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Complex behavior in compressible nonisochoric granular flows
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Granular flow models are typically examined within steady isochoric systems where
velocity divergence equals zero and properties are uniform along streamlines. Within these
flows dilatancy and packing variations can be, and are, neglected. However, there exists a
broad range of flows that are nonisochoric, where these variations cannot be ignored. In
this paper we examine different nonisochoric systems using discrete element simulations.
We first demonstrate that nonisochoric granular flows do not exhibit a simple relationship
between stress and packing and that the alignment criterion relating stress to strain rate
apply only to well-agitated regions of the flow. Subsequently, the discrete simulation
results are used to test the velocity divergence and stress in several compressible granular
flow models. We demonstrate that the models are able to capture key features of the
nonisochoric flows, though none fully describe the observed behavior. We show that in
some cases the predictions of the models can be improved by redefining the equilibrium
condition. Finally, we discuss the challenges faced with extending these compressible
models into dense regions, where granular flows require nonlocal descriptions of the
rheology.
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I. INTRODUCTION

A significant challenge when attempting to apply continuum descriptions to granular flows is
describing granular packing. Granular materials display dilatancy, expanding, or contracting when
sheared, and even in steady incompressible (isochoric) flows packing is not necessarily spatially
uniform [1]. Furthermore, many flows of practical interest, such as hoppers, are nonisochoric, with
granular packing and other properties varying along streamlines. In this paper we study packing
and stress variations in a range of nonisochoric granular flows and examine these in the context of
several continuum descriptions of granular flow.

Granular packing and dilatancy can be modeled using discrete element models (DEMs), which
model individual particle motion. However, the high computational cost of DEMs means that
continuum descriptions of granular flow are desired. Various continuum models have been proposed.
Perhaps the most famous of these is the μ(I ) rheology [2], which describes the stress ratio μ as a
function of the inertial number I , where I is a dimensionless number that describes the relative
importance of shear rate and pressure. The μ(I ) rheology, along with other continuum models
developed for dense flows, are applied assuming incompressibility and uniform packing, effectively
neglecting to model dilatant effects [2–5]. In some geometries dilatancy has been shown to result in
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the presence of unexpected secondary flows [6,7]. Characterizing compressibility is likely important
to fully describe the observed phenomena.

DEM simulations have shown that for dense, steady-state flows packing fraction (φ) is well
described as a function of the inertial number I [1]. However, in dense, weakly sheared regions
of flow this relationship does not hold [8–10]. In these regions where μ drops below the static
yield criterion, it is well known that the μ(I ) relationship does not apply. In these dense regions,
stress is not locally dependent on I and instead the behavior of neighboring regions of flow must
be considered [4,11]. Hence these flows exhibit “nonlocal” behavior [4], including slow creeping
flow [12]. Recently it has been shown that for isochoric flows, which are steady in both an Eulerian
and Lagrangian sense, φ can be described as a local function of μ [8,9], even in regions of flow
that exhibit nonlocal behavior. However, for steady, nonisochoric flows, which are transient in a
Lagrangian sense, more complex behavior was observed [8].

Steady nonisochoric flows represent a broad category of flow geometries, including rotating
drums, flows through pipes or chutes where obstructions are present, hoppers, and others. For
isochoric flows velocity divergence (∇ · u) equals 0 throughout the system and continuum flow
properties (such as velocity, pressure and packing) are uniform along streamlines. In nonisochoric
systems, ∇ · u �= 0 and properties vary along streamlines. There has been limited work modeling
steady nonisochoric systems. The incompressible μ(I ) model has been applied to some transient
nonisochoric systems [2,13–15]. Most notably, this approach could qualitatively, but not quantita-
tively, reproduce flow profiles in hoppers [16]. Furthermore, in some cases the incompressible μ(I )
model can become ill-posed [17–19], though regularized forms of μ(I ) have been developed which
aim to correct for this [17,20].

Several continuum approaches that incorporate some form of dilatancy have been proposed
[21–24]. These approaches modify the μ(I ) equation for stress and incorporate an additional
equation to describe velocity divergence. In practice, the velocity divergence relationship is often
inverted and used to describe pressure. Many of these models are designed to collapse to the
standard incompressible μ(I ) response for isochoric flows. Different compressible models have
been applied, with some success, to model transient flows down inclined planes and in shear cells
[24,25]. However, none of these models has seen broad application or been tested in a wide variety
of geometries.

In this work we seek to examine how several existing compressible continuum models reflect the
behavior we observe in steady nonisochoric flows. To accomplish this, we use DEM simulations to
model three geometries which exhibit nonisochoric flow (hereafter referred to as nonisochoric flow
geometries), namely, a pseudo-2D hopper and chutes with different inserts. Using these simulations
we examine key aspects of three recent local compressible continuum models. Finally, we briefly
discuss the potential challenges with extending these models to describe nonlocal flows.

