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In this study, ensembles of experimental data are presented and utilized to compare
and validate two models used in the simulation of variable-density (Atwood = 0.22),
compressible turbulent mixing. Though models of this kind (Reynolds averaged Navier-
Stokes and large-eddy simulations) have been validated extensively with more canonical
flows in previous studies, the present approach offers novelty in the complexity of the
geometry, the ensemble-based validation, and the uniformity of the computational frame-
work on which the models are tested. Moreover, all experimental and computational
tasks were completed by the authors which has led to a tightly coupled experimental
configuration with its “digital twin.” The experimental divergent-shock-tube facility and
its data acquisition methods are described and replicated in simulation space. A 2D Euler
model which neglects the turbulent mixing at the interface is optimized to experimental
data using a Gaussian process. This model then serves as the basis for both the 2D
RANS and 3D LES studies that make comparisons to the mixing-layer data from the
experiment. A relatively simple RANS model is shown to produce good agreement with
experimental data only at late flow development times. The LES ensembles generally show
good agreement with experimental data but display sensitivity to the characterization of
initial conditions. Resolution-dependent behavior is also observed for certain higher-order
statistics of interest. Overall, the LES model successfully captures the effects of divergent
geometry, compressibility, and combined nonlinear instabilities inherent to the problem.
The successful prediction of mixing width and its growth rate highlight the existence
of three distinct regimes in the development of the instability, each with similarities to
previously studied instabilities.

DOI: 10.1103/PhysRevFluids.8.014501

I. INTRODUCTION

The mixing of variable-density flows occurs across a vast range of space and timescales. It
occurs on Astrophysical scales in events like supernovae (SN), on kilometer scales in oceanic
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and atmospheric flows, all the way down to the millimeter scales of inertial confinement fusion
(ICF). In ICF and SN, in particular, it is particularity challenging to recreate the exact mixing
for scientific observation and study. This difficulty in physical observation has placed a great
need for the use of computer simulations as tools for increasing understanding. However, these
powerful models can in turn create more questions, and as such their efficacy requires experimental
validation. For instance, a simulation used to model the multiple combined instabilities occurring in
an ICF capsule should first be shown to successfully model the mixing driven by a single combined
instability in a meter-scale experiment. The current work aims to achieve just that: use high-fidelity,
combined-instability experimental data to create and validate a “digital-twin” simulation using two
common turbulent mixing-models.

A. Problem outline and motivation

The interaction of a blast wave (BW) and a multicomponent gaseous interface results in a
combined hydrodynamic instability when the BW travels from a high to low-density gas [1,2].
In this study the two gases forming the interface are N2 and CO2, yielding an Atwood number
(A) of 0.22. In this case, the blast-interface interaction incites the Richtmyer-Meshkov instability
(RMI) at the onset followed immediately by the Rayleigh-Taylor instability (RTI) [3–9]. Any initial
perturbations present on the interface create local misalignment between the density gradient and
the driving, time-dependent pressure gradient, resulting in vorticity deposition on the interface due
to the RMI and RTI. The vorticity deposition causes the perturbations to grow into inter-penetrating
spikes (high-density gas) and bubbles (low-density gas). We refer to these combined effects as the
blast-driven instability (BDI). For a comprehensive and up-to-date survey of research on the RMI
and RTI, see Zhou [10,11].

Combined instabilities such as the BDI have been shown to be particularly troublesome for ICF;
making their elucidation a crucial step for the viability of this technology [12–17]. Laser drive
asymmetry and fabrication irregularities create perturbations that grow due to combined instability
during the initial implosion stage and later on when compressed hot fuel decelerates the colder
imploding fuel [15–18]. While RM growth within the capsule has been shown to have a small
effect, it serves to initialize the dominant RTI growth of the implosion phase [19,20]. The instability
we study is analogous: RMI acts immediately to set the stage for the longer time RTI growth.

Furthermore, it has been found that the ICF operating regime is located on a performance cliff,
meaning small deviations in model design could have a large impact on performance [12]. This
predicament provides impetus to rigorously test the simulations, and their models, used in ICF
design as much as possible. From a more general standpoint, the simulation of compressible and
turbulent environment such as the BDI pose large challenges for simulations. This is primarily
because the numerical techniques utilized to capture shock discontinuities often directly impair the
method’s ability to resolve turbulence in the flow [21].

B. Novelty of present work

The experimental data on their own provide three unique opportunities for model validation.
Primarily, RTI and RMI have been studied extensively in the past decades, but most often in planar
geometries. The models, theories, and key governing parameters (such as the self-similar growth
constants), were mostly developed with planar studies. Because these models and theories have
often times not been developed or validated in cylindrical or spherical geometries, they can introduce
errors when used in those regimes [12]. While several recent experimental studies concerning
instability growth in cylindrical geometry exists, many are concerned with the convergent case
[22–24]. There are some that study the divergent case, such as Li et al. [25]. However to the
authors knowledge, in all previous works, there is only a single instability acting, and many
do not transition toward a turbulent mixed state. The present work addresses this by providing
experimental data in cylindrical geometry with more complex physics (combined instability with
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turbulent mixing) for comparison to simulations, RMI/RTI models, and theories. Second, the
experiment provides a combined RMI/RTI instability with which to validate models. The nonlinear
coupling of instabilities have previously been difficult to predict [26]. Last, the experimental data
was taken using high speed (4.75–7 kHz) methods and is temporally well resolved. This allows
for high-fidelity simulation validation in that the entire temporal evolution of the instability can be
compared directly from experiment.

Beyond the novelty of the experimental data themselves, the simulations in this study represent
a high-fidelity representation of the experimental configuration. With both simulations and experi-
ment completed by the authors, nuances of the experimental initial conditions, boundary conditions,
and the data acquisition and processing were fully replicated in the simulation. An important
example of this is the characterization of interface initial conditions (ICs). Many simulations do
not use real ICs to seed their simulations, while those that do often use an idealized version
of an experimental IC [27]. For example, in Boureima et al. [28] a cosine superposition with
an idealized Gaussian distribution of initial amplitudes and phases was used to seed multimodal
perturbations. Experimental studies often contribute to this problem due to an outright neglect of IC
characterization (sometimes due to practicality) or the diagnostic inability to measure more than a
large-scale perturbation.

The use of poorly characterized ICs is particularity problematic for transitioning instabilities
like the BDI, as several works have shown the imprint of ICs lasting into the late time flow
properties and significantly impacting the flow evolution [11,19,27,29–37]. The ICs in this study
were characterized using two different methods. One method used the energy spectra (from ≈ 300
IC realizations), and the other used direct data input of the experimental ICs. This process is covered
in more detail in Sec. III E.

The present study offers novel model comparison and validation through ensembles of data. More
specifically, the experimental data was used to produce mean and variance profiles for the quantities
of interest. These mean profiles were used to tune the Euler and Reynolds-averaged Navier-Stokes
(RANS) stages of the model validation. However for the large-eddy simulation (LES), we use the
same number of LES realizations as there are experimental realizations. Then, both the mean and
the variance of the LES ensemble are compared to that of the experiment. It is in this way that the
study attempts to more accurately recreate the high sensitivity to ICs in this nonlinear instability.

To the authors knowledge, no previous works have used this level of ensemble-based comparison
between experiment and multiple turbulent models. For instance, Barmparousis and Drikakis [38]
compared ensembles of RANS and LES models to study RMI uncertainty, but did not involve
experimental observations or ICs. Clark and Zhou [39] and Zhou [40] both simulated an ensemble
of synthetic and artificial ICs using LES, but the studied RT flows had no link to experimental obser-
vations or RANS models. Narayanan and Samtaney [41] compared simulated RMI to experimental
shock tube data, but neither the experimental data or simulation data were ensembles. Finally, over
20 years ago Dalziel et al. [42] performed an ensemble of RTI experiments and compared them
to LES simulations from two different ICs, but the comparisons were primarily qualitative and the
ensembles themselves only consisted of a few runs. Indeed, it seems extremely rare to find examples
of ensemble studies for instability and mixing problems, let alone those also linked to experimental
data.

Finally, the model validation occurred in an hierarchical approach. First, the initial conditions and
boundary conditions are set by matching zeroth-order experimental data (such as pressure profiles)
to results from the direct solution of the Euler equations, i.e., the Euler model. The Euler simulation
tuning parameters are then set as constants for the mix-model simulations. A K − L RANS model
[43–45] is validated by tuning three model parameters to best match experimental data like interface
mixed width. The second mix-model investigated is a 3D LES model, which is validated using an
ensemble approach as mentioned above. All three models used in this study are implemented using
the Pyranda code [46], an open source proxy-app for the Miranda code developed at Lawrence
Livermore National Lab.
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(a) (b) (c) (d)

FIG. 1. Pictures and diagrams of the experimental facility. (a) Front facing picture of the diverging facility
with key dimensions annotated. The viewing window can be seen in the center of the image. (b) Front facing
schematic of the facility. The location of the foam layer, viewing window, and commercial detonator are
all indicated. The heavy and light gas are also indicated and colored according to their appearance in Mie
Scattering images. Note that for PIV, the data come from a smaller field of view located within the window
indicated here. (c) Side-facing schematic of the facility showing facility width, gas entry and exit points, as
well as fan and camera locations. (d) Individual initial condition realizations visualized using Mie Scattering.
(i) Flat interface condition. The incident blast wave, smooth and free of perturbations, can also be seen (brightly
shaded region) impacting the interface. (ii–vi) An array of perturbed initial conditions demonstrating the range
of different perturbation amplitudes and wavelengths generated by the facility.

In summary, the goal of the present work is to create and demonstrate a high-fidelity numerical
model of our experimental facility to test and validate RANS and LES models through comparisons
of the ensemble data. The fidelity of the numerical model will be high enough for it to act as a
“digital twin” and be used for future experimental design work. It should be noted, particularity
concerning the RANS model, that this work does not intend to generically validate physical models.
The focus is on validation of a digital surrogate in a staged multi fidelity approach, making the
validation somewhat unique to this particular problem. Despite the problem specific validation, we
argue there are still takeaways that can be more broadly generalized. This could in turn improve
the confidence in results when using these models in much less controlled problems, such as ICF
or SN. The paper is presented in the following manner. First the experimental facility and data are
introduced and explained. Next the Pyranda code and the equations of motion are introduced, along
with the staged-validation approach. Table I explains the differences between the models while
Table II shows the coefficients used in the RANS model. The subsequent three sections cover the
specific validation steps for each of the three models used (2D Euler, 2D RANS, and 3D LES)
with their corresponding experimental data. The final section discusses the results of the validated
simulation. Table III contains a list of the acronyms and nomenclature used in this work.

II. EXPERIMENTAL FACILITY

A. Facility and data overview

The experimental facility used to acquire the validation data has been detailed and characterized
previously in Musci et al. [47], but will be briefly summarized here. Figure 1 shows a photo,
schematics, and examples of initial conditions produced by the experimental facility. As shown in
Fig. 1(a) the chamber is triangular in shape as it is intended to emulate a sector of a cylindrical disk.
It consists of two 45◦ diverging steel plates with about 3 cm of spacing in-between. The experiments
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take place in the center of this space. The chamber is over 2 m tall to allow for longer experimental
times by minimizing reflected rarefaction waves from the top, which is open to the ambient.

