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In this study, we present a series of simulations of gravity currents where ambient and
intruding temperatures are on opposite sides of the temperature of maximum density. We
use these simulations to describe how cabbeling (mixing of parcels of fluid that leads to
a parcel of fluid that is denser) affects the evolution of gravity currents. We show that
initially buoyant currents (called hypopycnal currents) undergo mixing in the body and tail
region of the gravity current, which generates dense water from cabbeling. We investigate
the maximum distance that the initial current progresses as a function of a parameter
controlling the nonlinearity of the equation of state (referred to as �). We find that the
maximum distance that the current progresses is a nonlinear function of �. For low �

hypopycnal currents reverse direction after they begin flowing, and cabbeling occurs over
a limited spatial extent. As � is increased, currents achieve a larger maximum distance of
propagation, allowing the dense water formed by cabbeling to sink and form a secondary
current along the bottom of the domain (called a hyperpycnal current). As we increase
the parameter controlling the nonlinearity of the equation of state, the hyperpycnal current
becomes much larger in scale. We discuss some general characteristics of the hyperpycnal
current and highlight that once it forms, larger values of � lead to a larger spatial extent of
the current but narrower distributions of density and temperature.

DOI: 10.1103/PhysRevFluids.8.014502

I. INTRODUCTION AND OVERVIEW

In recent years physical processes in natural bodies of water during the winter have become very
popular to study due to their recognized importance to overall lake health. Powers and Hampton
[1] provides a wealth of references on several branches of winter limnology such as the under-
ice microbiome, ice phenology, under-ice physical limnology, under-ice primary production, and
biogenic gas production and carbon cycling. Recent articles have identified open questions and
proposed approaches to solving such problems, some of which cross traditional disciplinary lines
[2,3]. Due to the interconnected complexities of under-ice limnology, in this article we are motivated
to investigate the impact of an important mechanism known as cabbeling on the development and
evolution of a canonical density driven flow known as a gravity current.

In near-surface freshwater, the nonmonotonicity of the nonlinear equation of state (NLEOS) leads
to a temperature of maximum density of T̃md ≈ 3.98 ◦C. T̃md varies with depth due to the temperature
dependence of the compressibility of water [4]. However, significant variation from 3.98 ◦C occurs
only in very deep bodies of water, such as Lake Baikal. Thus, for most studies focused on shallow
fluid systems (such as this one), T̃md is taken to be constant. For flows with temperatures near T̃md ,
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the nonmonotonicity of the NLEOS also leads to a phenomenon known as cabbeling. In freshwater,
cabbeling traditionally occurs when two parcels of equal density but different temperatures mix.
If the two parent parcels have temperatures T1 and T2, the child parcel will have a temperature
T3 = 1

2 (T1 + T2), assuming that the parents are of equal mass. However, when T1 < T̃md < T2, the
density of the child parcel will be greater than the average density of the parent parcels. Cabbeling
is especially interesting because the relative density of the child parcel causes it to sink and generate
vertical currents (downwelling). Cabbeling also occurs in the ocean because the density of seawater
is a function of both the salinity and temperature. Parcels of fluid along the same isopycnal can mix,
and this generates denser water that sinks. Several examples of studies concerned with cabbeling in
seawater are found in [5–9]. Since the current study is only concerned with freshwater dynamics,
the cabbeling due to the presence of salt is intentionally ignored.

As mentioned previously, the impact of cabbeling on a flow known as a gravity current will
be investigated within this study. Gravity currents are a canonical example of a horizontal density
driven flow, and they are ubiquitous in nature. For example, in the atmosphere, they can manifest
themselves as thunderstorm outflows or sea-breeze fronts, both of which are a result of cold and
dense air penetrating into a warmer and lighter mass [10,11]. Another example is known as a
turbidity current [12]. These appear in both oceans and lakes and can be initiated by sediment-laden
river plumes flowing into larger bodies of water, underwater landslides, or even resuspension by
intense storms. These kind of currents can travel large distances and are responsible for deposition
of sediments along the ocean or lake floor [13]. Depending on their relative density, gravity currents
can be positively buoyant (they flow along the upper surface of whatever they are flowing into),
they can be negatively buoyant (they sink and flow along the bottom surface), or they can even
flow at some middepth if the medium is stably stratified. Finally, due to their inherently simple
generation mechanism gravity currents have been extensively studied in both a numerical setting
[14–16] and a laboratory setting (Simpson [10,11], Huppert and Simpson [17], Linden et al. [18]
are some well-known resources). In their mature form, gravity currents represent a state of fluid
flow that exhibits the coexistence of coherent structures and turbulence.

In a previous study of gravity currents in cold water, [19] we have investigated the temperature
interval between about 1.5 ◦C and 4 ◦C over which the density is a strictly increasing, but nonlinear
function of temperature. This study described the affect of what was termed “weak cabbeling”
(the mixing of two parent parcels of differing density generated a child parcel whose density was
greater than the average of the densities of two parent parcels, following Stewart et al. [20]) on the
development of two classes of gravity currents. The result of which was noticeable differences in
the vertical extent and horizontal head location of near-surface flowing gravity currents relative to
near-bottom flowing currents for a given magnitude of the initial density difference. In the current
study, the characteristic temperature interval is further extended so that the density of freshwater is
nonmonotonic. This means that two different water temperatures can now have the same density,
with the maximum density occurring at a temperature of T̃md .

An interesting motivation for the impact of cabbeling on gravity currents in the field occurs
during the autumn and spring seasons in intermontane lakes. For instance, measurements taken
from Kamloops Lake (Canada) in Carmack [21], Carmack et al. [22] indicate that the lake un-
dergoes several distinct circulation patterns throughout the year due to the inflowing Thompson
River at the east end of the lake. These circulation patterns are driven by the relative temperature
differences of the lake and the river waters. Specifically, observations presented in Carmack et al.
[22] show that in the late spring when river water is greater than 4 ◦C, river water flows out
along the surface of the lake, but due to the cabbeling instability, a river-lake mixture becomes
locally denser leading to a density driven current that plunges to the bottom of the lake. If this
interaction occurs above a slope, the dense fluid formed by cabbeling can flow several kilometers
to deeper regions in the lake. Due to this mechanism, the lake fills with warm water from the
bottom up.

In some instances, this can lead to a related phenomenon known as thermal bar circulation,
which occurs when a warm mass of water with temperatures greater than 4 ◦C in a shallow
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region is adjacent to a mass of water with temperatures less than 4 ◦C. In this instance, a wedge
forms that effectively traps riverine inflow water [21]. Carmack [21] showed measurements of
a thermal bar induced by the Thompson River inflow in the late spring in Kamloops Lake.
Measurements indicate that these thermal bars can extended several hundred meters lakeward
and to depths of tens of meters in the near-shore regions. This trapping effect by the thermal
bar means that all water reaching the outflow at the west end of the lake must come from the
surface waters, and with it comes whatever properties it possessed from the preceding winter.
Thus, thermal bars and the associated circulation patterns may have significant ecological impli-
cations, as well as impacting pollutant transport in lakes. Since horizontal currents typically cannot
penetrate the thermal bar, there is limited horizontal mixing which compounds eutrophication
problems in near-shore regions [23]. Additionally, the thermal bar was historically thought to
be a mechanism responsible for deep water renewal in Lake Baikal [24], but other mechanisms
have since been proposed [25]. A more vigorous example of cabbeling may be found near a
nuclear power plant outflow during the winter. Nuclear power plants adjacent to lakes use ambient
water for cooling purposes. In most instances the used water discharged leading to a plume of
significantly higher temperatures relative to the cold ambient. When the warmer water is expelled
into the cold ambient, it is initially less dense and will float. However, as the warm water mass
mixes with the ambient water, it becomes denser and sinks, and may stay in the hypolimnion
potentially altering the mixing regime of the lake itself [26]. Gaudard et al. [27] reviews some
of the impacts of significant thermal discharge on physical and ecological processes in lakes and
rivers.