II. MODELS

In this section we will briefly review several models of compressible granular flows. These
models are implemented using the mass and momentum continuity equations. The basic mass
continuity equation for granular flows is

∂φ

∂t
+ (∇φ) · u = −φ(∇ · u), (1)

where φ is the packing fraction, t the time, and u the velocity vector. For our systems, we consider
only steady-state flows so the left term (∂φ/∂t) equals 0. This means our results will not be
applicable to systems with steady mean behavior but which display underlying transient phenomena,
such as pressure waves in fluidized beds [26,27].

The momentum continuity equation is given by

ρsφ

(
∂u
∂t

+ u · ∇u
)

= −∇P + ∇ · σ ′ + ρsφg, (2)
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where ρs is the particle density, g the gravity vector, σ ′ the deviatoric stress tensor defined as σ =
σ ′ − Pδi j where σ is the stress tensor and P the pressure, P = −Tr(σ)/n where n is the number of
dimensions (in this work n = 3).

Some nonlocal granular flow models introduce additional balances [4,5,28] to describe new
variables, such as granular fluidity or granular temperature. However, the following models are
all local, relating stress (and velocity divergence) only to local flow properties. As such, only the
above equations are necessary to understand their approaches.

A. Incompressible μ(I) rheology (IMUIR)

The μ(I ) model represents a significant development when modeling dense granular flows
[2,29,30]. This model says that μ is described as a direct function of the inertial number I:

μ(I ) = |σ |
P

= μs + μ2 − μs

I0/I + 1
, (3)

with I0, μ2, and μs being fitted constants dependent on particle properties, with μs being the static
yield criterion, which represents the theoretical minimum stress ratio below which flow ceases. In
practice, flow is still observed frequently when μ < μs, but this is not captured by the μ(I ) model.
Some form of creep flow may be introduced to the μ(I ) model when it is regularized to ensure
numerical stability [13,18,20], but the physical basis for these changes is unclear.

In the above, |σ | is the equivalent shear stress, defined as (
∑

i

∑
j 0.5σ ′

i jσ
′
i j )

0.5, and the inertial
number is defined as

I = |γ̇ |d
√

ρs/P, (4)

where |γ̇ | is the equivalent shear rate and d the local average diameter. The equivalent shear rate is
defined by |γ̇ | = (

∑
i

∑
j 2D′

i jD
′
i j )

0.5, where D′ = D − tr(D)/n, Di j = (γ̇i j + γ̇ ji )/2 and γ̇i j are the
components of the shear rate tensor.

The incompressible form of the μ(I ) rheology (here termed IMUIR) is obtained by combining
Eq. (3) with the alignment criterion

σ ′

|σ | = 2D′

|γ̇ | , (5)

and assuming incompressibility (∇ · u = 0) and uniform density (φ = const).
The IMUIR model has had some success in capturing key aspects of granular flows, including

channel flow [2], column collapse [13], rotating square drums [20] and even hopper discharge
[14,15]. Despite its successes, IMUIR is not well posed for the full range of I values [17,18], nor
does it capture compressibility or nonlocal effects. IMUIR will not be discussed in depth in this
work. However, the approach forms a key basis for subsequent rheological models which are of
interest to this work.

B. φ(I) relationship

The φ(I ) relationship describes the packing fraction φ, as a function of I[1]. It provides a simple
way of characterizing granular packing. While the original work suggested a linear dependence of
φ on I , later works have proposed alternate forms [31,32]. Here we use a power law,

φ = φs − AIa, (6)

where A, a, and φs are fitted constants, with φs representing a maximum packing fraction as I → 0.
The φ(I ) relationship has been validated in both 2D and 3D planar shear flows [1,31,32]. In more

complex geometries φ(I ) is a reasonable approximation for regions where φ < φs, but in regions
where μ < μs, the relationship does not apply [8,9]. It may be possible to model flow accurately
while neglecting packing variations (and potentially stress variations) in regions where μ < μs,
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but in many systems it will not be known a priori whether behavior in these regions is important.
Therefore it is important to develop models capable of fully describing the flow throughout the
domain.

φ(I ), and μ(I ) have been analytically solved to obtain packing and flow profiles in vertical chute
and pipe flows [33], both of which are simple isochoric flows. It’s unclear whether this approach can
be extended to more complex isochoric flows, and for unsteady or nonisochoric flows ∇ · u must
also be modeled. Various compressible granular flow models have been developed that incorporate
φ(I ) in such a way as to ensure that as ∇ · u → 0, φ → φ(I ). Below we outline some of the
developed approaches.