Figures 1(b) and 1(c) show schematics that explain the operation of the facility. Two gases
of different density fill the chamber—the high-density gas (ρHeavy or ρH ), CO2, enters from the
bottom, while the low-density gas (ρLight or ρL), N2, enters from the top. The gases exit 0.5 m
above the chamber bottom through a horizontal slot due to suction created by a fan attached to
the outer wall of the chamber. The fan causes slight variations in the initial gas velocity which
introduces small perturbations, O (mm) amplitudes, along the interface. The facility can also be
operated such that the interface remains flat and unperturbed, as is show in Fig. 1(d.i). Otherwise,
Fig. 1(d.ii–vi) shows examples of perturbed initial conditions. The perturbed interface can exhibit a
range of different amplitudes and wavelengths from run to run but nominally produces perturbations
with initial amplitudes ranging from 1–8 mm and wavelengths between 2 and 6 cm. The impact of
the outflow slot and extraction fan has been observed experimentally to have a negligible effect on
the interface trajectory and development.

The facility generates blast waves using a commercial detonator (RP80 from Teledyne RISI)
placed at the bottom vertex of the chamber. Upon detonation a BW travels upward, impacts the
interface, and causes instantaneous hydrodynamic development. The BW has a Mach number of
approximately 1.4 before interface impact. The large width to depth ratio of the facility (62 cm
wide at the interface location gives a ratio of 21) helps to reduce any out-of-plane dynamics and
keeps the dynamics approximately 2D (except at the fine scales, where 3D turbulence develops).
Additionally, to isolate the physics of interest, a thin layer of foam is added along the facility
side walls, as indicated in Fig. 1(b). This has been observed to eliminate the reflected bow shocks
resulting from the BW-side wall interaction without impacting the hydrodynamic behavior at the
center of the facility. It is also important to note that the cylindrical BW impacts a flat interface
[Fig. 1(di)], making the setup nonaxisymmetric. This is particularly important during the mixing
analysis, when the spanwise-averaging of the mixed layer is completed. While the simulation’s
identical geometry allows for direct comparison with these experiments, it makes comparing the
results of this spanwise-averaged nonhomogeneous layer to other studies harder to interpret. It also
highlights the importance of carrying out the exact same analysis procedure in the simulation, which
is done here.

For all flow visualization diagnostics, the high-speed cameras used are only able to record the
physics occurring in the facility’s viewing window. The relative size and location of this window
is indicated in Figs. 1(b) and 1(c) and can also be seen in Fig. 1(a). For the present study three
types of data were used. (1) Dynamic pressure transducers and probes (DPT—model PCB 113B27)
were used to record time resolved pressure traces at four locations along the length of the facility.
The position of these four probes are indicated in Fig. 1(b) and allow for the tracking of the BW
front. (2) High-speed Mie scattering was used to illuminate the fog seeded heavy gas and obtain
large-scale mixing or interface trajectory data within the viewing window. (3) High-speed particle
image velocimetry (PIV) was used to obtain 2D velocity field data for the evolution of the instability.
However, to achieve adequate resolution, the PIV data was taken from a smaller field of view, located
within the main and larger viewing window used for type (2).

B. Modeling challenges

1. Boundary and initial conditions

Along with exactly matching the facility’s diverging geometry, there were several other unique
details which had to be captured by the simulation. First was the method used to simulate the
explosion of the detonator at the bottom of the chamber. While the direct simulation of the detonator
could be the subject of its own research effort, the goal of this work was to simply induce the
generation of a BW with characteristics that matched the experimental data. This was done in
the digital twin using a small “energy pill,” the equation for which is shown in Eq. (1). A user
specified quantity of total energy (Eo) is placed inside a small, pressurized sphere (containing the
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local gas) which declines steeply, following a radial Gaussian profile, to the ambient at the radius
(R). The motivation behind this method being that releasing a large amount of energy in such a
small space, would allow the simulation to form a Taylor-Sedov BW [48,49] in the localized gas
absent of any detonation mechanism or by-products. Musci et al. [47] has previously shown that
a Taylor-Sedov BW is produced by this experimental facility. Experiments have also consistently
shown the cylindrical BW to be smooth and free of perturbations prior to interface impact. The
radius (R) and location of the energy pill were motivated by the actual size and location of the
detonator used in the experiments:

Epill = Eo e−r2/R2
. (1)

The second modeling challenge is the presence of foam material along the side walls of the
experimental facility. The foam which is sandwiched between the two large face plates, is placed
on the diverging side walls and extends roughly two inches into the chamber. This is present to
eliminate the reflected shocks that are created as the BW propagates up the chamber. It was seen
experimentally that the reflected shocks impacted the hydrodynamics of the instability substantially.
Thus, to isolate the effects of the incident BW-interface interaction, the foam was added and shown
to eliminate all reflected waves. This was emulated in the simulation by placing a custom boundary
condition along the edges of the 2D domain. It should be noted that trying to accurately model the
physics of the shock-foam interaction was not the goal; it was simply desired to eliminate reflections
off the side wall. This was accomplished by applying a low pass Gaussian filter (as in Cook [50]) to
the flow field in the same physical location as the foam in the experiment. The velocities at the walls
were set to zero, and transition between the filtered foam region and unfiltered flow region was
defined using a hyperbolic tangent function with a thickness of a few computational grid points.
This is all accomplished using Eqs. (2):

w̆ = 1

2

(
1 + tanh

{−[(x − xL ) − SW]
1
2 SW

})
+ 1

2

(
1 + tanh

{
[(x − xR) + SW]

1
2 SW

})
, (2a)

�u = �u(1 − w̆) + Gx(�u)w̆, (2b)

where SW is the physical thickness of the sponge and xL and xR are the locations of the left and
right solid boundaries for a given chamber height, y. The filter weight w̆ is then used to update the
velocity equations after each substep of the fourth-order Runge-Kutta integration scheme. Gx(�u) is
the Gaussian filter applied only in the x-direction aligned index.

Similarly, the outflow BC had to be modified to match that of the experiment. The experimental
facility has an open lid, such that the BW passes through the chamber and freely into the ambient.
The chamber height was made such that by the time the BW exits the chamber it has weakened
substantially. The weakened BW exits the facility and sends a reflected rarefaction wave back into
the chamber. The rarefaction has been observed to impact the hydrodynamics of the instability,
minimally, at late times (>11 ms). To mimic this feature in the digital twin, the outflow was formed
so that minimal reflections would be created at the top boundary. This is achieved by filtering the
flow as it approaches the top of the domain and enforcing ambient conditions at the boundary.

2. Losses

Unmeasured losses in the experimental facility undoubtedly affect flow field physics, and so
must be accounted for in the digital twin. For instance, prior to accounting for losses the simulations
displayed excessive interface movement as compared to experimental observations. The extra, late-
time, movement of the interface indicated that more energy losses were occurring in reality than
was being produced by simulations.

The energy losses are partially due to material and plate deflection both when the detonator
explodes and as the BW traverses the chamber. Outflow losses could also occur along the length of
the chamber as the BW passes things like modular port plates or viewing windows, and the high
pressure forces fluid out of imperfect seals. However, a simple deflection analysis showed that the
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losses from the pressurized fluid interacting with the plates was likely small compared to those due
to turbulent boundary layers.

Thus, energy losses due to the formation of turbulent boundary layers along the faces of the
large 45◦ plates were assumed to be the primary source of loss and motivated the loss-model.
The boundary layers have not been experimentally measured but certainly dissipate some flow
momentum into internal energy. The combination of losses acting in the system are nonlinear and
cannot be easily accounted for by simply changing the input energy delivered by the detonator. To
account for this in the digital twin, a drag model was used to create a loss term in the equations of
motion, which then accounted for the excess energy that was being delivered to the interface in the
model (which was not there in the experiment). This model will be discussed further in Sec. III B.
Those wishing to skip ahead to the results and validation section should see Sec. III C.

III. MODEL DETAILS AND METHODS

The simulation tool used in this work is Pyranda—the open-source proxy app for the Miranda
code developed at LLNL. Pyranda uses the same tenth-order central finite-difference scheme in
space and explicit fourth-order Runge-Kutta time integration scheme as those used in Miranda.
Full details of the numerical method used in Miranda are available in Cook [50]. Pyranda is
a Python-based, hyperbolic PDE solver capable of solving the 3D compressible Naiver-Stoke
equations. For numerical discontinuities (shocks, contacts, material interfaces) we use an artificial
diffusivity method similar to that of Cook [50] to regularize the solutions. The exact form of these
diffusivities is given in Morgan et al. [51] and in Sec. III B below. While Pyranda is the base solver,
or host code, used in all aspects of this work, LLNL’s RANSBox solver is used for the RANS
portions of this work [45]. RANSBox is a 0-dimensional physics package with numerous RANS
model capabilities (K − ε, BHR, K − 2L − a, etc.) which works in tandem with the host code.
RANSBox solves the RANS equations’ turbulent source-terms and diffusivities, while relying on
the host code for the calculation of all spatial and temporal derivatives.

All simulations are run on a 2D (Euler and RANS) or 3D (LES) conformal structured mesh,
where grid spacing is much finer near the bottom vertex of the chamber domain and gets progres-
sively coarse in the vertical direction. The mesh is designed such that there are twice as many grid
points in the vertical direction as there are in the horizontal.

A. Staged validation approach

An aspect of novelty in the current study is the approach taken for model validation. As opposed
to validating a single RANS or LES mix-model against experimental results, this study validates
both simultaneously. Due to this, the model validation occurs in a staged approach, whereby a
nonmixing, 2D Euler validation is completed before moving on to the mix-model validation.

Figure 2 shows the staged validation approach as a schematic. The bottom of Fig. 2 shows a
legend and the top shows the four types of experimental data used to assess model performance.
The four experimental data types exist in two classes: nonmix and mix data. The nonmix data
consists of pressure profiles obtained from the DPTs during single-gas runs, and interface trajectory
data obtained from high speed Mie Scattering during two-gas runs with a flat IC. This nonmix data
was used first to validate the 2D Euler model, which is itself a nonmixing model.

The mixing models, however, are both validated against the experimental mix data, which
consists of high speed PIV data in the form of turbulent kinetic energy (TKE or k) estimations
and integral mixing-width (W ) data obtained form high-speed Mie Scattering. All experimental mix
data was for runs with a perturbed IC. Thus, the four data just outlined are also the quantities of
interest (QOI) which models will output for comparison. To summarize, the four primary QOI used
for model-experiment comparison are: pressure probe data, flat interface trajectory, integral mixed
width [W —Eq. (27)], and TKE [k—Eq. (28)].
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FIG. 2. A diagram outlining the staged validation approach taken in this study. (1) Stage 1 is considered
the baseline solver: the 2D Euler model. The Drag Coefficient, Co and initial Blast Energy, Eo, are tuned
to optimize agreement with experimental data. The data used for comparison in Stage 1 are the interface
trajectory and pressure profile data. Once optimized, Co and Eo are set as constants and used as inputs for Stage
2. (2) Stage 2 involves validation using mixing models. (2a) Stage 2a uses a 2D RANS model where the initial
turbulent kinetic energy, Ko, initial turbulent length scale, Lo, and self-similar RM Growth Exponent, θ are used
as tuning parameters to optimize agreement with experiment data. The experimental data used for comparison
in Stage 2 are TKE and interface mixed width. (2b) Stage 2b involves validation with a 3D LES model. No
optimized parameters are used in Stage 2b because the 3D LES model is not tunable. Further, a data-driven
representation of the experimental interface Initial Conditions are used as inputs to Stage 2b. Representative
ICs for each experimental realization allow for the 3D LES model to be ensemble validated by comparing
the mean and variance data against the experimental data. Finally, the model outputs of Stages 2a and 2b are
compared against each other using quantities of interest not available in the experimental data set.

The tuning parameters used in each of the three computational models are shown as circles in
the boxes of Fig. 2. How these parameters make their way into the model’s governing equations are
shown in Sec. III B.

