(b)]. The region near the outer cylinder
is mainly occupied by unsteady diwhirls and it is devoid of axially and azimuthally traveling
waves; hence, intense localized inflows and spatiotemporally unsteady oscillations are observed [see
Figs. 2(c) and 2(f)]. The corresponding polymer chain stretch quantified via trace(C) in different
radial positions is shown in Figs. 2(d)–2(f) and 3(d)–3(f). As expected, trace(C) exhibits patterns
that are consistent with the corresponding velocities along the specific spatial lines. For example,
along a given axial line in the axial space-time plot of Figs. 2(c) and 2(f) the patterns of trace(C) are
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FIG. 3. (a)–(c) Azimuthal space-time plots of azimuthal velocity uθ and (d)–(f) polymer chain extension
trace(C) obtained along an azimuthal line near the inner wall (r̃ = 0.01) showing the traveling-wave-like flow
patterns; at the middle gap (r̃ = 0.5) the traveling-wave-like flow patterns, and near the outer wall (r̃ = 0.99)
there is no obvious traveling-wave-like flow patterns, respectively, with z = πd/2 for ET at Re = 0.01,
Wi = 30.

consistent with that of the radial velocity ur . Evidently, the intense extensionally dominant radial
inflow induced by large-scale diwhirls readily stretch polymers and a commensurately high value
of trace(C) is attained. Consequently, the polymer chains are highly stretched in the two localized
extensional inflows associated with the diwhirls in the outer wall region. While in the inner-half gap
regions of Figs. 2(a), 2(b) and 2(d), 2(e), the polymer chains exhibit temporal and spatial oscillations
over a broad spatiotemporal scale due to rapid stretching and relaxation events induced by the flow.
This in turn leads to significant fluctuation of elastic stresses τ ′ that sustains ET dynamics.

To accurately determine the speed of traveling elastic waves, temporal cross correlations of
velocity of two spatially separated points (�x) are calculated at various Wi. The elastic wave speed
in turn can be calculated as the ratio of spatially separated points (�x) and the shifted lag time
(τlag) [33,61]. Specifically, a temporal cross-correlation function Cur (�x, τ ) of radial velocity ur is
given as

Cur (�x, τ ) = 〈ur (x, t )ur (x + �x, t + τ )〉
〈ur (x, t )ur (x + �x, t )〉 . (4)

The streamwise (azimuthal) elastic waves, as depicted in Figs. 3(a), 3(b), 3(d), 3(e) only occur in
the inner half of the gap. The temporal cross-correlation function at various separation distance
show a positive shift peak with a lag time τlag at the vicinity of τl = 0 [see Fig. 4(a)]. This
indicates that the azimuthal elastic wave propagates in a given direction with increasing �θ . Note
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FIG. 4. (a) Azimuthal temporal cross-correlation function of radial velocity C(�θ, τ ) versus lag time τl

for different �θ at middle gap for Wi = 30 with Re = 0.01. The separation distance �θ = (Ri + Ro)π/16.
(b) The separation distance �θ versus shift lag time τlag and the corresponding linear fit.
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FIG. 5. (a) Axial temporal cross-correlation function of radial velocity C(�z, τ ) versus lag time τl for
different values �z at middle gap for Wi = 30 with Re = 0.01. The separation distance �z = πd/32. (b) The
separation distance �z versus shift lag time τlag and a linear fit to it for both upward and downward waves.

that a perfect correlation and anticorrelation correspond to C(�θ, τ ) = 1 and C(�θ, τ ) = −1,
respectively, while an uncorrelated signal has C(�θ, τ ) = 0. At Wi < 15, a distinct peak in the
temporal cross-correlation function is not detected even for a very small separation distance of
�θs = (Ri + Ro)π/128. This suggests azimuthal elastic waves first appear at Wi = 15. If the wave
speed is constant, then there will be a linear relationship between �θ and τlag. As expected,
in Fig. 4(b), �θ depicts a monotonic increase with τlag. Following the same procedure used by
Varshney and Steinberg [33], we use the slope of the linear fit of �θ versus τlag to determine the
wave speed, which equals 0.4305. It should be noted that the wave speed obtained by the linear fit
of the data is independent of the minimum separation distance �θ . However, given the finite wave
speed, in order to get a clear temporal cross correlation, the time for propagation of the wave across
a given distance �θ should be small compared with the elastic relaxation timescale (λ) but large
enough to minimize the sampling time interval, i.e., d/(�Ri ) in this study.