C. Dilatancy law (DL)

When we refer to dilatancy law (DL) we refer to a specific approach used to model transient
shifts in φ developed out of soil mechanics [23,34]. This approach introduces the dilatancy angle
(ψ) to relate deformation to changes in volume. For planar shear starting from rest, ψ is the angle of
motion relative to the horizontal arising from displacement, with d	Y = tan (ψ )d	X where d	Y
and d	X are the vertical and horizontal displacement. This relationship is used to link ψ to the
normal shear rate and, in conjunction with the mass continuity, the transient change in φ. Thus, ψ

characterizes the motion arising due to the material dilating to allow flow. This definition of ψ is
specific to planar shear. A generalized 3D form of the dilatancy angle is given by [23]

sin ψ = 2

3

∇ · u
|γ̇ | . (7)

The DL model describes stress with the expression

|σ | = P sin (δ + ψ ), (8)

with δ being the internal angle of friction. Provided ψ is small, it is typical to take sin (δ + ψ ) =
sin δ + sin ψ where sin δ = μs and sin ψ ≈ ψ . In some cases, μs is replaced with μ(I ) [24,34].

This leaves ψ as an unknown. Roux and Radjai [35] suggested the now common closure

sin ψ = ψ = K (φ − φs), (9)

wherein ψ is linearized about the critical packing fraction φs, which is the packing obtained for
steady isochoric flow. As with μs, shear rate dependence is incorporated by replacing φs with φ(I ).
This gives the following two expressions:

μ = μ(I ) + K (φ − φ(I )), (10a)

K[φ − φ(I )] = 2

3

∇ · u
|γ̇ | , (10b)

which are combined with the alignment criterion [Eq. (5)] to close the equations. The above set of
equations provides a simple modification to μ(I ) that may describe transient and compressibility
effects, but collapses to the result for φ(I ) and μ(I ) for steady, isochoric flows.

DL has been used to model dry avalanche flows [24]. However, it has been more widely used
for modeling thin, transient avalanche flow of granules immersed in fluids [34,36–39], with the
equations slightly modified to account for fluid-solid interactions.

D. Compressible μ(I) rheology (CMUIR)

The compressible μ(I ) rheology, here termed CMUIR, is an approach that deliberately preserves
much of the form of the μ(I ) model [22,40]. For CMUIR, I is modified by replacing P with Peqb, the
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“equilibrium” pressure. It is then possible to rearrange μ(I ) and φ(I ) to obtain μ(φ) and Peqb(φ, |γ̇ |).
The following expressions are then defined:

μ(φ) = |σ |
Peqb

, (11a)

P = Peqb

(
1 − μb(φ)

2∇ · u
|γ̇ |

)
. (11b)

μb(φ) represents an additional factor that, while expected to be dependent on φ, has been previously
treated as a constant.

Equations (11a) and (11b), when combined with the alignment criterion, provide descriptions of
the current pressure and stress. These are substituted into Eq. (2), which along with Eq. (1), provides
a complete system of equations to solve. For flows which at steady state are isochoric, the φ(I ) and
μ(I ) relationships are recovered.

CMUIR has been shown to be well posed for the full range of I values, provided μb > 1 − 7μ/6
[22]. In gravityless planar shear, CMUIR has been shown to capture transient wave features that
were observed to propagate during steady flow [40]. CMUIR has not yet been applied to model
more complex flows.

E. Compressible I-dependent rheology (CIDR)

The compressible I-dependent rheology, CIDR [21,41], is an approach to develop a well-posed
dilatant continuum model. There are two fundamental equations underlining the model. First, a yield
function is used to govern the stress response in yielding granular material:

|σ | = Y (P, φ, I ). (12)

Here Y (P, φ, I ) is a function which defines |σ | as a function of pressure, packing fraction, and
inertial number. Second, a flow rule is used to close the continuity equation:

∇ · u = f (P, φ, I )|γ̇ |. (13)

Here f (P, φ, I ), the flow rule function, provides dependence on P, φ, and I . While not explicitly
written as such, it should be apparent that IMUIR and CMUIR could be written to follow a similar
form, though the specific flow rule and yield functions would incorporate dependence on different
parameters.