Large-scale cabbeling is difficult to study at high resolution with direct numerical simulations
due to the characteristic length scales required to study it. As an example in a simulation context,
consider the work of Tsydenov et al. [28] who conducted 2.5D (three spatial dimensions, but
gradients cannot form in the spanwise dimension) numerical simulations of the thermal bar in
a model for a deep lake. Their Fig. 4 highlights the main process discussed above. The domain
used in their study models the near-shore regions of Lake Baikal and as such covers 10 km in the
cross-isobath direction and 300 m in depth. Thus, the scales of this phenomenon require the use
of turbulence models to estimate the subgrid scale turbulence and the diffusion of mean quantities.
Tsydenov et al. [28] used the two-parameter k-ε model of Wilcox [29] to compute the vertical
diffusivity, while also using a constant horizontal value. The k-ε model is useful in many contexts
as it is simple. However, its performance has been known to suffer in complex flows (though the
term “complex” is not exactly precise in this context) [30]. As another example, Holland et al. [31]
used a diffusivity that was inversely proportional to the local buoyancy frequency above some small
cutoff. Below this cutoff, a constant diffusivity four orders of magnitude greater than the molecular
value was chosen. As with any empirical model, this turbulence model can be tuned to fit the specific
context, but the model is phenomenological in nature. In the present study, the difficulty of selecting
an appropriate turbulence model, and tuning it, is side-stepped by instead performing small scale
direct numerical simulations (DNS).

In this study, we present simulations of the evolution of gravity currents where temperatures of
the intrusion and the ambient are on opposite sides of T̃md , leading to cabbeling. The addition of
the cabbeling mechanism in this context leads to some interesting and emergent dynamics. We will
demonstrate that gravity currents initially flow near the top surface of the domain (i.e., take the form
of a hypopycnal current), undergo cabbeling induced by mixing, and develop coherent currents that
flow near the bottom boundary (i.e., take the form of a hyperpycnal current). While the mechanism
presented within this paper is different, the behavior is reminiscent of a process known as convective
sedimentation below buoyant hypopyncal flows [12]. We analyze the impact of a parameters known
as the NLEOS parameter � and the nondimensional depth of the system h (both to be defined below)
on the development of the initial hypopycnal current, and its transition to the hyperpycnal current.
We will demonstrate that these parameters play an important role in determining the characteristics
of the secondary hyperpycnal current, and discuss the implications for the study of the secondary
hyperpycnal currents.
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TABLE I. The list of constant parameters used in this study, their values, dimensions, and a description.

Parameter Symbol Value Dimensions Description

g 9.81 m/s2 Acceleration due to gravity
T̃md 3.98 ◦C Temperature of maximum density
ρ0 999.974 kg/m3 Constant reference density
C 7.6 × 10−6 ◦C−2 NLEOS constant [see (1)]
H 2 m Dimensional depth of domain
L 20 m Dimensional length of domain
Pr 10 – Prandtl number [see (14)]
x� 8 – Dimensionless lock length

II. GOVERNING EQUATIONS AND MODEL SETUP

This study presents an extension of the work in Grace et al. [19] into the cabbeling regime,
where the density of water can be nonmonotonic (different values of temperature can correspond to
the same density). We use SPINS [32] to solve the incompressible Navier-Stokes equations under
the Boussinesq approximation in order to investigate the evolution of gravity currents with a
characteristic temperature and density of T̃i and ρ(T̃i ) and height of z0 propagating into a motionless
ambient of temperature and density T̃a and ρ(T̃a) in freshwater in two dimensions. In this study, the
intruding and ambient temperatures are on different sides of the temperature of maximum density.
The boundary conditions along all surfaces are free-slip for velocity, and no-flux for temperature,
and the model achieves spectral accuracy. The motivation of free-slip boundary conditions is as
follows. First, in the laboratory experiments of convective sedimentation by Sutherland et al. [33]
and Davarpanah Jazi and Wells [34], sediment laden gravity currents initially flowed along the free
surface (on top of the saline ambient). The evolution of sediment-laden gravity currents could be
considered an analog to the gravity currents presented in this study. Additionally, for a buoyant
surface current initiating a thermal bar at the field scale, the surface boundary condition is very
complicated due to a variety of factors such as thermal boundary layers, variable ice roughness,
wind, and surface waves. Since we are taking a simplified approach in our investigation of this
system, we are not interested in effects by the boundary layer and are only interested in interior
mixing, thus motivating the simple boundary conditions. In this study the dimensional length
of the domain is L = 20 m (Table I), and the depth is kept constant at H = 0.5 m (Table I).
All simulations presented have 8192 uniformly spaced grid points in the horizontal dimension
and 256 uniformly spaced grid points in the vertical direction, leading to a physical resolution
of (�x,�z) = (0.0024, 0.0020) m. A resolution sensitivity test was performed and the chosen
resolution is adequate to represent the system. In this study, variables with a tilde are dimensional
quantities.

In this study the departure of density from a reference state ρ0 (Table I) is

ρ = −C(T̃ − T̃md )2. (1)

This equation differs from Grace et al. [19] where the NLEOS was cubic. The choice to use the
quadratic EOS is motivated by the fact it is simpler and has fewer dimensional parameters than its
cubic counterpart. This quadratic EOS has been used in several recent studies [35,36]. (1) contains
the temperature of maximum density T̃md and constant C (both found in Table I) as parameters. Also
note that ρ in (1) is already dimensionless.

The temperature field is scaled as

T = T̃ − T̃a

�T̃1
(2)

with �T̃1 = T̃i − T̃a. This scaling is motivated by the usual temperature (or density) scaling for
gravity currents. By choosing this scaling, T varies between 0 and 1, where T = 0 corresponds
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to the ambient temperature and T = 1 corresponds to the intrusion temperature. Alternatively, we
could have chosen to scale the temperature field relative to T̃md instead of T̃a. Ultimately, this choice
will not have an impact on the main results of the paper. We have included the subscript in the
definition for �T̃1 because, as we shall see, this is not the only temperature scale that we must
define. We can use the above nondimensional temperature to nondimensionalize the density

ρ = −C[�T̃1T − (T̃md − T̃a)]2, (3)

where we can define �T̃2 = T̃md − T̃a and the NLEOS parameter as

� = �T̃1

�T̃2
= T̃i − T̃a

T̃md − T̃a
. (4)

This parameter was discussed in the work of Carmack [21] in the context of production rate of 4 ◦C
water as a result of mixing of river and lake water in Kamloops Lake. Note that the nondimensional
temperature of maximum density is given by 1

�
. Note also that if we had chosen to scale the

temperature field relative to T̃md , the definition of � would instead be

�r = T̃i − T̃md

T̃a − T̃md
. (5)

Again, the results of this paper would be unchanged by using �r instead of � as a controlling
parameter. It is also easy to show that

� = 1 − �r . (6)

Expanding (3), and noting that ρ̃(T̃a) = −C(�T̃2)2, we can write the nondimensional NLEOS as

ρ = ρ(T̃a) + 2C�(�T̃2)2T

(
1 − �

2
T

)
. (7)

We can define the buoyancy velocity scale and timescale as

Ub =
√

g′z0, tb =
√

z0

g′ , (8)

where g′ = g|ρ(T̃i ) − ρ(T̃a)| is the reduced gravity, and z0 is the initial height of the intruding fluid
(Table II).

We can simplify the reduced gravity to

g|ρ(T̃i ) − ρ(T̃a)| = Cg|�(� − 2)|(�T̃2)2, (9)

allowing us to write

Ub =
√

Cg|�(� − 2)|(�T̃2)2z0. (10)

Using these scales, we can nondimensionalize the system as

(x, z) = (x̃, z̃)

z0
, (u,w) = (ũ, w̃)

Ub
, t = t̃

√
g′

z0
, p = p̃

ρ0U 2
b

. (11)

In this study, the form of initial condition can accommodate different values for height
of the initial hypopycnal current z0. In nondimensional form, the initial condition for the
system is

T (x, z, t = 0) = B(z)

2

[
1 − tanh

(
x − x�

δx

)]
, (12)
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TABLE II. The cases presented in this study. Case names are denoted by the “Txxhyy,” where xx and yy
represent the value of � [the NLEOS parameter (4)] and h (the depth of the domain, found in the rightmost
column) for the case. The exception to this are cases preceded by a “V.” In those instances, the viscosity and
thermal diffusivity have been reduced by 50%. Gr represents the Grashof number, (14), T̃i is the dimensional
intruding temperature, T̃a is the dimensional ambient temperature, and ν is the kinematic viscosity. Parameters
that remain unchanged in groups of cases are shown in the rightmost column. δx and δz are the transition
thicknesses in the x and z directions, respectively, and l is the tank length.