In the Euler model validation (Stage 1), two model parameters were used to optimize the
simulation output against the nonmix experimental data. These parameters are indicated by the
circles in the “2D Euler” block in Fig. 2, and are the drag coefficient, Co, and the initial blast energy
input to the energy pill, Eo. These parameters were varied in both single-gas and two-gas Euler
simulations until they produced an optimum solution when compared to the experimental pressure
and interface data. The optimum solution was determined by minimizing the error between the
simulation output and the experimental data and is outlined in Sec. III C.

In Stage 2, the mixing experiments utilizes the same detonators and divergent geometry as Stage
1, Co and Eo are set to constants and used as inputs to the “Mixing Models” shown in orange in
Fig. 2. Comparison of the RANS and LES models is the next stage (2a and 2b) in the validation and
can be performed concurrently. The mixing models are both validated against the experimental mix
data, which consists of high speed PIV data in the from of TKE measurements and integral mixing
width data obtained again form the high-speed Mie scattering. All experimental mix data was for
27 different runs, each with a perturbed IC.

It is important to note that the 2D Euler computational model serves as the base code for both the
RANS and LES mix models. The Pyranda framework allows for additional capabilities, degrees of
freedom, transport equations and more to be integrated into the base Euler model code. This allowed
us to maintain a single model and source code defining the hierarchy which has proved valuable in
ensuring consistency.
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TABLE I. Summary of the different spatial dimensions and terms used in the EOM for each of the validated
models.

Dim. �Yk, j �ui �τi j �E �qi

Euler 2 0 Eq. (15) 0 Eq. (15) 0
RANS 2 Eq. (16) Eq. (15) Eq. (17) Eq. (20) Eq. (19)
LES 3 0 Eq. (15) 0 Eq. (15) 0

As seen in the orange “RANS” box in Fig. 2, the RANS model was optimized using three model
parameters: initial turbulent kinetic energy, Ko, initial turbulent length scale Lo, and the self-similar
RMI growth exponent, θ . These three parameters were varied to optimize the simulation outputs
against the experimental mix data, namely windowed TKE and integral mixed width. It should be
emphasized that the authors were interested in evaluating RANS model performance with relatively
little alterations or tuning. Thus, this work does not aim to validate the K-L RANS model with the
level of rigor to improve its usage outside this particular problem.

Comparisons of the LES model to the experimental mix data did not involve determining any
optimal model parameters like the previous stages, as shown in Fig. 2. The LES model, however,
requires that the ICs of the interface be explicitly defined. Given the strong dependency of the mixing
on the ICs, an ensemble of representative samples of the ICs were required in both the experiment
and simulation to generate significant means in the data. Two approaches were taken in initializing
the LES ICs. The first used a statistical model of the experimental ICs and then sampled from
that model to generate the ICs for the LES. The second approach directly replicated the interface
profiles of the 27 experimental runs as the LES ICs. Both approaches showed good agreement of
the ensemble mean mixing width versus time. The direct data approach, however, appeared to be
able to match the experimental ensemble variance far better, as will be illustrated in Sec. III E. Last,
the simultaneity of validation for RANS and LES, allows for inter model comparison between the
two. An LES data set that has compared favorably to the available experimental data can then be
used to compare and improve RANS models where experimental data are lacking.

A final point regarding the simulation data acquisition methods should be made here. To most
faithfully compare simulation outputs with experimental data, the process of data acquisition in
the simulation sought to exactly mimic that in the experiment. For the nonmix pressure profile
data, that meant creating simulation “probes” and placing them at the same locations as the DPTs
in the experimental facility. Pressure data from these probe locations were then sampled at a rate
exceeding that in the experiment. All other experimental data was captured via cameras acquiring
images from the viewing window in the center of the facility. Due to this, an identically sized and
located “window” was created in the simulation domain, and all data used for comparison had to
be sampled from that region alone. For instance, Mie scattering data were simulated by generating
images from the mass fraction field at the same resolution and domain extent as the experimental
photographs. These images are then post-processed with the same scripts as experimental data.
Similar routines were used for the simulation acquisition of interface trajectory data, integral mixed
width, and TKE.

B. Governing equations of motion

All equations used in each of the three models are included below. The implementation of each
model necessitates changes to the base equations introduced in this section. These changes, such as
dimensionality or term values, will be specified in the section pertaining to that model. Of particular
note are the � terms on the right-hand side of most equations. These terms indicate source (or
sink) terms which change values depending on the model implemented and will be discussed in the
respective section. These terms and their value for each respective model are shown in Table I.
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The general governing equations for the mass, momentum and energy of this compressible,
nonreacting, multi-component model are as follows:

∂

∂t
(ρYk ) = − ∂

∂xi
(ρYkui + Jk,i ), (3)

∂

∂t
(ρui ) = − ∂

∂x j
(ρu jui − τi j ) + ρgi + �ui , (4)

∂E

∂t
= − ∂

∂xi
(Eui − τi jui − qi ) + ρgiui + �E . (5)

Here ρ is density, Yk is the mass fraction of species k, t is time, ui is the velocity vector, xi is the
spatial vector, and Jk is the diffusive mass flux of species k. The diffusive mass flux of each species
in Eq. (3) is given by

Jk,i = ρD
∂Yk

∂xi
+ �Yk,i , (6)

where D is the molecular diffusivity, which is approximated as a scalar for species diffusion between
two species. �Yk,i is an added mass flux source and sink.

In Eqs. (4) and (5), τi j is the viscous stress tensor, g j is the gravitational body force vector, and
�ui is an added loss force vector which will be expanded upon below. E is total energy and �E is an
added energy source and sink term which will also be described below. qi is the heat flux vector and
is described by

qi = κ
∂T

∂xi
+ �qi , (7)

where κ is the thermal conductivity, T is the temperature, and �qi is an added heat flux term.
The form of the viscous stress tensor for a compressible fluid can be expanded upon by

τi j = 2μSi j +
[(

β − 2

3
μ

)
∂ui

∂xi
− p

]
δi j + �τi j , (8)

where μ is the dynamic and shear viscosity, Si j is a symmetric tensor representing deformation of a
fluid element due to the rate of strain it is subject to, δi j is the Kronecker δ, p is the static pressure,
and β is the bulk viscosity. β is normally 0 for incompressible flows and also for compressible
flows where the Stokes assumption holds. This assumption being that there is negligible difference
between the mechanical and thermodynamic pressures, i.e., where thermodynamic equilibrium is
maintained. However, during rapid expansion or compression of a fluid in situations such as the
BDI, the molecular distribution of internal energy can be heavily skewed to the transnational modes
(as compared to the rotational and vibrational modes) and drive thermodynamic nonequilibrium,
where β must be greater than 0 [52,53]. The strain rate tensor, Si j , can be further expanded to

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (9)

A mixed fluid equation-of-state is found using

γ = cpkYk

cvkYk
, R = Ru

Yk

MWk
,

p =
(

E − 1

2
ρuiui

)
(γ − 1),

(10a)

such that

T = p

ρR
. (10b)
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Here γ is the specific heat ratio, cpk and cvk are the constant pressure and volume specific heats
of species k, respectively, MWk is the molecular weight for each species, and R is the apparent gas
constant of the mixed fluid with Ru as the universal gas constant.

Artificial transport terms are added to the bulk viscosity β, the dynamic viscosity μ, the thermal
conductivity κ , and the molecular diffusivity Dk for each species k. Each artificial term is also
Gaussian filtered in the same process as that of Morgan et al. [51] but is also outlined here for
clarity. The fluid properties are defined as

μ = μ f + Cμ |�(|Si, j |)|ρ, (11a)

β = β f + Cβ �

(
∂ui

∂xi

)
ρ, (11b)

κ = κ f + Cκ

ρ

T t
cv G(T ), (11c)

Dk = Dk, f + ρ

t
max [�(Yk )CDk , CY (|Yk| − 1 + |1 − Yk|)2] (11d)

Ci =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 × 10−3, i = μ,

1 × 10−1, i = β,

1 × 10−3, i = κ,

1 × 10−4, i = Dk,

1 × 102, i = Y,

(11e)

where f denotes the physical and real contribution to the fluid transport property and all additional
right-hand side terms make up the artificial contribution. For the artificial terms, the overbar
indicates the application of a truncated Gaussian filter,  is the local mesh spacing, and t is
the instantaneous time step of the solver. The function � represents the application of an eighth-
derivative operator to the scalar or vector in parenthesis. For some arbitrary scalar, φ, and vector φi,
� can be respectively expressed as

�(φ) = max

(∣∣∣∣∂8φ

∂x8
x8

∣∣∣∣,
∣∣∣∣∂8φ

∂y8
y8

∣∣∣∣,
∣∣∣∣∂8φ

∂z8
z8

∣∣∣∣
)

, (12a)

�(φi ) = max (�(φx ), �(φy), �(φz )). (12b)

Finally, the artificial transport coefficients are specified in Eq. (11e). Note that in Eq. (11a) the eighth
derivative operator, �, is applied to the magnitude of the strain rate tensor, which is equivalent to
the square root of the inner product of Si jS ji.

As discussed in Sec. II B 2, sink terms in both the momentum and energy equations [Eqs. (4)
and (5)] were added to account for the unmeasured losses in the experimental facility. The loss
force, �ui , and energy, �E , variables were made time- and space-dependent by tying them to a
simple ad hoc boundary layer evolution equation. This simple model was developed following the
canonical laminar and turbulent boundary layer models [54,55]. By taking the time derivative of
these equations and models and assuming dx/dt ≈ udrg, the boundary layer width, δ, can be shown
to develop in time according to

∂δ

∂t
=

{
5.0 |udrg|Re−0.5, Re � Rec,

0.37 |udrg|Re−0.2, Re > Rec,
(13a)

where

Re = |udrg| δ

ν
, udrg = r̂iui. (13b)

Here r̂ is a radial unit vector to the origin of the domain, which ensures that only the the portion of
the velocity vector, ui, acting along radial lines (i.e., udrg) contributes to the loss terms. Meanwhile,
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Re is the Reynolds number and ν is the kinematic viscosity. Note the Re above is not that relating
to the instability development, but is solely related to the boundary layer along the chamber walls.

Then, assuming a drag coefficient (Cdrg) should increase proportionally to the ratio of the
boundary layer height (on each plate) to the chamber half-width such that Cdrg = 2Co δ/W . We
use this to approximate a drag, or loss, force through

FL = 2Co
udrg|udrg|ρδ

W 2
, (14)

such that

�ui = −r̂iFL, �E = �ui ui. (15)

Here, FL is the per unit volume drag and loss force, W is the experimental chamber half width,
and Co is a drag and loss coefficient. Co is one of two tunable parameters used to optimize the loss
terms and validate the Euler model against experimental results. It is discussed further in Sec. III C.

C. 2D Euler model

Equations (3)–(15) make up the foundational equations applied to each of the three models used
in this study. Stage 1 in this study’s model validation is the base-level simulation in Pyranda and
involves solving of the 2D Euler equations. In the Euler model used in Stage 1 of the validation
scheme, all of the foundational equations are applied in 2D using one or two different gas species.
Additionally, the following source terms are set to 0: �Yk,i , �qi , �τi j . In other words, the mass flux,
viscous stress, and heat flux are absent from the equations governing the 2D Euler model.

D. 2D RANS model

The RANS model used in the Stage 2a validation step was implemented through the use
of LLNL’s RANSBox package of turbulence models [45]. RANSBox couples with the Pyranda
source code to calculate the turbulent diffusivities and source terms in the turbulent transport
equations. RANSbox adds these turbulent diffusivities, source terms, and transport equations to
the foundational equations [Eqs. (3)–(15)] used in the 2D Euler model. The particular RANS model
used for this study was a 2D K-L model, which adds turbulent transport equations for a second order
velocity moment, K , the turbulent kinetic energy, and the turbulent length scale, L. This K-L model
is derived from the RANS equations for a compressible, nonreacting, two-component fluid-mixture
and was first implemented by Dimonte and Tipton [43].