Axial elastic waves are first observed at Wi = 30. As depicted in Fig. 5(a), in the vicinity of
τl = 0, the axial temporal cross-correlation function C(�z, τ ) with various separation distances
�z exhibits both positive and negative shift peak lag times τlag. This behavior is attributed to the
existence of upward and downward propagating axial elastic waves. As a consequence, the temporal
cross-correlation function almost displays an axisymmetric distribution along τl = 0. Therefore, it
is not straightforward to determine the continuous peak shift of the lag time τlag with increasing
�z. Here, we can only get the first four separated distances with their shift lag time with both
upward (positive shift lag time) and downward (negative shift lag time) elastic waves. As depicted
in Fig. 5(b), the best linear fit of the data determines an upward axial elastic wave speed of 0.0087,
and a downward axial elastic wave speed of −0.0080, respectively. The upward and downward
elastic wave speeds are nearly equal but have opposite directions. This is consistent with the axial
space-time plots in Figs. 2(a) and 2(d). The azimuthal wave speed is about 50 times larger than the
axial wave speed. It should be noted that, in order to accurately determine the small axial elastic
wave speed, a corresponding narrower separate distance as well as longer sampling time should
be used as compared with the azimuthal direction. As discussed above, the axial wave speed is
much smaller than the azimuthal wave and the complicated temporal cross-correlation function
precludes its accurate characterization. To that end, the azimuthal temporal cross-correlations of
radial velocity of two spatially separated points are calculated at various Wi to determine the
relationship between dominated azimuthal wave speed and fluid elasticity. As demonstrated in
Fig. 6(a), in accord with experimental findings the elastic wave speed increases as Wi is enhanced.
Despite the limited number of data points, the experimentally observed scaling of Wi0.7 is observed
with 98% confidence [33].

Elastic waves have been proposed to play a central role in the transfer of elastic energy to
turbulent kinetic energy (TKE), albeit the precise mechanism by which this transfer occurs is
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FIG. 6. (a) Azimuthal (streamwise) elastic wave speed for Wi � 15 at the middle gap. The red dashed line
represents the best fit of 0.01Wi0.7 + 0.3 with 98% confidence, i.e., the exponent obtained by Varshney and
Steinberg [33]. (b) One-dimensional spanwise spectra of the TKE (〈u′ · u′〉/2) normalized by its streamwise
component (〈u′

θ u′
θ 〉/2) sampled at the middle of the gap for various Wi. Here the scaling exponent of k−2 at

low-wave-number range is a guide for eye. In the present study, 〈 〉 = 〈〈〈 〉θ 〉z〉t denotes hereinafter averaging
in the θ direction, z direction and time, and the fluctuating part of variable v is obtained as v′ = v − 〈v〉.

not yet understood [30]. However, Fouxon and Lebedev [30] have shown theoretically that, when
elastic waves are present, the TKE spectra have to decay faster than k−3, where k is the spatial
wave number. This assertion is supported by our simulation results, namely, above Wi = 10 where
elastic waves first appear, the TKE spectra show a continuous broad decay regime [see Fig. 6(b)].
Specifically, the energy spectra decay with a power-law exponent of approximately −2 at low wave
numbers and approximately −7 at high wave numbers [see Fig. 6(b)]. Experimental measurements
of the radial velocity power spectrum exhibits two contiguous regions of power-law decay with
exponents of −1.1 and −2.2 in the low- and high-frequency regions, respectively [12]. Strikingly,
at Re = 10, Wi = 50, these two power-law-decaying spectra of radial velocity were reproduced
by Liu and Khomami via DNS of viscoelastic TC flow with the FENE-P constitutive model [62].
However, these simulations were performed in the elastically dominated flow regime in the presence
of finite fluid-inertia dominated inner-wall region. In addition, in the oscillatory strips regime at
Wi = 30, Re = 90, DNS studies of Khomami and coworkers [53] depict a broad spectra with
two steep power-law-decay regions with exponents −2.4 at low frequencies and −5.54 at high
frequencies. However, quantitative understanding of the relation between the present spectra and
the corresponding experimentally measured spectra (in the frequency domain) remains an open
question. Evidently, a detailed examination of the mechanism by which TKE is produced in ET can
provide invaluable insight in this regard.