To relate Y (P, φ, I ) to f (P, φ, I ) and ensure the resulting model is well posed, CIDR uses the
following criteria [21]:

∂Y

∂P
− I

2P

∂Y

∂I
= f + I

∂ f

∂I
, (14a)

∂Y

∂I
> 0, (14b)

∂ f

∂P
− I

2P

∂ f

∂I
> 0. (14c)

The resulting model is then applied in much the same way as CMUIR, with the alignment condition
and yield function being used to describe the stress response in Eq. (2) and the flow rule being used
to define pressure. Using these equations, Eqs. (1) and (2) can be solved transiently to reach the
steady response in any system.
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The original CIDR description (hereafter referred to as oCIDR) [21], suggested the following
form for the yield and flow rule functions:

Y (P, φ, I ) = α(I )P − P2

C(φ)
, (15a)

f (P, φ, I ) = β(I ) − 2P

C(φ)
. (15b)

The forms of the functions α(I ) and β(I ) are chosen such that, in the incompressible case, the yield
function collapses to Eq. (3). C(φ) is taken as a function that bounds φ by an arbitrarily chosen φmin

and φmax with C(φmin) = 0 and C(φmax) = ∞ (when considering a chute flow they used φmin = 0.5
and φmax = 0.6).

Unlike the other compressible flow models considered, this formulation does not attempt to
directly incorporate φ(I ). The yield function is based on a critical state soil mechanics yield
function, which is used to derive the flow rule. In the isochoric case C(φ) = 2P/β(I ) which can
be rearranged to give φ(P, I ) and hence is similar to the φ(I ) model. However, for flows where P is
not uniform it seems unlikely the φ(I ) response would be recovered.

As noted, CIDR represents an approach to defining well-posed continuum equations. Unsurpris-
ingly oCIDR is not the only formulation. Another version, the inertial-CIDR (iCIDR) model has
also been proposed [25]. This model aims to explicitly recreate the φ(I ) and μ(I ) relationships
while utilizing the well-posed framework of the CIDR approach. Specifically, they suggest the yield
and flow rule functions:

Y (P, φ, I ) = μ(�(φ))
I

�(φ)
P, (16a)

f (φ, I ) = 1

4
μ(�(φ))

[
I

�(φ)
− �(φ)

I

]
, (16b)

where �(φ) is the inverted φ(I ) relationship, so I as a function of φ. It should be apparent that, in
the incompressible case I = �(φ), hence f (φ, I ) = 0 and the μ(I ) and φ(I ) relations are recovered.

The two forms of CIDR have seen limited application. The oCIDR model has been applied to
inclined plane flows [21] and to planar shear flows [41], where it was able to capture the same
transient wave behavior as the CMUIR model. The iCIDR model has been applied to planar shear
where it accurately described the collapse of a perturbed flow field towards its steady flow profile
[25].

III. METHODS

DEM simulations were used to test the above models in complex, nonisochoric flows. Simula-
tions were run using the open source software LIGGGHTS [42] using a 3D soft sphere approach and
a Hookean contact model. Particles properties were set to ensure rigid particles (using the criterion
Kn/Pd > 104 where Kn is the normal spring constant [43]). A size distribution dm ± 20%, where
dm is the overall numerical mean diameter, was implemented to prevent crystallization. Specifics on
the DEM approach, including the chosen particle properties, are listed in the Supplemental Material
[44].

While the focus of this work is on examining nonisochoric flows, we also ran simulations in
a complex isochoric flow geometry. This geometry, shown in Fig. 1, is a constant volume, split
bottom shear cell. The geometry was used to help examine the alignment criterion (as outlined in
Sec. IV B). The geometry was filled with 29 600 particles and run with gravitational acceleration
(G) applied along the z axis set to G = 2.07 × 10−7Kndm/m (Kn is the spring constant and m the
particle mass) for all simulations. The top wall is stationary, and the bottom wall is split in two with
each half moving at different velocities (Vy,1 and Vy,2). Four simulations were run using different
values for Vy,1 and Vy,2 (the exact values used are given in the Supplemental Material [44]).
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48dm

G
x

z
y 50dm

Vy,2Vy,1

FIG. 1. 2D Diagram of a 3D split bottom shear cell. The geometry is periodic along the x and y axis and is
12dm wide along the y axis.

Aside from the split bottom shear cell our analysis is primarily restricted to complex geometries
in which, at steady state, flow is nonisochoric and transient in a Lagrangian sense. The geometries
considered are shown in Fig. 2. These are the pseudo-2D hopper [Fig. 2(a)], the vertical chute
with hemicylindrical inserts [Fig. 2(b)] and the vertical chute with wedge inserts [Fig. 2(c)]. For
the pseudo-2D hopper (the simulations for which were taken directly from [8]), we considered
hoppers of two different widths W and two different outlet widths OW . The hoppers were filled
with a number of particles (No) proportional to their width, with No = 2660W/dm, to ensure a
consistent height of roughly 200dm. The system was periodic along the y axis and along the z
axis, with particles 62.5dm below the outlet being recycled to well above the top of the bed. The
gravitational acceleration was applied along the z axis, with G = 4.05 × 10−7Kndm/m. The walls
were smooth but frictional with properties identical to the particles. For the two chute geometries,
three different lengths L were considered. The geometry was periodic along the z and y axis. No was
almost proportional to L, with an adjustment made to account for the volume occupied by the insert,
No = 12.3(50L − Ainsert/d2