While analyzing the results of this study, it should be kept in mind that RANS models assume
fully developed turbulent flow through their derivation of the turbulent kinetic dissipation rate
equation. As such, they are poorly suited to simulate transitioning flows such as the BDI since
they assume an established inertial range and fully developed turbulent flow at all times [19,51,56].
Therefore, for transitioning flows such as this, one can only expect RANS to match experimental
data at late times when the flow is more fully developed. Due to this inherent limitation, and the use
of this RANS model with relatively few alterations, one does not expect much predictive capability
when used for this relatively complex flow.

The equations governing the RANS model are the previous Eqs. (3)–(15) but with different
values for all source, �, terms [Eqs. (16)–(20)]. Furthermore, as this is a Reynolds-averaged model,
all variables represented in Eqs. (3)–(15) are replaced with their Reynolds, or Favre, averaged
counterpart. The Favre and Reynolds average are defined in Eq. (24), but the replaced variables are,
namely, ui → ũi, ρ → ρ, p → p, Yk → Ỹk, and E → Ẽ . Additional equations for transport and
closure of the turbulent variables L and K are also added [Eqs. (21)–(23)]. The added equations and
� terms are summarized below.
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The added mass flux term is now expressed as the dissipation of mass flux driven by turbulent
species diffusivity,

�Yk,i = μt

NY

∂Ỹk

∂xi
, (16)

where μt is the eddy viscosity and NY is the species mass diffusivity coefficient. Note that in this
K-L model the turbulent diffusivities are constant multiples of the eddy diffusivity, e.g., μt/NY in
the equation above. This will be true for all turbulent dissipation terms. The � term in the viscous
stress tensor is now

�τi j = [Cdev(2μt Si j ) − CisoρKδi j]M. (17)

The term in brackets is better known as the Reynolds stress tensor, Ri j = ρτi j , Ciso is the
coefficient on the isotropic Reynolds stress, and Cdev is the coefficient on the deviatoric Reynolds
stress.

M = 4 Yk (1 − Yk ) (18)

is a measure of fluid mixing in the system and varies from 0 to 1 in the interface region, ensuring
the application of Ri j only in the region of the interface. The turbulent dissipation of energy is added
through the �qi term and is defined by

�qi = M
μt

Ne

∂ ẽ

∂xi
, (19)

where Ne is the internal energy diffusivity coefficient and ẽ is the Favre averaged internal energy,
which is p ρ/(γ − 1).

The � terms to model the losses in the facility [Eq. (15)] are still present in the 2D RANS model.
�ui remains the same while the turbulent energy source term is added to �E such that

�E = �ui ũi + M

(
CD

ρ(2K )3/2

L
− a j

∂ p

∂x j

)
. (20)

The term in parenthesis represent the turbulent source contribution to the internal energy. Here
CD is the turbulent kinetic energy dissipation coefficient, K is the turbulence kinetic energy, L is the
turbulence length scale, and ai is the turbulent mass-flux velocity vector.

The two equations added to the Pyranda equations of motion for this 2D RANS model are the
transport equations for K and L. These are governed by

∂

∂t
(ρK ) = − ∂

∂xi

(
ρKũi + M

μt

Nk

∂K

∂xi

)
+ Ri j

∂ ũi

∂x j
+ ai

∂ p

∂xi
− CD

ρ(2K )3/2

L
, (21)

∂

∂t
(ρL) = − ∂

∂xi

(
ρLũi + M

μt

NL

∂L

∂xi

)
+ CL1ρ

√
2K + CL2ρL

∂ ũi

∂xi
+ CL3Ri j

L

K

∂ ũi

∂x j
. (22)

The terms on the second lines of Eqs. (21) and (22) make up the source terms for the governing
equation of each RANS variable, while the terms on the first line containing μt constitute the
convective and dissipation terms. Here Nk is the turbulent kinetic energy diffusivity coefficient and
NL is the turbulent length scale diffusivity coefficient. CL1 is the coefficient of L production, CL2 is
the coefficient of L dilatation, and CL3 is the coefficient of L shear.

The remaining RANS terms needed to completely close the equations of motion are shown
below:

ai = −CB
L
√

2K

ρ

∂ρ

∂xi
, (23a)

μt = CμρL
√

2K, (23b)

Si j = 1

2

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
− 1

3

∂ ũk

∂xk
δi j . (23c)

014501-13



BENJAMIN MUSCI et al.

TABLE II. List of the RANS coefficients and their values set by the model for the optimal RANS solution.

Cμ Ciso Cdev CB CD CL1 CL2 CL3 NY Ne Nk NL

1.00 0.67 0.16 0.11 1.24 6.11 0.33 0.00 6.37 6.37 6.37 3.18

Here CB is the turbulent mass-flux velocity coefficient, Cμ is the eddy viscosity coefficient, and Si j

is the deviatoric turbulent strain rate tensor.
All coefficients used in the RANS equations [Eqs. (16)–(23)] are listed in Table II and are

automatically set by RANSBox through similarity analysis [45,56]. It should be noted that the CL3

term was set to zero because of the numerical sensitivity it created at early time, due to small
values of K . This term, not typically included in the canonical K-L models, corresponds to the shear
induced by the Kelvin-Helmholtz instability (KHI), which should have negligible effects early, but
may cause discrepancies at later development times [56].

It must also be noted that in Eqs. (16)–(23), an overbar denotes a Reynolds-averaged quantity
while a tilde denotes a Favre (mass-weighted) quantity. More specifically, for an arbitrary scalar b,
these averages decompose as

b = b + b′ = b̃ + b′′, (24a)

and the Reynolds averaged terms can be related to the Favre average through ρ using

b̃ = bρ

ρ
. (24b)

Finally, as this is an instability-driven mixing problem the late time, self-similar mixing-layer theory
can be used to better inform the RANS model. Which for RMI at low Atwood such as this, much
research have shown this to be [19,39,57–59]

h(t ) ≈ hoτ
θ , (25)

where h is the width of the mixed-layer, τ is a nondimensionalized time, ho is an initial mixed width,
and θ is a constant: the self-similar regime RM growth exponent.

For RTI flows at low Atwood, A (with constant driving acceleration), the self-similar mixed layer
has been shown to grow according to [19,60–64]

h(t ) = αAgt2, (26)

where g is acceleration of the interface, t is time, and α is the approximately universal RTI growth
constant. Both α and θ are tunable parameters in RANSBox. By changing values of these constants,
which are more easily compared with experimental data, RANSBox changes all other RANS
coefficients (shown in Table II) to best yield the desired RTI or RMI constant. Thus, they serve as a
convenient subset of parameters for changing all RANS coefficients en-masse during the validation
stage. In this work only θ is used as a tuning parameter in the RANS model to achieve agreement
with the experimental data. Regarding α, the default RANSBox value was used such that α = 0.06.

E. 3D LES Model

Implementing LES allows for the three-dimensional direct capture of the large and intermediate
scales of motion in a transitioning flow, while modeling the smallest unresolved scales of motion.
The LES model implemented here has been used successfully in many RMI and RTI problems
before [26,51,61,65,66]. For computational efficiency, the 3D LES domain is restricted to only
the mixing region of the divergent blast wave facility. A separate 2D domain covering the entire
geometry is also implemented and the two solutions are coupled every time-step on the 3D domain
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boundaries. This hybrid approach was compared to a full 3D domain approach and QOI results were
effectively identical while the computational resources required were reduced by a factor of 8.

The governing equations for the 3D LES model are Eqs. (3)–(15), but expanded in all three
spatial dimensions. The loss terms �ui and �E are identical to those in the 2D Euler model and are
described by Eq. (15). All other � terms are set to 0. For the 2D LES model applied outside of the
3D interface region, the solved equations are identical in all ways to those used in the 2D Euler
model.

The numerical method used to obtain artificial fluid properties [Eqs. (11) and (12)] serves as a
subgrid scale model for shear viscosity which becomes active when turbulent flow is unresolved
on the mesh. Positivity in this term ensures that dissipation of turbulent energy, though unresolved,
will mimic the physical mechanism of resolved flow albeit on a larger scale. The artificial shear
viscosity also has the quality of being high-order, and will vanish with eighth-order convergence
when the flow becomes resolved, leaving only physical viscosity as the relevant diffusivity. The
artificial diffusivity constants in Eq. (11 e) remain the same.

IV. EULER VALIDATION

The process of validating the nonmixing 2D Euler was outlined in Sec. III A but will be detailed
further here. As indicated in Fig. 2, the QOI used for optimization were BW pressure time histories
recorded at four locations along the chamber, and the ensemble mean of interface trajectory data
for the flat IC case. The model parameters used for optimization were the initial blast energy of the
“energy pill,” Eo, and the drag and loss coefficient, Co. Both these parameters are essentially controls
on the uncertainties that exist in the model energetics.

As outlined in Sec. II B 2 unquantified losses occur during experimental runs. These losses were
highlighted by initial attempts to tune the 2D Euler model using only Eo, which resulted in interface
trajectories that exhibited too much midlate time movement. This indicated the presence of a loss
term that varied in both time and space which could not be accounted for by simply lowering the
amount of initial energy in the energy pill. Thus, an ad hoc drag model was introduced to create a
time and space varying loss term, tuned using Co. These losses (which may have included detonation
energy lost to the facility’s plates and junctions, and energy lost to the developing boundary layer on
the large plates), are primarily mix-model-independent. As such, they are determined independently
in the Euler simulation through Co and Eo.

The model QOIs used for comparison with the experimental data had to be obtained through
two separate sets of simulations. This was because a large quantity of experimental pressure data
existed only for single-gas experimental runs, i.e., the chamber was filled completely with air and
the standard detonator was used. Meanwhile, the interface trajectory data were collected during
separate runs using two gases, hence the interface. This means that for each set of Co and Eo, a pair
of simulations was completed: a single-gas and a two-gas Euler simulation.

For the single-gas simulations, agreement of the pressure profiles at each probe location was
sought. The primary focus, however, was the matching of pressure profiles at the second and third
probes, due to the fact that the interface location was between these probes. The pressure probe
error between simulations and experiment data were assessed using the time-of-arrival at a probe
location, as well as the pressure and amplitude history recorded at each probe.

The two-gas simulation results were assessed by comparing the flat interface trajectory data. As
was already mentioned at the end of Sec. III A, the simulation data were sampled from an artificial
window region in the domain, which matched the physical viewing-window in the experimental
facility. In both cases, 2D fog concentration, or mixture-fraction, data was span-wise averaged to
create 1D profiles of YH , the mass fraction of the heavy gas. The 50% location of these profiles was
then recorded at each time to obtain the interface trajectory. The interface trajectory error between
simulation and experimental data was estimated using the cumulative absolute difference between
the simulation and experimental curves, and then normalizing by the area under the experimental
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FIG. 3. 2D Euler Model: A parameter sweep in Eo and Co is compared to experimental (left) pressure and
(right) interface data. In both plots the gold solid lines indicate the ensemble mean of the experimental data,
while the shaded gold region indicates the region of plus or minus one standard deviation. The black lines are
results from the simulation sweep, with each line indicating a separate Eo-Co pair. The green line indicate the
simulation optimal (minimum error) solution.

curve. The results of the simulation parameter sweep as compared to the experimental data, are
shown in Fig. 3.