Case Gr � T̃i (◦C) T̃a (◦C) 106ν (m2/s)

T2.2h4 1.43 × 105 2.2 2.156 5.5 1 δx = 0.8, δz = 0.08
T3h4 1.00 × 106 3.0 0.944 5.5 1 h = 4, l = 160
T4h4 2.68 × 106 4.0 8.5 2.5 1
T5h4 4.82 × 106 5.0 9.9 2.5 1
T6h4 7.71 × 106 6.0 11.38 2.5 1
VT5h4 1.93 × 107 5.0 9.9 2.5 0.5
VT6h4 3.08 × 107 6.0 11.38 2.5 0.5
T7h4 1.12 × 107 7.0 12.86 2.5 1
T8h4 1.59 × 107 8.0 14.5 2.5 1
T2.2h2 1.14 × 106 2.2 2.156 5.5 1 δx = 0.4, δz = 0.04
T2.4h2 2.55 × 106 2.4 1.852 5.5 1 h = 2, l = 80
T2.63h2 4.44 × 106 2.63 1.500 5.5 1
T2.8h2 6.00 × 106 2.8 1.244 5.5 1
T3h2 8.03 × 106 3.0 0.944 5.5 1
T3.5h2 1.56 × 107 3.5 0.018 5.5 1
T4h2 2.14 × 107 4.0 8.5 2.5 1
T5h2 3.86 × 107 5.0 9.9 2.5 1
T6h2 6.17 × 107 6.0 11.38 2.5 1
T7h2 9.00 × 107 7.0 12.86 2.5 1
T8h2 1.27 × 108 8.0 14.5 2.5 1
T3h1.82 1.07 × 107 3.0 0.944 5.5 1 δx = 0.365, δz = 0.0364
T4h1.82 2.86 × 107 4.0 8.5 2.5 1 h = 1.82, l = 72.7
T5h1.82 5.14 × 107 5.0 9.9 2.5 1
T6h1.82 8.21 × 107 6.0 11.38 2.5 1
T7h1.82 1.20 × 108 7.0 12.86 2.5 1
T8h1.82 1.69 × 108 8.0 14.5 2.5 1

where B is defined as

B(z) = 1

2

[
1 + β tanh

(
z − 1

δz

)]
. (13)

B allows us to select the initial height of the intruding fluid relative to the top surface (β = 1) or
the bottom surface (β = −1). The parameters δx and δz are the dimensionless transition thicknesses,
while x� (Table I) is the dimensionless lock length. Since all lengths in the problem are scales
relative to z0, the initial intrusion height sets the reference length scale. This is illustrated in Fig. 1.
The domain depth and length are also normalized by the intrusion height. They are h = H/z0

and l = L/z0 and their values are found in Table II. Note that while x� remains constant for all
simulations, the dimensional lock length x′

� = x�z0, or alternatively, x′
� = x�H/h. A schematic of the

initial condition is provided in Fig. 1.
We can define the Grashof number and the Prandtl number as

Gr =
(

Ubz0

ν

)2

, Pr = ν

κ
, (14)
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FIG. 1. A schematic of the initial condition demonstrating the initial locations of the intrusion and ambient,
which are defined to have temperatures of one and zero respectively. In all cases, the intrusion is initially
located adjacent to the top left corner of the domain. The initial hypopycnal current depth is varied across
cases. The lock length is given by x�, the tank length given by l , and the tank depth given by h. x is the
horizontal coordinate, and z is the vertical coordinate, and gravity points in the negative z direction. Lengths
are nondimensionalized by z0, so the initial intrusion height serves as the reference length.

which give the equations of motion as

Du
Dt

= −∇p − 2

� − 2
T

(
1 − �

2
T

)
k̂ + 1√

Gr
∇2u, (15)

DT

Dt
= 1√

GrPr2
∇2T, (16)

∇ · u = 0. (17)

Here we can see that � controls the relative magnitude of the nonlinear term in (15), except in this
case, and can attain a large range of values set by the initial conditions T̃i and T̃a. Note that � = 2
leads to the case where Ub = 0, and there is no longer a buoyancy velocity to scale by. � = 2 is
special case that must be discussed separately and is done so as a part of the following section.

A. Gravity current classification based on initial intruding and ambient temperatures

Assuming �T̃1 > 0 (T̃i > T̃a) we can build a framework for the classification of gravity currents
based on their � value. Note that because of the symmetry of the NLEOS about T̃md , a dynamically
equivalent classification can be developed for the case where �T̃1 < 0 (T̃i < T̃a) using the map T̃i →
2T̃md − T̃i and T̃a → 2T̃md − T̃a. Furthermore, an exact NLEOS is slightly asymmetric about T̃md , so
currents with �T̃1 < 0 will not evolve exactly as those with �T̃1 > 0. This is of no consequence for
this study because the exact NLEOS is not used here, and differences are expected to be small.

In the following section, we will consider eight different cases: � = 1, � = −1, � < −1,
� ∈ (−1, 0−), � ∈ (0+, 1), and � ∈ (1, 2), � = 2, and � > 2. With this information, we can
determine the relative ordering of the intruding temperature, ambient temperature, and temperature
of maximum density, and discuss the expected evolution characteristics. The following section goes
through each case, but for readers simply interested in a summary, see Fig. 2 and Table III. As a
reminder, the NLEOS parameter is defined as

� = �T̃1

�T̃2
= T̃i − T̃a

T̃md − T̃a
. (18)
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(a) (c) (d) (f) (h)

(e)(b) (g)

FIG. 2. A schematic representation of different values and intervals of � and what they imply about the
expected behavior of the resulting gravity current. Each set of axes shows the quadratic equation of state and the
markers represent the temperatures of the intruding fluid (triangles) and the ambient fluid (squares), as well as
the temperature of maximum density (stars). It is assumed that �T̃1 > 0. For cases where �T̃1 < 0 is of equal
magnitude and opposite sign, the location of the temperature markers are flipped across the line T̃ = T̃md .
Dotted vertical lines represent the average of the intruding and ambient temperatures and are included only
where necessary.

1. � < −1

For the case where � < −1, �T̃1 and �T̃2 must have opposite sign, so when �T̃1 > 0 and �T̃2 <

0, we find that

T̃a <
T̃i + T̃md

2
(19)

and

T̃i > T̃a > T̃md . (20)

TABLE III. A representation of the ordering the intruding temperature, ambient temperature, and temper-
ature of maximum density (T̃i, T̃a, and T̃md , respectively) given different intervals of � for positive �T̃1. � is
defined in (4) and �T̃1 = T̃i − T̃a.

Case Ordering of T̃i, T̃a, and T̃md

� < −1 T̃i > T̃a > T̃md and T̃a < 1
2 (T̃i + T̃md )

� = −1 T̃i > T̃a > T̃md and T̃a = 1
2 (T̃i + T̃md )

−1 < � < 0 T̃i > T̃a > T̃md and T̃a > 1
2 (T̃i + T̃md )

1 > � > 0 T̃a < T̃i < T̃md

� = 1 T̃i = T̃md

1 < � < 2 1
2 (T̃i + T̃a) < T̃md

� = 2 1
2 (T̃i + T̃a) = T̃md

� > 2 1
2 (T̃i + T̃a ) > T̃md
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We can see that this interval of � implies that T̃a is always closer to T̃md than it is to the T̃i.
Therefore, as � gets more negative, T̃a approaches T̃md . Note that this critical value was that which
characterized the T cases in Grace et al. [19]. This regime is presented in Fig. 2(a).