m) (rounded to the nearest particle). Ainsert is the cross-sectional area of
the inserts on the xz plane. G was defined as G = 2.07 × 10−7Kndm/m and applied along the z axis.
The walls were rough, being composed of fixed, densely packed particles with a diameter dm and
properties identical to the flowing particles. Dimensions are defined based on the center of mass of
the wall particles, though some parts of these particles will protrude further into the flow.

Properties such as particle position, velocity and contact force, were extracted from the DEM
simulations using coarse graining [45–47]. We use our approach as in [8,48], with a Lucy function
as the weighting function using a width of 1.5dm and a cutoff of 3dm. This cutoff was kept 1.5dmax/2
from the walls for all analysis. In all cases we incorporate both spatial and temporal averaging. We
average five values along the y axis and average over 400 discrete time steps (each 100 000 DEM
time steps apart). When coarse graining in the split bottom shear cell and the vertical chute with
hemicylindrical or wedge inserts geometries, we consider 29 positions along the z axis. In the split
bottom shear cell geometry we consider 16 positions along the x axis, while in the chute with inserts
geometries we analyze L/3dm positions along the x axis. For the hoppers, we analyze 30 positions
along the centerline of the system (x = 0) starting at the outlet (z = 0) and running up to z = 37.5dm.

W

OW

L G
G

50dm

6dm

G

10dm

12dm L

(a) (b) (c)

50dm

x

z
y

FIG. 2. 2D diagrams of the 3D geometries simulated, showing the x and z axes. Panel (a) is a pseudo-2D
hopper, (b) is a vertical chute with hemicylindrical inserts, and (c) is a vertical chute with wedge inserts. The
width of the chute geometries along the y axis was 12dm, and the hopper was 10dm.
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(a) (b) (c)

FIG. 3. Typical flow profiles obtained in the pseudo-2D hopper (a), vertical chute with hemicylindrical
inserts (b), and vertical chute with wedge inserts (c) geometries. Particles are shown with their color scaled
based on their velocity magnitude (in m s−1). In (a) the smooth walls are shown in gray. The insert geometries
shown in (b) and (c) have walls composed of fixed particles, which are shown in gray. The hopper data are
cropped, showing only the domain near the outlet.

Figure 3 shows a snapshot of the flow in each nonisochoric flow geometry (shown for L = 48dm).
It can be seen that immediately after the inserts the flow becomes detached from the wall-forming
large void regions (the size of which grew as L was increased). This is different from what would
be observed for a fluid, where density remains uniform and recirculation zones form. This behavior
has also been noted for hoppers with internal inserts [49]. The behavior is interesting as it is unclear
if any current continuum model for dense granular flow can capture these voids, certainly none
of the models considered here make an allowance for their presence. However, while interesting,
these detached regions are not the focus of our analysis and we restrict our analysis to regions fully
occupied by flow. The criterion used to restrict our analysis was φ > 0.51; any regions where this
criterion was not met were not considered.

IV. RESULTS

In this section, we first examine some of the flow properties coarse grained from our DEM
simulations. We then look at whether previously observed relationships, namely, φ(I ), μ(I ), φ(μ),
and the alignment criterion, are recovered in these systems.

A. φ(I), μ(I), and φ(μ) relations

Figure 4 shows the φ(I ), μ(I ), and φ(μ) relationships in the split bottom shear cell geometry,
along with the results of previous simulations of shear cells, shear cells with gravity, and vertical
chutes (these are taken from [8]). All four geometries exhibit the typical μ(I ), φ(I ), and φ(μ)
responses previously seen in isochoric systems. The φ(I ), μ(I ), and φ(μ) relationships were fitted
to the shear cell data, and are shown as black lines. To fit the φ(μ) data, we use the function

φ(μ) = μB

(
μ

C − μ

)D

+ φmax. (17)

This empirical equation provided a good fit over the range of I values considered. The fitted
coefficients for the μ(I ) response were μs = 0.3722, μ2 = 1.079 and I0 = 0.7630, for the φ(I )
response φs = 0.5985, A = 0.1305, and a = 0.8156, and for the φ(μ) response B = −0.1767,
C = 0.8916, D = 0.1741, and φmax = 0.6593.