Simulation results were compared to the experimental data and an estimate of total simulation
error was made for each pair of parameters, where the error calculation for each QOI was outlined
above. The total error was broken into three contributing factors. First, weighted at 25% the BW
time-of-arrival error was computed using the pressure profiles. Second, and also weighted at 25%
was the error resulting from the differences in peak pressure for each of the pressure probes. Last,
and weighted at 50%, was the error for the interface trajectory. A parameter sweep in Co and Eo was
performed using N and M values, respectively. This resulted in 2*N*M calculations being computed
where the relevant QOIs were generated and stored in a database. Using the total error value for each
parameter pair, a Gaussian processor (GP) was used to create a high-resolution error surface for all
potential parameter pairs (Eo, Co). The GP was used to predict, and then test, the optimum pair of
parameters which led to the global minimum on the error surface. The results of the GP are shown
in Fig. 4.

As Fig. 4 shows, the parameter pair that was tested to have lowest error, falls nearly exactly where
it was predicted to be by the GP. The gold dot in Fig. 4 corresponds to the “Optimal Solution” lines
in Fig. 3. It should also be noted that the bold contour in Fig. 4 represents the bound on parameter
pairs that would result in simulation data falling within one standard deviation of the experimental
data. The fact that this encompasses a large array of parameter pairs shows that the simulation
results are quite resilient to relatively ad hoc model choices. The optimal GP solution gave an Eo

of 60380J and a Co of 0.263. These values were then set as constants in the proceeding RANS and
LES validation studies.

V. RANS VALIDATION

The RANS validation (Stage 2a in Fig. 2) takes the optimized parameters from the 2D Euler
study, and adds a K-L RANS model to the base simulation to obtain mixing data. The specific
details of the RANS model used were outlined in Sec. III D.

Ideally, a predictive RANS model would only depend on the initial and boundary conditions
of the problem. The boundary conditions were set in Sec. II B 1 and here we initially introduced
only two degrees of freedom by defining the initial values of Lo and Ko. These represent the
modeled turbulent length scales and turbulent kinetic energy in the layer at t = 0, respectively.
As opposed to the Euler validation, physical bounds existed for these optimizing parameters. Lo
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FIG. 4. 2D Euler Model: The contour of the GP error surface is shown. The orange dot indicates the realized
simulation minimum, which is also the GP predicted minimum in this case. The bold contour line indicates
the bounds in which a parameter pair could be selected and still produce results within the bounds of one
experimental standard deviation.

must be based on a length scale that is physically relevant to the experimental problem. This meant
Lo ought to only be varied from O(1 mm)–O(10 cm) as this spans the range of minimum observed
initial perturbation amplitude to maximum observed wavelength. An initial RANS tuning using
Lo and Ko was carried out in the same way as the Euler validation: sweeping the Ko-Lo parameter
space and then feeding the results into a GP (not shown) to inform the location of more refined
parameter sweeps until a combination of parameters resulted in the lowest observed error. This
exercise produced good agreement with the zeroth-order experimental mixing data (W ), but was
unable to adequately reproduce the observed behavior in turbulent kinetic energy (see dotted black
lines in Figs. 5 and 6). These results (produced with Lo = 0.017 and Ko = 0.10) are discussed more
later on, but their inability to more agreeably reproduce the turbulent kinetic energy data led to a
second attempt at RANS tuning by introducing a third tuning parameter.

FIG. 5. 2D RANS model: Mixing data results from a parameter sweep in Ko, Lo, and θ . The optimized
solution predicted by the GP is shown as the bold orange line, experimental data is shown in green and all
other parameter sweep results are in light orange. The dashed vertical line indicates the time after which the
simulation and experimental data were compared for RANS optimization. The dotted line indicates the optimal
solution with θ fixed at the default model value (0.25).
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FIG. 6. 2D RANS model: TKE results from the parameter sweep in Ko, Lo, and θ . The optimized solution
predicted by the GP is shown as the bold orange line, experimental data is shown in green and all other
parameter sweep results are in light orange. The dotted line indicates the optimal solution with θ fixed at the
default model value (0.25). (Left) The plot shows the maximum TKE of the experiment to be quite a bit larger
than the simulation’s optimal solution. (Right) The plot shows the portion of maximum TKE (2.25–5 ms)
used to compare the decay exponent (�) of maximum TKE. This is plotted in log10 scale so that lines with
identical decay exponents have identical slopes. The optimal solution and experimental slopes agree very well,
as indicated by the � values shown on the plot.

As was mentioned in Sec. III D, the usage of RANS models for predicting transitional flow is
ubiquitously difficult and can lead to over-fitting of experimental data, which is certainly the case
here. However, RANS calculations can accelerate the design process and useful physical insight can
still be gleaned in the process. To allow for the broader range of RANS solutions to be explored,
we introduced an additional degree of freedom which captures variations in the RANS model
itself, through the self-similar RM growth exponent θ . Variation in this parameter, will impact the
coefficients in Table II according to Morgan and Wickett [67] and therefore alter the RANS model
behavior.

Physical reasoning and a survey of the literature also lend credence to tuning of θ . For instance,
one might not expect the same θ as was found in Morgan and Wickett [67], or other RMI focused
studies. The physical problem studied in those works (solely RMI) is quite different than the flow
studied in the current work, where experiments show that the BDI behaves as a combined instability
not yet examined in the literature [47]. Further, based on existing RMI literature from the past two
decades, a set value of θ has not been established [11,30,58,68,69]. If the value of θ has not yet
been fixed after such extensive study, then it seems reasonable to allow for tuning of that parameter
in this work. Thus, the tuning of θ was bounded by the range of values reported in the literature:
0.21–0.66 [11,30,58,68,69].

Optimization of the parameters Lo, Ko, and θ occurred in a similar manner as the Euler validation:
for a given parameter set, error was calculated for each QOI between the simulation and mean
experimental data. The parameter sweep in this case used N, M, P values for Lo, Ko, and θ ,
respectively, resulting in N*M*P 2D RANS simulations being run. Again a GP was used to fit
the data and produce a high resolution error surface, now in 4D. Additionally, the QOIs and their
respective error measurements were also different.

The primary QOI used to assess the models ability to capturing the mixing process was the
integral mixed width, W , found for experiment and simulation following

W =
∫

4 〈YH 〉〈YL〉 dy, (27)
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where the angled brackets represent averaging in the spanwise (horizontal) direction. By conserva-
tion of mass the light gas concentration and mixture-fraction is assumed to be YL = 1 − YH . The 4
is to force W to one at the 50% mixture-fraction region of the mixing zone. In the experiments, the
fog used in the Mie Scattering diagnostic is assumed to trace the heavy gas mixture-fraction YH . The
intensity of pixels in each image, is then directly proportional to YH . While, strictly speaking, this
Mie Scattering technique is qualitative, we use the scattered intensity and the integral value given
by Eq. (27) as a reasonable proxy to the true mixed width. This assumption is passable in this case
because the QOI evaluated is an integrated value. The mixture-fraction field is spanwise averaged
at each time, and the resulting 1D profiles are integrated according to Eq. (27) to obtain a single
value for W at each time step. The time-dependent W (t ) of each experimental run is then averaged
together to obtain the data ensemble used for simulation comparison. An identical process is used
to acquire W data in the RANS simulation. The YH fields are averaged and integrated at each time
to get the W (t ) resulting from a combination of simulation parameters, which can then be directly
compared to its experimental counterpart. This RANS-experiment comparison is shown in Fig. 5.
One should note the good agreement found between the experiment and the initial RANS model
tuning (black-dotted line), where θ was held fixed at 0.25.

The integral mixed-width error was calculated using the integrated absolute difference between
simulation and experiment (just as in the Euler interface trajectory error), but only for a selected time
range of the simulation. The first 5 ms after the blast are neglected in the error calculation since the
RANS model always assumes a fully turbulent flow where in actuality, the flow is transitional in
this region. This explains the early time discrepancies between simulation and experiment in Fig. 5.

The second QOI used in the RANS validation was the turbulent kinetic energy. It should be
noted that we will generally refer to turbulent kinetic energy as “TKE.” However, the TKE values
produced by the RANS model will be refereed to as K , while the experimental TKE values will
be k. This distinction is made because these values are closely related but not necessarily precise
analogues, as will be discussed here.

The high-speed experimental PIV data, which produces the k data, was acquired from experimen-
tal campaigns separate from the Mie Scattering campaigns used for all other experimental QOI in
this chapter. As a result, the camera field-of-view was different for the two of these campaigns, and
was notably smaller for the PIV/k data. So, a second artificial window was used in the simulation to
extract all data that was compared with experimental PIV data. The RANS model’s turbulent energy
transport variable, K , was spanwise averaged in this smaller PIV window, and then the maximum
value of each spanwise average was recorded to obtain the temporal development of maximum K .

This was compared to the experimental TKE values (k), which were computed as follows: 2D
fields of velocity vectors were produced using the Davis software from LaVision. The spanwise
average components of velocity were then subtracted off the velocity field at each time-step to obtain
a field of velocity fluctuations (v′, u′). These fluctuating quantities were then used to compute a 2D
field of k values. Note that due to the assumptions inherent in the RANS model, the K variable
it produces must be interpreted as the 3D turbulent kinetic energy, despite the 2D nature of the
simulation. Thus, to make a comparison to this metric, the 2D experimental data must be modified
to create a proxy for the 3D TKE (K). This is done by assuming w′ ≈ u′, such that

k = 0.5
√

2u′2 + v′2. (28)

The experimental k field was then spanwise averaged and recorded in the same process as that of
the simulation outlined above. However, an additional difference is that the K variable produced
by the RANS model assumes a Favre-averaged definition of TKE. In other words, the RANS
model outputs a density weighted K , which influences the magnitude of the value. In this work, the
influence of Favre-averaging on the magnitude of K is assumed to be small. For all of the reasons
just outlined, it can only be reasonably expected that, at best, k ≈ K . These facts are likely a large
reason as to why no simulation solutions match the experimental maximum TKE well in Fig. 6(a).
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Due to the large discrepancy in TKE magnitudes caused by the differences in k and K , the TKE
magnitude is not used for the error comparison. Instead, because the energy dissipation rate (ε) is
determined by the power-law exponent (�) of the TKE decay, this exponent is used to compare
experiments and simulation. In other words, because ε ∝ t�, a match between �Experiment and �LES

was sought. The decay exponent was only computed during the time range of relatively smooth
maximum k decay in the experimental data (from about 2–6 ms). This was selected because it occurs
after the small dip in TKE observed in both experiments and simulations. This dip is due to reflected
waves, caused by the incident blast-wave passing through the interface, interacting with reflected
waves coming from the bottom floor of the facility. The two reflections are initially propagating in
opposite directions, but upon collision the resulting acoustic and pressure wave propagates in the
direction of the interface. The interaction of this wave with the interface causes the dip in maximum
TKE seen in Fig. 6(a) at ≈ 2 ms. A power law was fit to the data after this interaction, and the
resulting exponent of the experiment was used as the target value for RANS optimization and error
evaluation. As can be seen in Fig. 6(b) the optimal solution and experimental slopes agree very well,
despite the large difference in magnitude. This indicates that the TKE decay exponent in the optimal
simulation and the experiment match well, meaning the rate at which they dissipate turbulent energy
is nearly the same.

The error from the mixed-width and TKE data were each weighted at 50% to create the total error
that was then more finely sampled using a GP. As mentioned previously, because three optimizing
parameters were used (Ko, Lo, θ ) the resulting GP error surface is 4D. The minimum error location
on the 4D surface was recorded as the optimum solution. The three planes intersecting the error
surface at that point are shown in Fig. 7. Note the values for Ko are given as ln(Ko) due to the large
range in values (10−5–10−1) used in the parameter sweep. The lack of variation in Ko, however,
indicates that the model is relatively insensitive to large changes in the initial turbulent kinetic
energy. Additionally, the relatively large array of parameter pairs located within the bold contour in
Fig. 7 indicates the RANS model is also quite resilient to model choices.