2. � = −1

In this case �T̃1 and �T̃2 must be equal in absolute value but opposite in sign. In this case

T̃a = T̃i + T̃md

2
(21)

and

T̃i > T̃a > T̃md (22)

must be true. This indicates, that for � = −1, T̃i and T̃a are both greater than T̃md and that T̃a must
be the average of T̃i and T̃md . This case is illustrated in Fig. 2(b). The average of T̃i and T̃md is
highlighted by a dotted vertical line.

3. � ∈ (−1, 0−)

In the case � ∈ (−1, 0−), �T̃1 and �T̃2 must have the opposite sign but �T̃1 must be smaller in
absolute value than �T̃2. In this case

T̃a >
T̃i + T̃md

2
. (23)

Thus, T̃a must be greater than the average of T̃i and T̃md . Additionally, since �T̃1 > 0 and �T̃2 < 0,
we must have

T̃i > T̃a > T̃md . (24)

We can see that as T̃a becomes larger than T̃i+T̃md
2 , the characteristic temperatures of the gravity

current tend to move further away from the nonlinearity of the NLEOS. Thus, as � → 0−, one
expects the nonlinear term in the NLEOS to become smaller in magnitude relative to the linear
term. This case is illustrated in Fig. 2(c).

4. � ∈ (0+, 1)

In the interval � ∈ (0+, 1), �T̃1 and �T̃2 must have the same sign, but �T̃1 < �T̃2. It follows
that

T̃a < T̃i < T̃md . (25)

Thus, for values � ∈ (0+, 1) we have that the intruding temperature is between the temperature
of maximum density and the ambient temperatures. In this case, the intrusion is denser than the
ambient, so the current will sink. This case is illustrated in Fig. 2(d).

5. � = 1

In this case, �T̃1 and �T̃2 must be equal. The only ordering that allows for this is to have T̃i =
T̃md . Thus, for � = 1, the only gravity current class that can exist is one where the intruding fluid is
at the temperature of maximum density. In this case, the intrusion is maximally dense, so it sinks.
Note that this critical value was that which characterized the B cases in Grace et al. [19]. This case
is illustrated in Fig. 2(e).
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6. � > 1

For the case of � > 1, �T̃1 and �T̃2 have to be of the same sign and �T̃1 > �T̃2. The ordering
then becomes

T̃i > T̃md > T̃a. (26)

Thus, the ambient temperature must be less than the temperature of maximum density, while the
intruding temperature must be higher. This regime is important because mixing of two parent parcels
of fluid generates a parcel that is heavier and sinks. The results dynamics in this interval can be
further subdivided into two subintervals � ∈ (1, 2) and � > 2. For � ∈ (1, 2), the density of the
intrusion is higher than the ambient, so the intrusion initially sinks. However, as the intrusion and
the ambient mix, they form denser water, which in turn has a larger density difference relative to the
ambient than the intrusion. Thus, as mixing occurs, a faster moving current may form. For � in this
interval, it can be shown that

T̃md <
T̃i + T̃a

2
. (27)

In-depth analysis of � ∈ (1, 2) is left for future work. This case is illustrated in Fig. 2(f).
If � = 2, then the ambient and intruding densities are the same. In terms of T̃i, T̃a, and T̃md , we

must have

T̃md = T̃i + T̃a

2
. (28)

In this case, there is no initial collapse and no horizontal intrusion is generated. There is mixing
along the interface between the two masses of water that generate vertical currents. This observation
is consistent with the scaling Ub, which showed that the current speed would be zero in the event of
� = 2. In this event, a different velocity scaling should be used. This case is illustrated in Fig. 2(g).

If � > 2, then

T̃md <
T̃i + T̃a

2
. (29)

In this case, the intruding density is initially lower than the ambient (save for a band of dense
water surrounding the initial mass of water), thereby allowing the current to initially rise to the top
boundary. As the intrusion propagates and mixes with the ambient water, dense water is created
which sinks. The � > 2 regime is fascinating and will be the focus of the rest of this study In the
following sections, we will discuss the dynamics of the � > 2 regime specifically highlighting the
dynamics as � is increased beyond two. This case is illustrated in Fig. 2(h).

An interesting result occurs in the limit of large �. Using dimensionless variables now, we can
rewrite the buoyancy forcing term in (15) as

ρ = − 2

1 − 2
�

T

(
1

�
− T

2

)
. (30)

Letting ε = 1
�

, we arrive at

ρ = − 2

1 − 2ε
T

(
ε − T

2

)
. (31)

In the limit of large � (or small ε), we can expand the temperature as

T = T (0) + εT (1) + O(ε2), (32)

and substituting (32) into (31), we find that

ρ ≈ (T (0) )2 − 2ε[(T (0) )2 − T (0)(1 − T (1) )] + O(ε2). (33)
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Expressing the density as an expansion in ε as ρ = ρ (0) + ερ (1) + O(ε2), we find that

ρ (0) = (T (0) )2, (34)

ρ (1) = 2(T (0) )2 − 2T (0)(1 − T (1) ), (35)

meaning that ρ (0) is a monotonic function of T (0). Since the density is monotonic at leading order,
cabbeling becomes a higher order effect (recall that cabbling occurs because of the nonmontonic
nature of the NLEOS). Ignoring terms of O(ε2) and higher, we are left with an equation of state that
is quadratic (but monotonic) in T (0) and linear in T (1). Thus, for � > 2 cabbeling occurs until ε = 1

�

becomes small, at which point, cabbeling becomes a secondary effect and the leading order effect
is to evolve under a monotonic NLEOS, specifically one that is purely quadratic in temperature.
This means that gravity currents with large values of � evolve similarly to the near-surface currents
discussed in Grace et al. [19] (called the T cases) to leading order.

Figure 2 and Table III are provided as visual summaries of the above discussion. In Fig. 2, it is
assumed that �T̃1 > 0 for brevity. For cases where �T̃1 < 0 the locations of each marker on the
diagram would be reflected about T̃md .

B. Experimental configuration

To discuss the physics of the � > 2 regime, we will present two experiments. We must have
1
2 (T̃i + T̃a) > T̃md to ensure that � > 2. In this study T̃a is either 2.5 ◦C or 5.5 ◦C. However, �T̃ 2

2
does not change between cases (see Table II for details). In the first experiment, � is manipulated by
varying the magnitude of �T̃1. In the second experiment, the relative intrusion depth is manipulated
by varying the total depth of the domain h. By modifying h, we are modifying the amount of
intruding fluid relative to the domain depth, which leads to variations in the head height of the
initial hypopycnal current. For gravity currents under linear equations of state, the head height of
the current is about half the height of the initial intrusion (for large enough Grashof number; for
smaller Grashof numbers, viscosity plays a more prominent role in determining the characteristics
of the resulting current). Cases are presented in Table II and are named based on their values for �

and h. See the caption of Table II for details.
Note that by changing � and h, we also change the Grashof number. This motivates the definition

of another number called Gr0. It is defined as

Gr0 = gC(�T̃2)2H3

ν2
. (36)

Since the magnitude of �T̃2 is held constant in this study, Gr0 is invariant upon changing � or h.
The Grashof number in Table II is related to Gr0 by

Gr = Gr0
�

h3
. (37)

Gr0 is held constant for all cases except VT5h4 and VT6h4 where is has been increased by a factor
of four.

III. RESULTS

A. � and h dependence of the development of the flow

In this subsection, the results of several numerical simulations in the � > 2 regime will be
shown. To discuss the basic dynamics, we can consider T3h2, which has � = 3 and h = 2. Neither
� nor h is an extreme value considered in this study, and so cabbeling is still a leading order effect
(ε = 1

�
is not small compared to unity). Snapshots of the temperature and velocity fields at different

times for T3h2 case are shown in Figs. 3 and 4, respectively. The dynamics of the other cases for
each experiment are qualitatively similar, with only minor differences in the details.
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FIG. 3. Temperature fields for T3h2, given by (2). The nondimensional temperature of maximum density
for T3h2 ( 1

�
) is marked on the colorbar. Times are located on each panel. Panels (a)–(c) show the general

evolution of the hypopycnal (near-surface) current, panel (d) shows a transition time, and panels (e) and (f)
show the hyperpycnal (near-bottom) current. Notice the increase in head height in panel (f) relative to panel
(a). Notice also that the hyperpycnal current quickly outruns the hypopycnal current.