Next, for each nonisochoric flow simulated the μ(I ), φ(I ), and μ(φ) relations are examined, as
shown in Fig. 5. The results for the pseudo-2D hopper [Figs. 5(a)–5(c)] have been shown in our
prior work [8]. When I is high, the φ(I ) and μ(I ) responses are recovered; at low I , a different
response was observed. However, unlike the results in Fig. 4(c), we do not see a collapse onto the
φ(μ) relationship, and instead observe a range of responses when φ > φs. Previously, we theorized
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FIG. 4. Results of the DEM simulations for (a) μ vs I , (b) φ vs I , and (c) φ vs μ for the shear cell, shear
cell with gravity, vertical chute, and split bottom shear cell simulations (multiple simulations were run in each
geometry but are shown as the same color for simplicity). The solid black lines show the fitted μ(I ) [Eq. (3)],
φ(I ) [Eq. (6)], and φ(μ) [Eq. (17)] relationships, while the dashed lines mark the position of μs and φs. The
μ(I ) and φ(I ) equations are fitted to the shear cell data while φ(μ) is fitted to the full dataset. The insets show
μ(I ) and φ(I ) with the x axis on a log scale. Points where μ < μs (a) or φ > φs (b) are hollow.

the breakdown in the φ(μ) relation arose due to the hopper being a geometry which, even at steady
state is transient in a Lagrangian sense, displaying nonisochoric flow.

If we now look at the vertical chute with hemicylindrical inserts simulations [Figs. 5(d)–5(f)],
we can see very similar behavior occurring. The chutes with inserts geometries were simulated for
three different lengths L. As the geometries are periodic along the z axis, they can be considered
as infinite chutes with a series of repeating inserts protruding regularly from the walls. As we
reduce L the spacing between each insert decreases. We plot only the results for the hemicylindrical
inserts geometry as the wedge inserts geometry produced very similar behavior (this is shown in
the Supplemental Material [44]). In the shortest case (L = 12dm) there is no space between each
insert. Particles close to the wall are effectively static, resulting in a narrow chute forming through
the center, and the inserts behaving akin to a flat wall. Thus, for this case we recover an identical
response to a chute. We obtain the φ(I ) and μ(I ) responses in regions where φ < φs and μ > μs

and the φ(μ) response is observed throughout the region analyzed.
However, as we increase L, and so the spacing between inserts, the flow is able to deform around

the inserts. The flow becomes “less isochoric.” For L = 24dm we still recover φ(I ) and μ(I ) for high
I . However, we begin to see deviation from φ(μ) at low μ values. In Fig. 5(f) we see clusters of
points at nearly constant φ (with each cluster corresponding to different x positions). These points
spread over a range of μ values, as μ begins to vary significantly along the z axis (i.e., in the
direction of flow).

Finally, for the longest case L = 48dm we observe that μ and φ follow the μ(I ) and φ(I )
relationships in high I regions of flow. In the region 0.05 < I < 0.2, μ increases slightly above
the the μ(I ) relationship, but the difference is small. However, in dense regions, the deviation from
the φ(μ) response is significant, with large variations in μ along the z axis, and smaller but still
noticeable variation in φ. Large variations in the flow profile occur as flow deforms around the
inserts.

Our results show that in these nonisochoric flows, in regions where I is high, the μ(I ) and φ(I )
relations will still be recovered. However, unlike in isochoric flows, the system does not behave
consistently with the φ(μ) model in dense regions. This is consistent with our prior observations
that in nonisochoric flows φ and μ evolve at different rates [8]. Deformations in the flow around the
insert cause variations in μ. As φ evolves more slowly than μ, it lags μ and φ(μ) is not properly
recovered. For our subsequent analysis we restrict the chute with inserts geometries considered
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FIG. 5. μ vs I , φ vs I , and φ vs μ, shown for simulations of pseudo-2D hoppers (a–c) and vertical chute
with hemicylindrical inserts (d–f) geometries. Solid black line(s) show the μ(I ), φ(I ), and φ(μ) relations, while
dashed lines mark the position of μs and φs. Inserts show μ vs I and φ vs I with the x axis plotted on a log
scale. Points where μ < μs (a, d) or φ > φs (b, e) are hollow.

to the longest geometry (L = 48dm) as this displayed the greatest deviation from isochoric flow
behavior. We still consider all three hoppers simulated.

B. Alignment criterion

The alignment criterion [Eq. (5)] is used in most local granular flow models, including those
detailed in the Sec. II, to relate the deviatoric stress tensor components to the deviatoric strain
rate tensor components, along with |σ | and |γ̇ |. |σ | is then defined as function of |γ̇ | (and other
variables), thus allowing the stress to be resolved. This approach has also been used for at least one
nonlocal flow model [11]. Here we first examine the alignment criterion in isochoric systems. For
this analysis we want an isochoric flow geometry which exhibits local and nonlocal regions, with
multiple nonnegligible components of the σ ′ and D′ tensors, and where |γ̇ | is always nonnegligible.