A note should be made concerning the optimal RANS solution. The optimized value of θ =
0.525, is relatively high in comparison to the values reported in RMI literature, but higher values
have been previously reported for transitioning flows (e.g., Groom and Thornber [70] and Sewell
et al. [69]). However, setting this value in the RANS model does not enforce the RMI power
law behavior from which θ gets its name. Indeed, the RANS model detects and responds to finite
baroclinic torque, so the RT unstable portion of the BDI will induce appropriate changes (increases)
to θ and mixing rate.

Physically, an increased θ also corresponds to a slower rate of TKE decay as compared to a
traditional RMI flow. This is certainly the case in the BDI as the effects of the combined RTI
cause further vorticity deposition, and thus more TKE, which can then be sustained longer (i.e.,
decay slower) due to this second instability. In fact this was observed in the first RANS tuning with
θ = 0.25. Figure 6 shows that the initial optimal solution produces a much faster rate of TKE decay
than that of the experiment. This is likely due to the relatively low default value of θ (0.25) in the
RANS model.

The RANS model was expected to have limited predictive capabilities when applied to this
problem set up. However, despite these inherent limitations and the minimal model alterations,
the RANS model was able to reproduce certain characteristics of the experimental data with some
success. Albeit, we interpret the need to tune θ as an indication of the limitations of the RANS
model and thus do not suggest the general applicability of such a tuning.

Finally, when regarding the multistaged validation approach of this work, it is fair to wonder
whether parameters can be independently tuned in each stage. For instance, in a worst case
scenario the Co parameter tuned in the Euler validation could feasibly couple nonlinearly with the
tuning parameters used in the RANS validation portion. Interactions like this would mean that all
parameters ought to be tuned simultaneously in a high-dimensional space.

To acquire direct evidence whether parameters could be tuned at different stages in the way
proposed, another exercise in RANS optimization was completed, this time allowing for variation
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FIG. 7. 2D RANS Model: The three intersecting planes of the 4D error surface resulting from the RANS
GP routine. Note that in each contour plot, two of the optimized parameters are varied, while the fixed and
optimal value of the third is indicated at the top of the plot with an asterisk. It should also be noted that the
values for Ko are given as ln(Ko) due to the large range in values (10−5–10−1) used in the parameter sweeps. The
bold contour line in each plot is once again used to indicate the parameter space which results in simulations
within 1 standard deviation of the experimental mean. Clockwise from top left: θ vs Lo, Ko vs θ , and Ko vs Lo.

in the Eo and Co parameters used in the Euler model. The starting point of this optimization was the
optimal RANS parameter values found above, and a space ±25% of the optimal Euler parameters.
This suite of runs was then analyzed against the experimental results in the same way outlined
above. The results showed that the combination of parameters yielding the minimum error, was the
same as those reported above. That is, the optimal solution was the same as that shown by the bold
lines in Figs. 5 and 6. In other words, the parameters found in the multistage process are at least
in a local minimum of the larger multidimensional parameter space where nonlinear interactions
between different model parameters likely do not exist.

VI. LES VALIDATION

The LES validation (stage 2b in Fig. 2) takes the optimized 2D Euler parameters as inputs and
solves Eqs. (3)–(15) but expanded in all three spatial dimensions. The numerical method for artificial
fluid properties [Eqs. (11) and (12)] serves as an implicit subgrid scale model for scales smaller than
the mesh.

As opposed to the previous validation stages the LES validation requires statistically represen-
tative IC information as a model input. This was done using two different approaches. The first
method obtains an accurate experimental representation by collecting Mie Scattering snapshots of
≈ 300 “typical” ICs. Parts of the first IC characterization process are shown in Fig. 8, where the
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FIG. 8. 3D LES model: Data used in the first IC characterization process. Bottom left—IC shapes from 30
of the 300 images. The mean of the ensemble is shown as the black line, along with one standard deviation. Top
left—The result of the DCT for each of the 30 ICs. The red dots show the average energy in each mode, and
the line of best fit is shown in green. Top right—The average distribution of energy found at each wave number
(blue line). The dotted black line shows the distribution fit to the data. The fit distribution is a combined normal
and uniform PDF. Bottom right—30 synthetic ICs resulting from the random sampling of the distribution at
each wave number.

plots are shown with data from only 30 of the 300 IC images for better clarity. The first step in the
characterization was to obtain an interface shape from each of the IC snapshots by identifying the
pixel location corresponding to the maximum gradient of pixel intensity along each column of the
image. The resulting 1D array of the interface “shape,” when overlaid on the 2D IC image, traces
the interface between the two gases well. Interface shapes from the experimental images are shown
in the bottom left of Fig. 8. Next, a discrete cosine transform (DCT) is performed on each of the
300 IC shapes to acquire the energy spectra as a function of wave number, κ , for each experimental
IC. The DCT provides information about which “modes,” or κ , contain the most energy for each IC.
The first two modes were removed from each spectra as they corresponded to the mean interface
shape (flat), and a “smile shape” caused by the camera lens’ barrel distortion effect at the bottom of
each image. A line of best fit is then acquired from this data, as shown in the top left of Fig. 8. The
average and standard deviation of the DCT coefficients are then computed for each mode, and are
then used to compute a probability density function at each mode/κ . The distribution created by the
IC data was then fit to a combination of a normal and a uniform distribution, an example of which is
shown in the top right of Fig. 8. Thus, the line of best fit found for the DCT coefficients essentially
sets the mean of each distribution for every resolved wave number. In other words, a PDF exists
along the Best-fit line in the top left of Fig. 8 for each wave number.
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With a distribution of DCT weights and coefficients at each wave number, synthetic ICs can
then be generated by cycling through each mode and selecting randomly from the distribution
at that wave number. With a randomly selected DCT coefficient for each κ , the inverse DCT
can be performed to generate a synthetic IC shape which would be statistically equivalent to a
typical experimental IC shape. Resulting synthetic ICs are shown in the bottom right of Fig. 8.
However, because 3D ICs are needed for the LES validation, the κ-dependent randomly selected
DCT coefficients are projected to 2D cosine space, and then inverse transformed. The lowest
κ available in the third-dimension is limited by the physical dimension of the chamber, but the
energy in all higher κ was determined by selecting from the distribution of DCT coefficients used
previously. This creates a 3D surface of synthetic perturbations that can be overlain on the interface
location in the 3D domain. In other words, the out-of-plane perturbations are based on statistics of
those in plane (2D images), with the added constraint that any given perturbation cannot be larger
than the chamber depth. This was done 27 times to generate 27 synthetic ICs to match the number
of experimental realizations used in the study.

During each of the 27 LES runs, the 3D interface evolves differently due to the random, yet
statistically representative, IC generated for each. A 3D evolution for one of the 27 LES runs is
shown in Fig. 9. The isocontours shown in the figure represent the volume fraction of the more
dense fluid, YH . The 3D IC is shown at the top of the figure immediately before BW interaction,
which travels upward in the figure’s frame of reference. In the moments after blast interaction, one
can note the apparent compression of the IC initial amplitude. This is caused by the phase inversion,
in which initial peaks become valleys (and vice versa), caused by the BW propagating from a more
to a less dense gas. Another marked feature is the initial stretching of the overall interface length.
The BW forces the interface upwards, and due to the diverging geometry the interface stretches to
conserve mass. In addition to the stretching due to geometric effects, the deposition of vorticity due
to the subsequent RM and RT instabilities causes local stretching at perturbation sites. By ≈ 2 ms
the interface amplitude has inverted back to its initial amplitude, and more than doubles in size in
the next 2 ms. This roughly marks the transitions from the exponential growth of the linear phase,
to the linear-in-time amplitude growth of the nonlinear phase. The beginnings of vortex roll-ups
caused by KHI can also be seen at several spike and bubble tips at 3.5 ms. By 7 ms the volume
fraction isocontours begin to collide and merge until a turbulent mixed layer appears to be reached
at 11 ms.

To make apples-to-apples comparisons between the 3D LES simulations and the experiment, the
central plane of the 3D LES domain was used to collect all data for comparison with experiment.
For example, the 2D slices of heavy gas volume fraction, YH , taken from a 3D data set exemplified
by Fig. 9, were used to compute the integral mixed width (W ) for experimental comparison.

An example of the temporal evolution of 2D slices are shown in comparison to experimental Mie
scattering images at identical development times in Fig. 10. The IC immediately before blast impact
is shown as the far left image for the LES and experiment. One immediately notices the more diffuse
nature of the simulation compared to the experiment. This may be primarily due to the numerical
diffusion acting at scales below the grid resolution. In the 3D domain the limiting resolution is in
the horizontal and depth directions. Because the data was taken on 2D slices of the 3D domain, the
depth resolution is essentially irrelevant. In the horizontal direction the 27 LES runs were performed
with 512 grid points across, giving a grid spacing of about 1 mm. In contrast to the experimental
resolution (≈ 0.1 mm between image pixels) this is quite coarse, so it should be kept in mind when
making comparisons.

During the first several ms of the developments shown in Fig. 10 the perturbations grow
similarly. A range of perturbation sizes can be seen in both LES and experiment, although more
small perturbation features can be seen in the LES. The beginnings of spike tip roll-up, or KHI
development, can be seen in each row as early as 2 ms. Another feature of note is a vortex pinch-off
event observed in both. In the LES: the top of the large spike seen at the bottom of the LES image
is starting to separate from the main spike body at 4 ms and becomes detached at 6 ms. A similar
event is observed in the experiments if one tracks the second large spike down from the top of
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FIG. 9. 3D LES model: A temporal 3D evolution of the Yh volume fraction field starting from a statistically
representative and randomly generated IC. The time axis is shown on the right-hand side, with the IC located
at the bottom (t = 0). The blast wave propagates up from below the IC and deposits vorticity to cause the
development seen for t > 0. Note the stretching of the interface length as it moves up the diverging chamber.
See Supplemental Material [71] for a video of this 3D LES development.
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FIG. 10. 3D LES model: A comparison of the temporal evolution of the 2D Yh fields for a slice of the 3D
LES and versus the experimental Mie Scattering. Each field is taken from an individual LES or experimental
run. The far left figure is the IC immediately prior to BW interaction. The indicated times (in ms) after blast
interaction are identical for LES and experiment. The images have all been rotated 90◦ and cropped to include
only the mixing layer at each time step to allow for a better comparison of the instability development. The BW
propagates from left to right in the shown orientation and the bulk interface motion, which has been cropped
out, is in the same direction. See Supplemental Material [71] for videos of the 2D LES and experimental Mie
Scattering development. Note the two videos are not to scale in size or playback time, and are from different
runs than those shown in the images above.

the experimental images. The tip of the vortex begins to separate at 3 ms and is seen to be clearly
separated by 6 ms. The fate of this feature in the experiment is different from that of the LES in that
it breaks up into much finer scales than can be seen in the LES. This is generally true for all features
in the LES versus experiment, as the finer structure in experiment indicate the higher Reynolds
number of the flow and the limited resolution of the LES on those scales.

One can also note the more frequent occurrence of secondary instability in the experiment as
compared to the LES images. This could be due to the fact that the LES is not resolving small
scale perturbations that may be seeding these secondary instabilities. A very similar phenomenon
was observed in Morgan et al. [51] when comparing Mie Scattering experiments with Miranda
LES results. The minimum interface thickness (essentially the grid spacing) necessitated by the
simulations may also inhibit the secondary instabilities by effectively smearing out the gradients
needed for them to develop. The disparity between the experimental scales of motion and those of
the simulation is simple (at least notionally) to reduce and one need only to increase the spatial
resolution of the computational mesh. This can become cost prohibitive rather quickly and as we
will show later, was not needed to capture the desired QOIs.