Figure 3 shows that the initial hypopycnal current, which is lighter than the ambient (except
for a thin band around the intrusion), flows from left to right along the top surface. Mixing in
the body and tail of the current creates water of a higher density than both the intrusion and the
surrounding ambient. The denser fluid sinks, as visible in Figs. 3(a)–3(c). We can see that the initial
intruding water mass quickly mixes due to this process. Once enough dense fluid gathers near the
bottom surface, a new coherent hyperpycnal current is created. This current flows away from the left
wall, visible in Figs. 3(d)–3(f). Due to the propagation of the hyperpycnal current, a near-surface
reverse flow is induced which pushes the remains of the initial hypopycnal current back towards the
left-hand wall.

The hyperpycnal current has a new typical temperature and is heavier than the ambient, thus
allowing it to flow along the bottom. Qualitatively speaking, the volume of the hyperpycnal
current is much larger than the initial hypopycnal current indicating that a significant volume of
ambient water has been entrained over the course of the cabbeling process. Note the time jump
between panels (c) and (d). Recall that the nondimensional temperature of maximum density is
given by 1/� (approximately 1/3 in this case), and it is important to note that the tempera-
ture of the bottom current is lower than 1/�, indicating that the hyperpycnal current consists
of fluid that is not simply the maximally dense fluid, but some other temperature whose value
is an emergent quantity of the dynamical process. This is true for all cases discussed in this
study, and a more detailed discussion on the temperatures of the bottom currents is presented
below.
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FIG. 4. Horizontal component of nondimensional flow velocity for T3h2. The times of each plot are the
same as in Fig. 3. Notice the decrease in the velocity of the current in panel (f) relative to panel (a).

Figure 4 shows the dimensionless horizontal component of the velocity field. The initial hy-
popycnal current develops and flows along the top surface [Figs. 4(a)–4(c)]. The currents shown
in Fig. 4(d) are very irregular, but this state is ultimately a transition between the hypopycnal
and hyperpycnal currents. In Figs. 4(e) and 4(f), we can see the signature of the hyperpycnal as
it propagates to the right, and the return flow moving to the left near the top surface. It is interesting
to note that the head height of the bottom current is approximately half the depth of the domain,
which is in qualitative agreement to that seen in the full-depth lock release simulations from both
Härtel et al. [15] and Cantero et al. [37] in the slumping regime. Furthermore, we can see that the
velocities in the hyperpycnal current are weaker than those in the hypopycnal current. The transition
from a characteristic dimensional length scale of z0 to H/2, and the subsequent reduction in velocity
is a consistent feature across all cases studied in this study. This indicates that the emergent current
has no memory of the initial height of the intrusion.

It is interesting to note that the reduction in the velocities of the hyperpycnal current does not
lead to a relative decrease in the kinetic energy of the system. To see this, we can can analyze the
domain average kinetic energy ke of the system, defined as

ke = 1

2lh

∫ l

0

∫ h

0
u2 + w2 dx dz. (38)

Figure 5 shows the ke for each case with h = 2 and different values of �. This figure is broken up
into two categories for clarity; low � (2.2 � � � 3) in Figs. 5(a) and 5(b), and high � in Figs. 5(c)
and 5(d) (3 � � � 8). Note that T3h2 is included in all four panels. The left column is the entire
time history of the ke prior to the current colliding with the end-wall, whereas the right column is the
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FIG. 5. Time series of the total kinetic energy for all cases with h = 2. Panel (a) shows the total kinetic
energy for cases with 2.2 � � � 3. Panel (c) shows the same quantity for cases with 3 � � � 8 (i.e., T3h2 is
included on all four plots). Panels (b) and (d) are detailed views of the early evolution.

same data with the axis values adjusted to highlight the early development. Also note the difference
in vertical and horizontal scales in each panel. Broadly speaking the evolution of the ke takes place
over several stages; an increase by the propagation of the initial hypopycnal current, and an increase
in ke by the hyperpycnal current. It should be noted that cabbeling itself is not a source of kinetic
energy, but instead increases the potential energy, which is then transformed into kinetic energy
by a buoyancy flux. The low � cases (T2.2h2, T2.4h2,T2.63h2, T2.8h2, and T3h2) are shown in
Figs. 5(a) and 5(b), and these cases are characterized by a short time increase of ke as the initial
hypopycnal current propagates, but this is quickly swamped by a much larger increase from the
hyperpycnal current. There is a transient period between these stages where the ke oscillates but
does not significantly increase. As � becomes larger, the initial rate of growth of the ke slows, and
the second stage occurs at a later time. Eventually, the total ke reaches a peak and then decreases
before the gravity currents ultimately collide with the right-hand wall (the time at which the curves
terminate).
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FIG. 6. Time series of the total kinetic energy comparing between cases with varying h (� held constant
in each panel). Panel (a) shows the cases with � = 3, and panel (b) shows the cases with � = 6.

We can see in Figs. 5(c) and 5(d) that by further increasing � in the 3.5–8 range (T3.5h2,T4h2,
T5h2, T6h2, T7h2, and T8h2), the first stage of growth by the propagation of the initial hypopycnal
current is elongated resulting in a clear localized peak in the ke, before slowly decreasing as the
hypopycnal current spreads. Following this, there is a more gradual increase due to the slumping
of the hyperpycnal current. Note that T3h2 is included on all four panels of Fig. 5 as it is an
approximate transition between the two kinetic energy evolution regimes. The general behavior
that can be gleaned from Fig. 5 is that for � near 2, the hypopycnal current does not complete its
initial acceleration before cabbeling and the subsequent formation of the hyperpycnal current starts
to dominate the kinetic energy history. Conversely, for larger values of �, the initial hypopycnal
current is allowed to develop into a more mature current before cabbeling ultimately generates the
hyperpycnal current. This suggests that the transition occurs because of a competition between two
timescales. The first is the cabbeling timescale (the time required for significant dense fluid to be
formed due to cabbeling) versus the timescale of propagation of the hypopyncal current. As we
increase �, we also increase the speed of the current [defined in Eq. (10)], so presumably, the
hypopycnal current goes through its natural evolution in a shorter amount of time relative to the
cabbeling timescale.

In Fig. 6 we compare the total kinetic energy of two values of � (3 and 6) for three values of h.
These � values were chosen chosen to best illustrate the sensitivity of the total kinetic energy based
on the variation of � and h. Figures 6(a) and 6(b) show the total kinetic energy for the T3h4, T3h2,
and T3h1.82 cases. It is clear that by making the domain shallower (or alternatively increasing the
initial intrusion height), we get a more well-defined early evolution of the flow, indicated by the
rapid rise and peak in kinetic energy. T3h4 shows a severe early and late reduction in total kinetic
energy relative to the T3h2 and T3h1.83 cases, potentially indicating the impact of viscosity due
to the relatively low value of Gr. It is interesting that in the interval 100 < t < 200, the relative
increase in the total kinetic energy is similar between T3h4, T3h2, and T3h1.82. This indicates that
the development of the hyperpycnal current may be unaffected by the magnitude of Gr over this
time interval. Figures 6(c) and 6(d) show the same quantity for cases T6h4, T6h2, and T6h1.82. We
can see a better defined initial acceleration of the current, and peak in the kinetic energy. Note that
the hyperpycnal currents for T6h2 and T6h1.82 become large enough that they run into the wall at
x = l before they can fully develop, but T6h4 does not. This is interesting as the ke increase due to
the hyperpycnal current results in a larger total ke than that of the initial peak.
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FIG. 7. Hovmoller plots of the temperature at a height of 0.95h for the cases with varying � and h. � is
constant along each row of panels, and h is constant along each column. Arrows are included in panels (a), (b),
and (c) to highlight the flow reversal.