For the three isochoric flow geometries taken from [8] (the shear cell, shear cell with gravity
and vertical chute), the σ ′ and D′ tensors are dominated by a single component. When plotting this
component the alignment criterion will collapse onto 1 or −1. As such, none of these geometries is
suitable for this analysis.

To examine a complex isochoric flow, we instead simulated the split bottom shear cell geometry
(Fig. 1). This system gives us two relevant tensor components (yx and yz). We do also observe that
σxx �= σyy �= σzz �= P even when γ̇xx ≈ γ̇yy ≈ γ̇zz ≈ 0. Hence, there is a minor contribution to |σ |
from the normal stresses, which is also seen in the other isochoric systems, but this contribution is
not significant. These are plotted in Fig. 6, along with a black line showing the expected result of the
alignment criterion. The symbols are colored such that where I > 0.1, the symbols are red and where
I < 0.1 the symbols are blue. The criterion I > 0.1 is used to approximately separate regions that
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FIG. 6. Alignment criterion for isochoric, split bottom shear cell flow. Panel (a) shows yx and (b) yz.
Different symbols denote simulations with different wall velocities.

are likely “local” from those that are “nonlocal.” Figure 6 shows that in both high and low I regions,
the components of the deviatoric stress tensor fall on the black line, indicating that they are directly
proportional to the components of the deviatoric stain rate tensor. Thus, despite different tensor
components contributing to varying extents in local and nonlocal regions, the alignment criterion
holds throughout the system in this complex, isochoric flow.

In Fig. 7 we plot the alignment criterion for the primary stress components (zx, xx and zz) in
our nonisochoric systems. As before, we color the symbols such that where I > 0.1 the symbols
are red and where I < 0.1 the symbols are blue. In a nonisochoric flow it is not clear whether
this simple criterion accurately demarcates the local and nonlocal regions of the flow. However,
Fig. 5 indicates that deviations from φ(I ) and μ(I ) generally occur where I < 0.1, and hence
the color coding is likely still relevant. Figure 7 shows that in nonisochoric flows where I > 0.1,
the alignment criterion holds quite well. However, where I < 0.1, there is no apparent correlation
observed between the deviatoric stress and strain rate tensor components. This observation suggests
that the alignment criterion does not apply to dense, nonisochoric flows. Since the breakdown of the
alignment criterion is only observed in dense, low I , regions, it may be associated with nonlocality.
However, for isochoric flows, as Fig. 6 shows, the alignment criterion holds well in nonlocal regions.
Therefore, the deviation seen in Fig. 7 is likely a nonisochoric flow phenomena.

FIG. 7. Alignment criterion for different tensor components in hopper (�), chute with hemicylindrical
inserts (♦) and chute with wedge inserts (♦) geometries. Panel (a) shows zx, (b) xx, and (c) zz.
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FIG. 8. (a) φ, (b) μ, and (c) ∇ · u in the vertical chute with wedge inserts geometry for regions where
I > 0.1. Regions in white are those not considered or analyzed due to not meeting this cutoff, being too close
to the walls, or having φ < 0.5. The black lines show the positions of the inserts.

There are an infinite number of isochoric and nonisochoric flows and examining the alignment
criterion in all of them is obviously unfeasible. However, the results obtained suggest that, while the
alignment criterion holds across a range of isochoric flows, it does not hold in nonisochoric systems
where I is low and flow is likely nonlocal.

V. DISCUSSION

In Sec. V A we seek to evaluate the performance of the different compressible flow models
considered. We do this by direct comparison between the local values of stress and velocity
divergence coarse grained from our DEM simulations, and with the values predicted by our different
models, using DEM inputs to solve for stress and velocity divergence. If the models capture the
rheology of the flow, the model values and the DEM values will match. Alongside this analysis,
we consider an alternate approach based around integration of the mass continuity equation. This is
done to allow us to evaluate the ability of the models to recover the observed trends in packing, even
if they cannot perfectly match the DEM results. Finally, we consider potential ways of improving
upon the existing compressible flow models.

In Sec. V B we comment on some of the potential issues with extending the compressible flow
models into nonlocal flow regions.