The ensemble data comparison between the LES (using the first IC characterization method) and
experiment for W is shown in Fig. 11(a). W is found using Eq. (27) in an identical manner as the
experiment. To make a direct comparison between the experimental 2D W (t ) and 3D LES results,
the central plane of the 3D domain was sampled (as if it were the laser sheet in the experimental
set-up), and the procedure matching that of the experiment was followed, which was outlined in
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FIG. 11. 3D LES Model: The ensemble comparison of (left) integral mixed width (W ) and (right) integrated
TKE (k). The LES ensemble data was found using the first IC characterization method. The mean of each
ensemble is shown as the bold line, while the spread of results in each ensemble is represented by the shaded
region which indicates ± one standard deviation from the mean.

Sec. V. In this way the LES results can be thought of as 2D slices of a 3D data set, in the same
way that the experimental data is taken from a 2D laser sheet that is sampling what is at best a
quasi-2D flow field. Figure 11(a) shows that the W (t ) ensemble means of LES and the experiment
show excellent agreement, with only a slight deviation at late times. There is also evidence of
small disagreement immediately after passage of the BW, as the experiment shows a slightly more
prolonged exponential (linear) growth phase than that of the LES.

However, the LES does quite poorly in capturing the spread of the experimental W (t ) ensemble,
as is shown by the shaded regions which show ± one ensemble standard deviation from the mean.
There could be multiple reasons for this behavior, one being that this first IC characterization method
does not properly capture the amount of variance present in the experimental ICs. This would
lead to LES solutions more tightly packed about the mean. Another reason could be due to the
inherent nonlinearity in the system, which causes heightened sensitivity to initial conditions. Small
differences in the synthetic versus experimental ICs could lead to large changes in the ensemble
spread. Or, if the ICs are indeed adequately characterized by the synthetic ICs, then the LES may
not be replicating the high degree of nonlinearity in the experimental system. This can be observed to
some degree in the IC images of Fig. 10, where the experimental image shows a much higher-degree
of nonlinearity in the wisps, sheets, and small vortices that are not adequately captured by the LES
image.

The LES results using the first IC characterization method are also compared to the experimental
velocity (PIV) data. To make the most direct comparison to experiment, the central slice of the
the 3D LES data was again taken to acquire a 2D LES velocity field in the middle of the domain.
The LES velocity field was then mapped to a grid with a vector resolution matching that of the
experiment (0.375 mm/vector). The “window” on this interpolated grid was also matched such that
the LES and experiment would have the same field of view. The resulting velocity fields can then
be directly compared and processed. Thus, as opposed to the RANS validation, the LES validation
can directly compare the k produced by experiments to that of LES.

LES velocity fluctuations were mapped to the matching experimental grid and then used to obtain
a 2D field of k, which was then spanwise averaged to obtain a 1D k profile for each time step in
the evolution. The spanwise k was then integrated in the stream-wise (vertical) direction to obtain
integrated TKE (units m3/s2) for each time. This was repeated for each of the runs in the ensemble
to get the mean integrated k development in time. The comparison of this quantity for LES and
experiment is shown in Fig. 11(b). Note that in this approach the w′ component of velocity for the
LES was approximated to be u′, just as is done for the experiment, despite the fact that the 3D
LES data produces actual values of w′. Thus, the k variable produced by experiment is reproduced
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FIG. 12. 3D LES model: The comparison of (left) W and (right) integrated TKE for LES runs with the
exact same IC, but different grid resolution. Because the variables are spanwise averaged, the resolution in the
vertical direction is shown. The resolution of the LES ensembles is equivalent to the y ≈ 2 mm case shown
here. The plot of W indicates near grid convergence, while the integrated TKE plot shows a lack of convergence
even for a doubling of resolution.

exactly the same in the LES data, allowing for more direct comparison between data sets. Note that
this k variable is not technically considered turbulent kinetic energy, but is just an approximation of
that variable.

The comparison of k in Fig. 11(b) shows that the LES ensemble mean does not capture that of
the experiment as well as it did for W . This is likely partially due to grid-dependent effects. Because
TKE is a second-order statistic, it is more sensitive to grid resolution than the zeroth-order W . Thus,
it requires higher resolution to show grid convergence, whereas the LES results for W may have
already converged. One would expect that running the LES ensemble at a higher resolution would
bump the integrated TKE values up noticeably. Unfortunately, limited computational resources
prevented the authors from performing another 27 case ensemble of 3D LES simulations at double
the resolution, which equates to 16× the computational expense.

Nevertheless, one can explore the effect of grid resolution on a specific LES run. This is show
in Fig. 12 where the affect of increasing grid resolution can be seen for W and k. As can be seen in
Fig. 12, increasing the resolution has a much smaller effect on W [a (left panel)] than it does for k [b
(right panel)]. For W , the results show that the resolution used for the LES ensembles (y = 2mm)
produces results essentially the same as those which are twice as resolved. This indicates that for
W , the ensemble results are nearly grid-independent and should not change for a finer resolution.

However for k, a doubling of resolution from that of the ensemble results in a notable increase in
integrated TKE, as seen in Fig. 12(b). This means that the TKE data produced in the LES ensemble
has not yet converged. Therefore, increases in resolution should indeed push up the magnitude of
k seen in Figs. 11(b) and 14(b), indicating that at least part of the discrepancy between the LES
and experiments is due to inadequate resolution in the simulations. In fact, even a doubling of
the LES resolution would still not achieve the vector resolution of the PIV experiments (y =
0.375 mm), or grid independence, as can be seen in Fig. 12(b). Clearly the fine scales of the flow are
under-resolved, and capturing the additional energy contained in them would likely require signifi-
cantly more resolution.

The effect of increased resolution can also be qualitatively examined by investigating the changes
to the YH field in the central plane of the 3D LES domain. This is shown in Fig. 13. As can be
seen, there is a small but distinguishable difference between the three cases at all times. While the
difference is more muted at the IC and immediately after BW interaction (1.5 ms), one can see that
the interface increasingly appears more “crisp” with higher resolution. This is because the effective
density gradient across the interface is becoming steeper with increase in resolution. In turn, the
finer density gradients result in more vorticity deposition. This vorticity is deposited at the scale at
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FIG. 13. 3D LES model: A comparison of the YH fields for the exact same IC, but at different resolutions.
The Res8 case corresponds to the resolution at which the LES ensembles were produced. Res4, Res8, and
Res16 correspond to vertical resolutions (y) of 4 mm, 2 mm, and 1 mm, respectively. Time proceeds from
left to right.

which the pressure and density gradients exist. As a result, the finer density scales present at higher
resolution create finer scales of baroclinic torque, but not large scales of motion that would alter
the mean flow. This is why, on the largest scales, the runs look so qualitatively similar despite the
increase in resolution. However, this increase of resolution-dependent vorticity deposition at the
small scales is likely a primary contributor to why the relatively under-resolved LES ensembles
result in lower TKE magnitudes when compared to experiments [Figs. 11(b) and 14(b)].

During later times, the difference in resolution manifests itself as the appearance and generation
of these smaller scales. For instance, at 11 ms the Res16 case shows a range of scales that look much

FIG. 14. 3D LES Model: The ensemble comparison of (left) integral mixed width (W ) and (right) integrated
TKE (k). The LES ensemble data was found using the second IC characterization method. The mean of each
ensemble is shown as the bold line, while the spread of results in each ensemble is represented by the shaded
region which indicates ± one standard deviation from the mean.
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more characteristic of a turbulent state than the other two resolutions. These fine scale structures
also serve to slightly change the shape of larger structures between the three cases. In general,
an increase in resolution seems to allow for more “jagged” coherent structures, while the lower
resolution effectively smooths out features into rounder shapes.

Finally, to test the sensitivity of the LES results to the characterization of ICs, a second IC
approach was used. This was done to determine whether the first IC characterization method
was leading to the smaller LES ensemble variance observed in Fig. 11(a). In the second IC
characterization method, the IC images from the 27 experimental runs were used instead of the
300 image ensemble of “typical ICs.” The IC shape for each of the 27 runs was then essentially
fed into the simulation so that each LES run had a counterpart experimental run with the same IC
shape. For instance, the experimental IC shape (examples of which are in the bottom left of Fig. 8)
for each of the runs was directly input into the LES simulation. The distributions obtained in the
first IC characterization scheme were used to extrapolate the IC shape to the grid boundaries in
the horizontal (outside the viewing window), and into the plane. This created a 3D perturbation for
which the central slice exactly matched an experimental perturbation.

The integral mixed-width results of the LES simulations using this second IC scheme are shown
in Fig. 14(a). As can be seen, feeding the IC from an experimental run directly into the LES largely
increases the spread of possible results. While the mean of the W (t ) ensemble does not match as well
as the previous approach, it is still in very good agreement. More impressively, the variance of the
ensemble matches much closer than the previous results. Concerning the comparison of ensemble
k data shown in Fig. 14(b), the second IC characterization does little to improve the disagreement
between experiments and simulation. This may indicate that even for the second IC characterization,
there is still information missing which may influence TKE development in the experiment. Further,
the new ICs did little to increase the spread of simulation TKE results to a level comparable with the
experiment. More work is needed to fully understand the large spread of results in the experimental
TKE, but there are likely several factors at play. First is the possibility of nonlinear effects in the
system not captured in the simulation, which could cause large degrees of variability in second order
statistics like TKE. Second is the lower number of PIV experiments conducted (10) as compared
to the Mie Scattering ensemble (27). Finally, the difficulty of performing PIV in this facility due to
the high speed nature of the flow, creation of debris and soot particles from the detonation, and the
limited resolution necessitated by choosing a useful field-of-view increases the experimental error
in this diagnostic, which manifests itself partially in the spread of results.

These results reinforce previous findings that show how crucial IC characterization is for LES.
Despite having described the experimental ICs in a way that fully described them statistically, and
where the ensemble mean was in excellent agreement, the ensemble variance was largely under
predicted. In the second IC characterization method, using the exact ICs from each of the 27
experimental realizations almost doubled the amount of variance present in the LES solutions, while
keeping the ensemble mean nearly the same. This is despite the fact that these same 27 ICs can be
described statistically by the first IC method. Indeed, due to the nonlinearity of the BDI, experiments
and simulations of it are highly sensitive to ICs. Therefore for best results the LES ICs should be
matched exactly as possible to replicate experimental behavior.

VII. DISCUSSION

This work has shown that, generally, the LES and RANS models used in this study can reproduce
experimental BDI data. Notably, the validation hierarchy is novel in that it directly connects three
experimental data sets with simulation in a staged approach. A fully coupled validation where
all uncertainties are considered simultaneously may be more complete in accounting for complex
correlations, but becomes intractable when considering the cost of full 3D LES. In addition, though
we found the expected mean of certain model parameters via GP regression, the distribution of these
uncertain parameters was not explored but could be in future work via Markov chain Monte Carlo
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using the GP as a surrogate. This would allow model and experimental uncertainties to be fully fed
forward into the QOI for turbulent mixing.

While different QOIs have displayed varying levels of success for each model, both RANS and
LES seem to have captured at least zeroth-order BDI behavior. However, as expected, RANS cannot
capture the turbulent transition process and therefore flows that are strongly dependent on transition
will remain difficult to capture. Indeed, RANS solutions can be calibrated to match data at certain
points in time or certain regions of the flow where the approximation of fully developed flow is
appropriate. In the present study of BDI, a notable increase outside the normal range of the model
coefficient (θ ) was required to approach good experimental agreement. The reported θ value is
in the upper range of reported values in the RMI literature. However, as the experiments provided
significance departures in geometry and instability dynamics as compared to typical RMI flows, this
is unsurprising. Indeed, departure from canonical flows and geometries will likely require further
investigation of RANS model coefficients to achieve favorable results.