The absence of Reynolds shear stress (〈u′
ru′

θ 〉) in ET indicates that the TKE cannot be generated
by the typical shear production term (〈u′

ru′
θ 〉∂r〈uθ 〉) seen in inertial turbulence [1–3]; hence, it has

to be solely produced by the transformation of stored elastic potential energy [EPE, Ep = (1 −
β )(L2 − 3)〈ln( f (C))〉/2(ReWi)] in stretched polymers [63]. To exam the energy exchange process
in ET, we recall the energy-budget equations. For viscoelastic turbulent flow, the budget equation for
the mean kinetic energy (MKE) Em = U2/2 is given by

∂Em

∂t
+ U · ∇Em = ∇ ·

⎛
⎜⎝−PU︸ ︷︷ ︸

Dmp

+2νsU · S︸ ︷︷ ︸
Dms

+νpU · T︸ ︷︷ ︸
Dme

−〈u′u′〉 · U︸ ︷︷ ︸
Dmt

⎞
⎟⎠

−2νs(∇U ) : S︸ ︷︷ ︸
εm

−νp(∇U ) : T︸ ︷︷ ︸
Pme

+〈u′u′〉 : (∇U )︸ ︷︷ ︸
Pt

, (5)
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and for the TKE (Et = 〈u′ · u′〉/2)

∂Et

∂t
+ U · ∇Et = ∇ ·

⎛
⎜⎝−〈P′u′〉︸ ︷︷ ︸

Dp

+ 2νs〈u′ · s′〉︸ ︷︷ ︸
Ds

+ νp〈u′ · τ ′〉︸ ︷︷ ︸
De

−〈u′u′ · u′〉/2︸ ︷︷ ︸
Dt

⎞
⎟⎠

−2νs〈s′ : s′〉︸ ︷︷ ︸
ε

−νp〈s′ : τ ′〉︸ ︷︷ ︸
Pe

−〈u′u′〉 : (∇U )︸ ︷︷ ︸
Pt

, (6)

and the budget equation for polymer additives EPE Ep

∂Ep

∂t
+ U · ∇Ep = νp(S : T )︸ ︷︷ ︸

Pme

+ νp〈s′ : τ ′〉︸ ︷︷ ︸
Pe

− νp

2Wi
f (〈C〉)trace(T )

︸ ︷︷ ︸
εpm

− νp

2Wi
〈 f (C′)trace(τ ′)〉

︸ ︷︷ ︸
εpt

, (7)

where S = (∇U + (∇U )T )/2, s′ = (∇u′ + (∇u′)T )/2 and T = 〈τ〉, respectively. Specifically, in
Eqs. (5)–(7), the left side represents the total time derivative of Em, Et , and Ep following a mean-flow
fluid particle, while the right-hand side represents the various mechanisms that bring about changes
to these quantities. The first four-divergence terms on right side of Eqs. (5) and (6) are energy
transport and redistribution caused by pressure (Dmp, Dp), viscous diffusion (Dms, Ds), polymeric
elastic stress (Dme, De), and turbulent stress (Dmt , Dt ), respectively. When integrated over the entire
gap, these terms make no contributions to the total budget. The fifth term represents the direct
viscous dissipation of kinetic energy (εm, ε) via its conversion into heat. It is important to emphasize
that the sixth term represents the energy production associated with polymer stretch, which has been
used to quantify energy conversion between kinetic energy and elastic energy, denoted as Pme and Pe

respectively. And the last term is turbulence shear production term Pt that arises due to interaction
of the mean streamwise velocity gradient and Reynolds shear stress. Here, Pt quantifies the loss of
MKE in Eq. (5), but the gain of TKE in Eq. (6) [46]. In the EPE budget (Eq. (7)), the first two
terms on right-hand side are the polymer energy production induced by mean Pme and fluctuations
of elastic stress work Pe, respectively; whereas the last two terms are dissipation terms associated
with the mean (εpm) and fluctuating (εpt ) polymer chain motions [63,64].

A detailed TKE budget analysis clearly reveals that, in the ET flow state, TKE in TC flow is
solely produced by the fluctuating elastic stress work term Pe [64]. Specifically, in the inner half
of the gap [see Fig. 7(a)] the elastic production term gradually increases with Wi. After the onset
of ET at Wi = 30, an intriguing change in Pe is observed, namely, its radial distribution, becomes
positive nearly in the entire inner-wall region. The underlying TKE generation mechanism can be
further scrutinized by a decomposition of Pe into its extension (Pe

e ) and shear (Ps
e ) components [see

Fig. 7(b)]. The decomposition of the elastic product term into its extensional and shear parts is
inspired by Steinberg [32], where the elastic stress is decomposed into its divergent and rotational
or vortical parts. Note that Pe

e (Pes) corresponds to the work done by the divergent (rotational)
component of fluctuating elastic stress via the fluctuating extensional (shear) flows. As seen in
Fig. 7(b), before the onset of ET at Wi = 15, the production term is dominated by Ps

e ; after ET sets
in at Wi = 30, Pe is dominated by Pe

e . This clearly indicates that the ET is essentially a turbulent
flow state that results from significant coupling of polymer stretch and relaxation cycles and the
fluctuating extensional flows. Specifically, the divergent part of fluctuating elastic stress associated
with polymer stretch and relaxation cycles that mainly arise due to unsteady diwhirls give rise to
TKE via elastic waves in the ET flow state.