Figure 6 also serves to show some of the Gr dependence of the flow. Figure 6(a) highlights
that by increasing the Grashof number, the early development of the flow (the first local maximum
due to the hypopyncal current around t = 50) becomes more well-defined (i.e., there is some clear
separation between the development of the early peak in ke and the second larger peak due to the
hyperpycnal current). Furthermore, it is clear from Fig. 6(b) that the early evolution of the flow that
both the maximum ke due to the hypopyncal current is higher for larger Grashof number (smaller
h). Additionally, the timescale of the secondary hyperpyncal is longer for larger Grashof number as
well.

Figures 7(a)–7(c) show Hovmoeller plots of the temperature field at 0.95h for T3h4, T3h2, and
T3h1.82 between 0 < x < 50 and 0 < t < 100. Figures 7(d)–7(f) shows the same for T6h4, T6h2,
and T6h1.82 between 0 < x < 70 and 0 < t < 200. These figures highlight the overall similarity
in the time history of the near-surface temperature for each of the cases compared. For example,
first consider Figs. 7(a)–7(c) [the same discussion below can be applied to Figs. 7(d)–7(f)]. Note
that while the broad features such as the propagation speed of the current (inferred by the slope
in x-t space of the front) and halting behavior are similar between all three of these cases, T3h4
[shown in Fig. 7(a)] travels the shortest nondimensional distance relative to T3h2 [Fig. 7(b)] and
T3h1.82 [Fig. 7(c)], indicating the impact of the low value of Gr. Directly comparing Figs. 7(b)
and 7(c) (where Gr has been increased by decreasing h) reveals negligible differences between the
distance traveled between these two cases. In other words, there are noticeable differences in the
traveled distance between T3h4 and T3h1.82, but comparatively small differences in the traveled
distances between T3h2 and T3h1.82. These results indicate that for low enough Grashof number,
the quantitative current characteristics are modified relative to cases with higher values Gr. The
implication then becomes that the large-scale behavior of the current may be relatively independent
of Gr for large enough values. The exact regime where the gravity current evolution achieves Gr
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independence is beyond the scope of this study. Some discussion on this is provided in Härtel et al.
[14] and Cantero et al. [37]. Recall that Gr independence in head location was noted in the results of
Fig. 5(c) in Grace et al. [19], where a larger value of Gr led to an increased discrepancy between the
head locations of near-surface propagating currents versus near-bottom propagating currents, and
by reducing Gr, these differences became smaller.

Additionally, late in the time history, we can see a near-surface reversal of the propagation
direction. The prominence of this feature increases as � → 2 and was clearly visible in cases where
2 < � < 3. However, a key feature that these figures highlight is the variation in the maximum
extent that the current achieves as � is increased for constant h. At low �, the current’s near-surface
forward motion ceases much earlier in the tank relative to a case with larger �, made apparent by
comparing the horizontal axis across panels in the same column of Fig. 7. This is discussed in the
next section.

B. The maximum extent of the current

Figure 7 highlights the propensity of the hypopycnal currents to progress down the length of
the domain, and then halt. The maximum distance over which this occurs, denoted by L, is an
important parameter because it represents the length (in the x direction) of the rectangular region
that characterizes the volume of fluid that makes up the emergent hyperpycnal current. In a field
study, this parameter could be compared to the measured location of the plunging point in an outflow
adjacent to a nuclear power plant, for example. For context, the maximum extent of gravity currents
has been studied before, but in the context of sediment-laden gravity currents. Maxworthy [38] used
laboratory experiments to first identify the formation of a secondary current that flows along the
bottom of the domain. He tracked the maximum extent as a function of the excess density ratio
(the ratio of density differences due to salt versus that of sediment). Sutherland et al. [33] went a
step further and performed laboratory experiments of hypopycnal flows that underwent convective
sedimentation with varying particle sizes. They measured the maximum distance of the hypopycnal
current and found a semi-empirical relationship to the particle diameter. They found that as particles
became larger, the maximum extent of the hypopycnal current increased. Davarpanah Jazi and Wells
[34] performed experiments experiments along a flat bottom tank and highlighted the expected
maximum extent for different intervals of the density ratio.

There has been limited laboratory scale work focused directly on cabbeling gravity currents
since precise temperature control in a laboratory environment is practically challenging. However,
there are known alternatives that yield the same basic behavior. Experiments featuring a methanol
and ethyene glycol (MEG) mixture flowing into a fresh ambient were performed in Huppert et al.
[39]. By controlling the concentration of methanol, the resulting relationship between the density
and concentration of MEG becomes approximately quadratic, allowing for a density maximum to
occur when the fresh ambient is mixed with MEG. Several experiments highlighting the evolution of
continuous source MEG gravity currents (a simple model representing a pyroclastic cloud) on slopes
of 15◦ and 30◦ were performed, and their results indicated that as the gravity currents flowed along
the sloped roof, entrainment of the ambient caused a dense mixture to form and to sink to the bottom.
Their results, while qualitative on the whole, showed empirically that the head locations tend to
scale approximately as t0.62, with the total distance of the initial current being proportionally to the
Reynolds number defined by the nozzle diameter and inflow speed. However, these experiments did
not comment on the run-out length of the initial intrusions. Following this, Woods and Bursik [40]
performed a systematic study of the angle dependence of the system and found that as the slope
of the roof increased, more ambient fluid was entrained, leading to earlier lift-off and a resulting
shorter run-out length of the initial intrusion. The critical angle was about 25◦, and for slopes less
than this critical value, the run out was positively correlated with the angle of the slope, more or less
agreeing with the findings of Huppert et al. [39].

The point is that in these studies, the maximum extent of the current driven by convective
sedimentation in the case of the sediment laden experiments, or the mixing and lofting in the MEG
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FIG. 8. Panel (a) shows the variation of L for the large intrusion cases ( ), the medium intrusion cases

( ), and the small intrusion cases ( ). VT5h4 and VT6h4 are also included and denoted by . Panel (b) shows
the area of the hyperpycnal current normalized by the area of the entrainment zone A after the cabbeling is
quenched.

experiments is important because it predicts the length scale where one might be concerned about
transport of material. More on the significance of the maximum extent in this context can be found in
the discussion section. In the simulations presented within this study, it is not necessarily sediment
deposition that is of interest, but more the transport of heat (and perhaps dissolved gases in a field
setting, for example).

For the following section, we will define

L = f (�, h, Gr0). (39)

We calculate L by simply recording the location of the front of the gravity current at a height 0.95h.
The location of the front of the gravity current at a given time is defined as the farthest distance
from the left-hand wall where T = Tc, where Tc = 0.01. The computed values for L are not strongly
dependent on the choice of Tc until it is greater than about 0.5 (the estimate of the front location of
the current is incorrect) or until it is less than about 0.0001 (small numerical variations in the flow
start to give incorrect results). Note that Tc corresponds to a different dimensional temperature for
each case.

L is plotted as a function of � in Fig. 8(a). Cases with h = 4 are represented by blue squares,
cases with h = 2 are represented by red triangles, and cases with h = 1.82 are represented by black
diamonds. VT5h4 and VT6h4 are represented by green circles. We can see that L generally increases
with �, however, past � = 3 the slope of increase is shallower. Furthermore, for large h (a relatively
deep domain), we can see that the maximum extent is severely affected for � between 3 and 7,
relative to the cases with smaller h. This was also apparent in the temperature Hovmoeller plot in
Fig. 7(a). It is not until � is increased past about 6 where the maximum extent is more comparable
to the cases with h = 2 and h = 1.82. The reason for this discrepancy is that the Grashof number is
small enough that the hypopycnal current enters the viscous regime early in its development, leading
to a decreased maximum horizontal extent. This is confirmed by rerunning cases T5h4 and T6h4
but reducing the viscosity by a factor of two (recall that these cases are VT5h4 and VT6h4). Note
that by increasing Gr0 by a factor of four (reducing viscosity by a factor of two), we increase the
maximum extent of those two cases. This led to L values more comparable to the cases with larger
h (and equal �).
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We can see that continuing to increase � increases the distance in which the hypopycnal current
travels before it halts. As discussed previously, continually increasing � implies that the leading
order functional form of the buoyancy forcing is purely quadratic, which precludes cabbeling (and
similar to the “T cases” presented in Grace et al. [19]). For this reason, we should expect L to
continue increasing with � but at a slower rate at larger �.