Comparably, while the 3D LES model was able to capture the zeroth-order mixing behavior of
the BDI quite well, it was too under-resolved to replicate high-order velocity statistics. Further,
even on the zeroth order, it was shown to be sensitive to the method by which experimental ICs
were reproduced. This observation underscores both the high nonlinearity of instabilities such as
BDI, but also the importance of IC characterization in LES studies.

The run-to-run variation of the BDI experimental mixing data was large and therefore necessi-
tated a large ensemble to reasonably bound the mean behavior. This variability is expected given the
strong dependence and persistence of the ICs on the flow which is in large part due to the dominant
two-dimensional flow of the facility. That is, only the finer scales become turbulent at this Atwood
number. Likewise, it is reasonable to expect that simulations capturing the same narrow 3D extent
would exhibit the same strong variability to ICs. This was directly observed in the present study
and shows a strong need (if not requirement) for instability-driven mixing which depends largely
on their initial conditions to be conducted as ensemble studies. Otherwise, the utility of individual
results will be limited to the narrow scope of those particular ICs [58]. To the authors knowledge,
the level of comparative rigor exercised in this study for shock-driven mixing (where ICs were
point-wise matched, post-processing was identical, ensembles were used, etc.) is unprecedented.

The LES and experimental data can be used further to investigate the unique mixing evolution
of the BDI. Three distinct mixing regimes can be identified by looking at the integral mixed-width
growth rate, Ẇ , for both LES and experiment seen in Fig. 15(a). The growth rate matches in both
magnitude and general shape, where large changes in growth rate (regimes) are seen to occur at the
same time in LES and experiment. For instance, the initial negative growth rate at the earliest of
times displays the ability of the LES to capture the phase inversion which the BDI undergoes (due
to the BW passing from higher to lower density fluid) [47]. This inversion is challenging for analytic
and theoretical models to capture correctly, so it is encouraging to see it replicated so well by the
LES. The inflection of the growth-rate curve is also captured well by the LES as the rarefaction
portion of the BW has been observed to stop interacting with the interface at approximately 3 ms.
This is evident in Fig. 15(a), as the 3 ms point marks the inflection point of the mixed-width growth
rate.

Due to the combined nature of the instability (RMI followed by RTI), the growth rate illustrates
elements of both instabilities’ traditional behavior. While similar to RMI in that a finite amount of
vorticity is deposited during BW interaction, the addition of RTI prolongs that deposition duration.
The signature of the RTI is seen in the growth rate of the mixing layer, where a prolonged, nearly
linear, increase in mixing rate is observed during early times. This is expected as the instantaneous
RMI serves to essentially pass the RTI an interface that is already growing into the nonlinear regime.
This should lead to enhanced mixing as compared to traditional RMI flows, which is certainly
observed here. However, the divergent nature of the geometry should have an opposite effect. That
is, the movement of the interface up into regions of the chamber with more space should serve
to decrease the mixed-width growth as the interface is forced to spread laterally. Finally, there are
contributions to the mixing growth due to the prolonged compressibility of the flow field, caused
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FIG. 15. 3D LES model: (Left) The ensemble comparison of the growth rate of W for the second IC
characterization method. The mean of the ensemble is shown as the bold line, while the spread of results in
each ensemble is represented by the shaded region which indicates ± one standard deviation from the mean.
Both the experimental and LES data are identically low-pass filtered prior to numerical differentiation. The
linear+quadratic and power-law fits shown as dashed/dotted lines are applied to the LES data. (Right) The
temporal development of θ (using LES data) according to Eq. 31 (Theoretical θ ) compared to the value found
from the power-law fit.

by the sustained interaction of the rarefaction portion of the BW and the interface. Considering all
these complications present in the BDI, it is impressive that the LES is able to so closely track its
mixing growth. The LES model can be said to capture the large-scale and fundamental physics of
the problem and can be more confidently used in future problems like this.

Interestingly, Fig. 15(a) clearly shows three regimes of different growth-rate behavior: (1) RTI
fueled growth-rate increase, (2) growth-rate inflection from increasing to decreasing, and (3) RMI
like growth-rate decay. In the first regime at early times, the growth rate increases linearly. Linear
growth-rate increases are predicted by self-similar RTI theory [derivative of Eq. (26)]; however,
this is likely not applicable in the current scenario. First, it is certainly not in the self-similar
growth regime, as the early images of the BDI show (Figs. 10 and 13). Further, this regime of
the BDI is exceptionally dynamic due to the transition from a linear to nonlinear instability, large
divergence effects as the interface moves up the chamber, rapid order-of-magnitude decreases
in the deceleration magnitude caused by the BW, and peak compressibility effects due to the
passing rarefaction. None of these complications were taken into account in the derivation of
Eq. (26). Indeed, for all the complications mentioned (divergence, compressibility, transitioning,
large deceleration) it is unreasonable to expect that any theoretical estimate of RTI growth (linear or
nonlinear) will be able correctly predict BDI behavior in this regime. This highlights the necessity
of using validated simulations to gain a better understanding in this regime.

However, an attempt to create an ad hoc fit originating from first principles may still be
informative. If one instead assumes the mixed width is governed by a balance of buoyancy and
drag forces as has been done for many previous RTI flows [72–74], then a more applicable form of
an equation fit may be obtained. By starting with these classic buoyancy drag equations, neglecting
the drag term (due to large deceleration in the regime of interest), linearizing the deceleration g(t )
such that

g(t ) ≈ go + dgo

dt
t, (29)

and then integrating leads to

Ẇ = C1Agot + 1

2
A

dgo

dt
t2 C2 + Ẇo. (30)
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Here go is the mean deceleration over the first millisecond, and dgo

dt is the mean deceleration rate
over that same time. The constants C1 and C2 are fitting parameters and Ẇo can be estimated using
linear RMI theory: Ẇo = WoA k V [3]. This fit (“RT BD fit”) is applied to the LES data in the first
and second regime, and one can see it captures the behavior well in Fig. 15(a). The linearization of
the driving deceleration allows for the combination of a linear and quadratic fit, which appears to
match the flow behavior. While by no means a predictive model, it could perhaps serve as a step in
that direction.

In the second regime, once the BW has stopped interacting with the interface, vorticity deposition
should cease and the growth rate should transition from increasing to decreasing. This regime is
governed by neither traditional RMI or RTI and is likely distinct to the BDI.

Once the growth-rate peaks and begins to decrease, the BDI enters the third regime. In this
regime, one expects the growth rate to decay according to traditional RMI theory (due to the finite
deposition of vorticity in both RMI and BDI). This decay can be expressed as W = B θ (t − to)θ−1,
where B is a dimensional fitting constant and to is the time at which the BW stops interacting
with the interface [58]. A power-law according to this equation is fit to the LES data in Fig. 15(a),
and the best-fit value for θ is shown on the plot. Observing this relationship,one can see that RMI
theory seeks the behavior of decaying, anisotropic, and homogeneous turbulence. This is certainly
applicable for the BDI mixing layer during midlate times (Figs. 10 and 13) where the RMI fit is
applied. One can also get an idea of how the RMI decay exponent, θ , changes in time by following
methods used in Thornber et al. [58]. Namely, a time varying θ value is estimated using

θ−1 = (1 − Ẅ W / Ẇ 2). (31)

Applying this relationship to the LES data results in the temporal θ behavior shown in Fig. 15(b).
The horizontal dashed line indicates the θ value found using the power-law fit, which is seen to
agree quite well with the asymptotic value predicted by Eq. (31). The spikes seen at early-mid times
are due to the BDI behavior in the first and second regimes, where Eq. (31) obviously does not
apply. The midlate time behavior displayed in Fig. 15(b) further indicates that the BDI decays very
similarly to the RMI. Indeed the θ values found using the power-law and Eq. (31) fall within the
range reported in literature [11,58].

VIII. CONCLUSION

This article presented a hierarchical validation scheme that used ensembles of experimental data
to compare QOIs with three different models. First, a 2D Euler model was used to recreate the
experimental facility and its driving physics. Boundary and initial conditions were successfully
modeled and a drag-based loss model was added to account for unmeasured losses in the experi-
mental facility. GP optimization showed the tuned Euler model was relatively insensitive to changes
in model parameters.

The validated Euler model was then used as a basis for the implementation of a 2D RANS and
3D LES model, which were validated against ensembles of mixing data from separate experimental
campaigns. It was necessary to use three model parameters for optimizing the RANS model,
which showed good agreement in mixing statistics once the flow approached turbulence. The
optimized model also showed that the rate of energy dissipation in the RANS model matched that
of the experiment, despite large differences in TKE magnitude. However, the agreement in energy
dissipation rate was only achieved after allowing for tuning of θ . Overall the RANS model displayed
more limited predictive capability compared to the LES model. More work, beyond the scope of this
paper, is needed to rigorously tune and validate this K-L RANS model to increase its appropriateness
for use in transitioning flows such as this.

To validate the LES model, we generated a simulation ensemble of equal size to the experimental
data ensemble. This allowed for the comparison of mean and variance trends for the mixing QOI.
While, the validated LES model had no model parameters to optimize it was shown to be sensitive
to the method used for the characterization of ICs. Directly inputting experimental ICs into the LES
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TABLE III. Definitions and nomenclature appearing in this work.

BC Boundary condition
BW Blast wave
DCT Discrete cosine transform
DPT Dynamic pressure transducer
GP Gaussian process
IC Initial condition
ICF Inertial confinement fusion
KHI/KH Kelvin-Helmholtz instability
LES Large-eddy simulation
LLNL Lawrence Livermore National Lab
PIV Particle image velocimetry
QOI Quantities of interest
RANS Reynolds averaged Navier Stokes
RMI/RM Richtmyer-Meshkov instability
RP80 Detonator with 0.2 g high explosive
RTI/RT Rayleigh-Taylor instability
SN Supernova
TKE Turbulent kinetic energy
A Atwood number— ρh−ρl

ρh+ρl

a 1/2 Peak-to-valley amplitude or mixed width
Co Euler model drag coefficient
Eo Euler model initial pill energy
ȧ Mixed-width growth rate
g(t ) Interface acceleration
� Model-dependent source/sink terms
K RANS model turbulent kinetic energy
k Experimental estimate of turbulent kinetic energy
κ Wave number
L RANS model turbulent length scale
λ Wavelength
M Mach number
Re Reynolds number
θ RM self-similar growth exponent
W Integral mixed width
YH Heavy gas mass fraction

model led to much better overall agreement between the data ensembles for both mixing width and
its growth rate. The LES model was shown to capture all of the relevant physics present in the BDI
experiments. The LES also helped to elucidate information about the three mixing regimes observed
in the BDI. Both similarities and differences with traditional RTI and RMI were observed. Primarily,
the BDI was shown to decay according to RMI theory at late times.

Further work with these data sets can be pursued by investigating further comparison between
LES and RANS simulations for QOIs that are not available experimentally. This could also help
inform more general comparison between the RANS and LES models themselves, beyond just the
QOI outputs. Additionally, a more formal uncertainty quantification of model parameters could be
completed. For example, acquiring distributions of parameter uncertainty as opposed to just means.
Further, much more work can be done to elucidate the complex behavior of the first mixing regime.
Validated simulations can be compared to a range of linear and nonlinear theories, or analytical
models, that have been developed to address different complications in the traditional RTI.

The resulting validated digital twin can be used in numerous direction for future work. It can
be used to inform design modifications to the experimental facility, or for experimental campaign

014501-33



BENJAMIN MUSCI et al.

planning when expanding the tested parameter space. The parameter space of BW strength and
Atwood number can be further, and more easily, investigated using the validated RANS and LES
models to investigate different BDI regimes. Further the results of these investigations could allow
for the creation of GPs that replicate the RANS and LES models themselves. This would allow for
a much more computationally efficient investigation of very large areas in the parameter space of
the BDI.
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