Based on these findings the self-sustaining mechanism of ET in TC flow has three essential
components. Specifically, as depicted in Fig. 8, (i) a purely elastic instability gives rise to steady
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FIG. 7. (a) The elastic generation term Pe = −(1 − β )〈τ ′:s′〉/Re of the TKE, and (b) its extension [Pe
e =

−(1 − β )〈τ ′
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′
rr + τ ′
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zz〉/Re] and shear [Ps
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′
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′
rz〉/Re] parts at the

inner half gap for Wi = 15 and Wi = 30.

diwhirls that in turn become unsteady due to flow perturbations (see iii); the unsteady intense
inflows and commensurate high polymer stretch induced by diwhirls lead to a stochastic and
chaotic polymer stretch and relaxation cycles that create elastic waves and commensurate large-scale
fluctuations of the polymer stresses in the inner wall region (τ ′). At the same time, small-scale fluid
motions are generated along with a fluctuating strain rate (s′) due to the propagation of elastic waves,
and (ii) the interaction of the fluctuating normal polymer stresses and fluctuating elongational strain
give rise to TKE. Finally, (iii) the coupling of elastic waves near the inner wall and the resulting
random velocity fluctuations destabilize the diwhirls. Hence, ET is sustained through these three
components. Evidently, the flow is maintained by the external angular momentum input through
the constant rotation of the inner cylinder. Thus, the self-sustaining mechanism described above is
not the mechanism by which the flow is driven, rather it describes the mechanism that sustains the
turbulence dynamics that arise via the interactions between coherent flow structures, elastic waves
and fluctuating velocities in a flow that is essentially devoid of fluid inertia.

Finally, since the onset of ET coincides with appearance of axial waves at Wi � 30, one can
postulate that the highly stretched polymers that are fed into the inner wall region at various diwhirl
burst frequencies can easily be moved up and down the inner rotating walls by the axial or a
combination axial and tilted azimuthal waves. This in turn leads to presence of highly stretched
polymers in the near wall region with a relatively high shear rate. So, once these highly stretch chains
with broad spatiotemporal scales enter the slow radial backflow toward the outer wall, they first

Mean shear /
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fluid motions
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 / stress
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FIG. 8. Schematic depiction of the self-sustaining mechanism of ET.
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rapidly collapse and then begin to go through cycles of stretch and relaxation due to the fluctuating
strain in this region and finally collapse near the outer wall. This mechanism for the stochastic
stretch and relaxation cycle of the polymers is “in a way” the axial analog of the mechanism for
onset of purely elastic instability in TC flow, namely, coupling of radial velocity perturbations and
hoop stresses that arise due to stretched polymers along a curved streamline. Here the perturbations
are introduced by axial and potentially tilted azimuthal waves. To verify this postulate, one needs
to compute several timescales, including the dominant frequencies of diwhirls, azimuthal and axial
traveling waves, and the slow radial backflow. Clearly, in this strongly nonlinear turbulent flow,
pressure, velocities and stresses and their corresponding timescales are correlated. To that end, to
ascertain the validity of the above postulate, one needs to decompose the coherent structures to
extract the dominant timescales and their interactions. This is well beyond the scope of this work.
However, this issue will be addressed in our further study.

IV. CONCLUSIONS

To conclude, 3D DNS of ET in TC flow of dilute polymeric solutions has been realized. It is
shown that the main flow features in ET are those of large-scale vortex pairs (unsteady diwhirls)
and axial and azimuthal elastic waves. The large-scale vortex pairs and elastic waves dominate the
outer and inner halves of the gap, respectively. Furthermore, turbulent velocity fluctuations of ET are
mainly generated by the extensional part of polymer stress work (〈τ ′ : s′〉), which is associated with
“stochastic” polymer stretch and relaxation cycles. The elastic waves induced by the highly stretched
polymers are demonstrated to play a central role in generation of turbulent velocity fluctuations and
the spectral property of the flow. These findings taken together have enabled the elucidation of the
self-sustaining cycle of purely ET, thus paving the way for detailed understanding of elastic waves
and flow physics in a host of low-Re turbulent flows of complex fluids.
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