The maximum horizontal extent L is an important parameter because it helps characterize the
approximate area of the hyperpycnal current, which consists of mixed ambient and intruding fluid.
For each hyperpycnal current, we estimate the area by assuming that the mixing of the hypopycnal
current and ambient occurs over a rectangular region of length L + x�, and the depth h. This can be
thought of as the “initial area” for the hyperpycnal flow, and for brevity, this region will be called
the “entrainment zone.” The full depth is chosen as the vertical length scale since the mixing takes
place over the entire depth of the domain. Mathematically, area of the entrainment zone is given by

A = (L + x�)h. (40)

The area of the current calculated from the simulation data at a given time is

A =
∫ l

0

∫ h

0
χ dx dz, (41)

where the indicator function χ is

χ =
{

1 T > Tc

0 T � Tc
. (42)

Recall Tc = 0.01 is the critical temperature, which was found to adequately represent the area of
the current. The computed area of the current is sensitive to the choice of Tc, and values of Tc

greater than about 0.05 tend to underestimate the area of the current. Figure 8(b) shows the area of
the hyperpycnal current A normalized by A. The times were chosen so that the initial hypopycnal
current has ceased flowing and significant mixing between the hyperpycnal current and remaining
ambient had not occurred. We can see that for larger �, A/A approaches unity, meaning that L + x�

is a good representation of the lock length of the hyperpycnal current. Conversely, it is apparent
that for low �, A underestimates the initial fluid area of the hyperpycnal current. The reason for
this lies in the near-surface reverse flow mechanism discussed earlier. For low �, cabbeling occurs
very quickly relative to the propagation of the gravity current, so the bottom current forms and
quickly outruns the initial hypopycnal current. The near-surface reverse flow of equal magnitude
(but opposite direction) to the bottom current pushes the initial hypopycnal current back towards
the left-hand wall. Thus, cabbeling and subsequent mixing takes place in a very narrow region near
the left-hand wall, resulting in a relatively small estimate of L, and therefore A.

C. Early hyperpycnal current characteristics

The size of the entrainment zone also affects the temperature distribution of the bottom current.
Larger entrainment zones lead to mixing with more ambient fluid, so temperatures will be closer
to T = 0. We can assess the qualitative properties of the gravity current as � varies by comparing
the current’s spatial structure at a late time when the hypopycnal current has been mixed out. A
comparison is presented in Figs. 9(a)–9(d). In this figure the density field is multiplied by 2�. This
rescaling puts the maximum density at 1 and the density of the ambient at 0. This facilitates an easy
comparison between cases. The times were chosen such that the dimensional temperature in every
location of the domain falls between the ambient temperature and T̃md . By increasing �, we can see
that the volume of the current is larger, in qualitative agreement with the difference in entrainment
zone size, and we can also see that the density distribution within each current is qualitatively
different. This is especially noticeable in the body and tail of the current for the T2.2h2 [Fig. 9(a)]
case when compared to T3.5h2 [Fig. 9(d)].
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FIG. 9. Panels (a)–(d) show the rescaled density field for several cases. Case names and times are located
on the plots. A density of 0 corresponds to the ambient density while a density of 1 corresponds to the maximum
density. Panel (e) shows box and whisker plots of the temperature distribution within the current. Panels (f) and
(g) show the same data on rescaled axes where 1 corresponds to a temperature T = 1

�
(the nondimensional

temperature of maximum density) and 0 is the ambient temperature. The interquartile range is denoted by the
blue boxes and the median temperature is denoted by the red line. The mean temperature of the current is
indicated by � and 1

�
is indicated by •.

Furthermore, the density distribution in the head is clearly different. For lower �, the density in
the head is much closer to the maximum density (indicated by brighter colors), and increasing �

tends to decrease the head’s density. Along the bottom of the T2.2h2 case, we can see a layer of fluid
that is very close to the maximum density, whereas in the T3h2 case, the densities are all less than
the maximum density. Since the T3h2 case actually starts with a wider range of temperatures (the
largest �T̃1), it is interesting to note that the temperatures are relatively closer to the ambient. The
density fields for the cases with � > 3.5 are not shown simply because the tank is not long enough
for the hyperpycnal current to develop. In these cases, maximum extent of the hypopycnal current is
nearly the entire length of the tank, so the hyperpycnal current simply has no room to develop and
propagate.

Figures 9(e)–9(g) provide a measure of the distribution of temperatures within the current
for T2.2h2, T2.63h2, T3h2, and T3.5h2. These plots highlight the form of the distribution of
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temperatures within the current. The fluid within the current is defined by any parcel that has T > Tc.
The upper and lower bounds of the blue box indicate the spread between the 25th percentile and 75th
percentile of the data, while the upper and lower whiskers show the spread between the lower (upper)
extreme and lower (upper) quartile. The horizontal red line represents the median and the filled
diamond represents the mean. Figure 9(e) shows the data, as well as the nondimensional temperature
of maximum density 1

�
, for the four cases, Fig. 9(f) shows the data on an axis normalized by

the temperature of maximum density, and Fig. 9(g) shows the nondimensional density normalized
by the maximum density. These plots highlight the fact that by increasing �, the distribution of
temperatures within the hyperpycnal current become systematically narrower, with the distribution
of temperatures grouped around the median. Furthermore, the temperatures become closer to the
ambient (T = 0). This is further evidence of the general hypothesis that currents with larger � mix
with a larger volume of ambient fluid, leading to a narrower temperature distribution.

On the other hand, the wider distribution in T2.2h2 is a result of the early evolution of the current.
Recall that the formation of the hyperpycnal current occurs relatively early, and this induces the
near-surface reverse flow. Thus, the hypopycnal current, which is the source of the cabbling, reverses
direction and is trapped near the left-hand wall, forcing cabbeling only to act in this region. Since
the hyperpycnal current continues propagating, dense fluid is fed only to its tail, leading to a wider
range of temperature.

An interesting point that is made clear by Fig. 9 concerns the variation of the head location of the
currents. We can see that the head location for T3.5h2 is actually the farthest down the length of the
tank. The explanation is that the times shown were chosen to best highlight the state of the current
after it has begun to flow, and not necessarily to facilitate a comparison in head location. However,
this brings up an interesting question about long term evolution of the hyperpycnal currents. As �

is increased, the head speed of the initial hypopycnal current increases, meaning more distance is
covered in the first phase of its evolution over a given time interval. However, for large enough �, the
area of ambient fluid that is entrained is larger leading to a much smaller density difference between
the head of the hyperpycncal current and the remaining ambient, evidenced by Figs. 9(e)–9(g).
Thus, while these currents may initially attain larger distances, it is reasonable to think that the
hyperpycnal currents from lower � cases may eventually catch up due to their larger driving density
difference.

IV. SUMMARY AND DISCUSSION

In this study, we performed numerical simulations of gravity currents in the cabbeling regime
(cabbeling occurs when two masses of water with temperatures on opposite sides of Tmd mix and a
denser mass of water is generated). By appropriately nondimensionalizing the equations of motion,
the NLEOS parameter � (the ratio of two characteristic temperature differences) appeared. We
highlighted the general evolution of a specific class of gravity currents where � > 2, which meant
that the density of the ambient was initially closer to the maximum density than the density of the
intrusion was. This meant the currents initially rose and flowed along the surface (i.e., a hypopycnal
was generated). Mixing between the ambient and intruding fluids led to cabbeling which in turn led
to a denser hyperpycnal current that flowed along the bottom surface.

In the present study, both � and h (the nondimensional depth) were varied to build an under-
standing of the general behavior of these currents in (�, h) space. In general, we found that currents
initially slumped to the top surface and propagated while mixing along the body and tail of the
current generated dense water due to cabbeling. Sinking of the dense water continually occurs as
the initial hypopycnal current flows and eventually a hyperpycnal current forms along the bottom
surface of the domain. This emergent current quickly outruns the initial hypopycnal current. A
consistent feature across all cases was that the head height of the hyperpycnal current was about half
the depth of the domain, regardless of the initial height of the hypopyncal current. This observation
regarding the hyperpyncal current agrees with the theory shown in Linden et al. [18], who showed
with the use of an energy conservation argument that the head height of the current must be half
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its lock release depth. Thus, the “effective lock release depth” of the hyperpycnal current is H , the
depth of the domain.

To further categorize the behavior of these currents, we considered the domain average kinetic
energy, denoted by ke, and found that as � was increased, the timescale of the development of the
gravity current increased before the onset of cabbeling. This agrees with the perturbation analysis
that showed cabbeling became less important to the dynamics in the limit of large �. Computing ke
also showed that decreasing the height of the initial water mass led to a relatively small increase in
kinetic energy due to cabbeling at constant �. By using the near-surface temperature in the along-
tank direction, the maximum horizontal extent, L of each current was also tracked and compared.
We showed that as � increases, the maximum extent of the hypopycnal current increased as well,
but the slope decreased as � became larger. Increasing h led to a reduction in horizontal extent at
constant �. The Grashof number for the high h cases was small enough that viscous effects played
a significant role early on. This was evident for cases T3h4, T4h4, and T5h4, as L clearly scales
differently than the cases with h = 2 and h = 1.82. Two simulations were performed where the
Grashof number was modified by changing viscosity (VT5h4 and VT6h4). By changing the value
of viscosity, we can change the value of the Grashof number but keep � and h unchanged. In these
cases the viscosity was reduced by 50% leading to an increase in the Grashof number by a factor of
four. This led to larger maximum extents relative to the comparable cases T5h4 and T6h4. Similar
behavior was seen in experiments by Gladstone et al. [41], as well as Grace et al. [19].

We used the maximum extent of the current as well as the total depth to define a rectangular
region called the entrainment zone. This region acts as the reservoir of fluid that makes up the
hyperpycnal current. It was shown that the entrainment zone is a good indicator of the area of
fluid that makes up the hyperpycnal current except for � near two. In this regime, the calculated
entrainment zone underestimated the volume of the hyperpycnal current. For � close to two,
the timescale for cabbeling was found to be shorter than the timescale of initial propagation of
the current, so cabbeling occurred quickly and the hyperpycnal current formed before the initial
hypopycnal current propagated a significant distance.

The distribution of density and temperature of the hyperpycnal current was also studied. The key
observation is that increasing � makes the distribution of temperatures narrower about the median
temperature. As � was increased, the hypopycnal current mixed with a larger region of ambient
fluid, leading to an average temperature of the mixture closer to the temperature of the ambient.
Alternatively, by reducing � to be close to two, the distribution was found to be wider, with more
locations within the flow being close to 1

�
(the nondimensional temperature of maximum density).

Thus, hyperpycnal currents with � close to two generally exhibited more regions of dense fluid than
currents with larger �.

The results of this study highlight an important characteristic about gravity currents. For a
sufficiently large Reynolds number, gravity currents go through several self-similar phases of
evolution as they progress, each corresponding to a different dominant momentum balance within
the current. These phases are called the acceleration phase, the slumping phase, the inertial
phase, and the viscous phase. In the acceleration, slumping and inertial phases, the dominant
balance is between the driving pressure gradient generated by density differences, and the in-
ertial term in the momentum equations. In the viscous phase, the dominant balance is instead
between the inertial term and the viscous term. Each of these four phases manifest themselves
as (among other things) a different scaling law for the head speed of the current. Cantero
et al. [37] discusses each of the four phases and provides evidence for the dominant balance
within each phase. They also provide quantitative relationships between the head speed, time,
and the normalized lock-release volume V0. For example, in the slumping phase, the gravity
current head speed is approximately independent of time, and the time the current spends in
this regime is simply proportional to V0. In this regime, density changes within the head, as
well as head height changes are negligible. It is not until the inertial regime, where the head
speed scales as V 1/3

0 that gravity currents experience more significant head height and density
changes.
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How might we apply these regimes to the hypo- and hyperpycnal currents presented in this study?
We expect that the only circumstance in which the currents may progress through these phases is in
the high � limit. A primary assumption of the theory of each phase is that the volume of the current
does not deviate strongly from its initial value [17], and since the initial hypopycnal currents with
low � are immediately disrupted by cabbeling, this assumption is not satisfied. However, in the
high � limit, we saw that the leading order behavior was that of a noncabbeling gravity current, so
there is potential that currents in this limit may progress through each phase before cabbeling can
completely extract the intruding fluid. More work is necessary to fully characterize these currents.
Furthermore, as we saw in Grace et al. [19] in Fig. 5(a), the head speed does not necessarily scale
with time in the same way under a nonlinear equation of state.

The more pertinent question is regarding the hyperpycnal current. As we saw, varying �

increased the size of the entrainment zone, and the resulting hyperpycnal current. In principle, one
can expect that increasing � indirectly increases the time interval of each of these regimes for the
hyperpycnal current by increasing the nominal lock length, and therefore the V0. What complicates
this is the fact that by increasing �, we increase the initial volume of entrained ambient fluid,
which reduces the characteristic density difference between hyperpycnal current and the remaining
ambient. This is evident by the smaller mean and median temperatures and densities shown in
Fig. 9(b). This density difference affects the buoyancy velocity and therefore the nondimensional
timescales on which the gravity current flows. A point of future work could be to make a more
comprehensive characterization of the hyperpycnal current characteristics, such as a quantifying
whether the phenomenological lock length can compensate for the reduced timescales created by
the mixing, resulting in a net increase in the horizontal transport of heat and material with increasing
�.

There are several additional future directions to take this research. Are the results of this study
significantly affected by three-dimensionality? Vortex tilting and stretching may enhance the rate of
mixing when compared to two-dimensional simulations. Could this affect the rate that the hypopy-
cnal currents mix with the ambient? If mixing occurs more rapidly over the course of hypopycnal
current evolution, there may be implications for the rate of formation and the characteristics of
the hyperpycnal current. If mixing happens more rapidly and more efficiently, the hyperpycnal
current temperature distributions may be narrower and their mean temperature may be farther from
the ambient, due to there being a smaller volume of entrained ambient fluid. This could allow a
three-dimensional hyperpyncal current to travel farther than a comparable two-dimensional case.

Furthermore, for readers more interested in turbulent structures, the simulations presented in this
study could be rerun in three dimensions at large Gr [see (14)]. It has been shown that turbulent
structures in the tail of a gravity current have some impact on the head location and head speed of
the current late in its evolution. Cantero et al. [37] and references within discussed this impact and
found that when simulating gravity currents in two dimensions, two-dimensional coherent vortical
structures in the tail of the current led to a reduction in the driving pressure gradient of the flow.
They compared these results to three dimensional cases at the same Reynolds number and found
that the pressure reduction within the tail was weaker for the three-dimensional cases. This led to
a larger head speed in the inertial and viscous regimes for the three-dimensional cases compared to
the two-dimensional cases. Thus, how might the evolution of the hypopycnal current be affected by
three-dimensionality within the tail region of the current?

Last, we should identify if the relationship between L, �, and h is substantially different if the
boundary conditions are changed to no-slip. In the high Gr limit, we should expect that the boundary
layers are significantly thinner relative to the length scales of the interior flow, so the interior should
evolve similar to the results presented here. However, it is unclear on if no-slip boundary conditions
are even the “correct” boundary conditions. One could think that a density driven flow might be
flowing beneath ice, so the boundary conditions have a certain variable roughness associated with
them, as well as thermal boundary layers, melting (especially for high �), and entrainment of melt
water. Furthermore, if these currents flow along the an open water surface, the significant role that
wind and surface waves play in the evolution of subsurface currents must be included.
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