A. Local model analysis

Now that we have established the behavior of our different geometries, we next examine the
different dilatant models. The different models examined are all local. Additionally, some of the
models are not valid if φ > φs. As such we restrict our analysis to regions where I > 0.1 (or close to
0.1, as is discussed later) and φ < φs. This high I cutoff should ensure flow remains within the
intermediate regime [50]. The region of flow considered for the vertical chute with wedge inserts
geometry is shown in Fig. 8, plotted as color maps of φ, μ, and ∇ · u. The region considered for
the hemicylindrical inserts geometry was similar. The criterion μ = μs has been used to previously
separate out nonlocal and local regions of flow in isochoric systems [4,11]. For nonisochoric flows,
it is unclear how well this transition is defined (see Fig. 5). Hence the use of an I-based cutoff to
ensure flow is local. This is an inherent limitation of local models, since it restricts the regions of
flow we can analyze and indeed restricts their general application to only a limited range of flow
types.

1. Prediction for ∇ · u velocity divergence

Initially, we consider the different models from the perspective of their predicted velocity
divergence. For this we will focus on CMUIR, iCIDR, and DL. oCIDR is difficult to examine
with the same methodology, largely because the C(φ) function contains multiple fitting parameters,
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FIG. 9. DEM ∇ · u vs ∇ · u predicted by (a) CMUIR, (b) iCIDR, and (c) DL in the pseudo-2D hopper (�),
chute with hemicylindrical inserts (◦) and chute with wedge inserts (♦) geometries. Data are shown for regions
where I > 0.1. The black line shows the ideal result (∇ · umodel = ∇ · uDEM).

compared with the single fitting parameter of CMUIR or DL. We will discuss this model in the
subsequent section on the prediction for |σ |. For each model considered, we take properties obtained
from the DEM simulations and use them to calculate ∇ · u [by rearranging Eq. (11b) and Eq. (10)
for ∇ · u], using multiple values of the unknown parameters μb (for CMUIR) and K (for DL). The
predicted ∇ · u (∇ · umodel) is then compared with the coarse grained ∇ · u (∇ · uDEM) as shown in
Fig. 9. For CMUIR we inverted Eq. (17) for μ(φ) rather than combining μ(I ) and φ(I ) as it provides
identical results when φ < φs.

Figure 9 shows that there is a large amount of scatter for all of the models, with no model
having ∇ · umodel collapse smoothly onto ∇ · uDEM. For CMUIR and DL, the predicted ∇ · umodel

best matches ∇ · uDEM when μb ≈ 4 and K ≈ 6. This is somewhat subjective, and even for these
values the agreement is poor. iCIDR lacks a fitting parameter to vary and performs similarly to the
other two models. For iCIDR there are a few points from the wedge inserts geometry (♦) where ∇ ·
umodel is around 10–20 while ∇ · uDEM ≈ 0. These are points close to the centerline where φ is large.
For all three models we can see that when ∇ · uDEM ≈ 0 the values of ∇ · umodel are typically under
predicted, with points being clustered below the black line. Based purely on Fig. 9 the different
compressible models perform poorly, being unable to properly recover the velocity divergence in
the simulated geometries.

To examine these models further, we use them to integrate the mass continuity equation at a
constant x position along the z axis and so recover φ. We consider the chute with inserts geometries.
In these geometries stress, velocity, and packing were evaluated at different x and z positions. We
take data at two specific x positions (x = 11.76dm and x = 38.24dm for the hemicylindrical inserts
chute and x = 14.7dm and x = 35.3dm for the wedge inserts chute, where x = 0 is the left wall) and
using the mass continuity equation [Eq. (1)], evaluate φ along the z axis. To do so, we rearrange
Eq. (1) considering that the systems are steady (∂/∂t = 0) and uniform along y (∂/∂y = 0):

uz
∂φ

∂z
= −ux

∂φ

∂x
− φ∇ · u. (18)

Equation (18) is integrated numerically (we used Euler’s method), taking the highest point analyzed
on the z axis as an initial value and solving in the direction of flow. We take ∂φ/∂x from our DEM
simulations and calculate ∇ · u using the different models. All necessary inputs to the models are
taken from the DEM simulation data, excluding φ. For this analysis, 32 z positions were coarse
grained at the specific x position considered, ensuring high spatial resolution on the necessary
inputs (which were interpolated along z to allow a small step size to be used for the integration).
In both chute with inserts geometries across the full z range I briefly drops down to I = 0.06 (for
hemicylindrical inserts) or I = 0.03 (for wedge inserts), and hence slightly below the specified
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FIG. 10. Integration of mass continuity to obtain φ in the vertical chute with hemicylindrical (a) and wedge
(c) inserts, using different models. Panels (b) and (d) show the corresponding ∇ · u. For CMUIR μb = 4 was
used and for DL K = 6.

threshold I > 0.1. However, for the majority of the z range I is close to or greater than 0.1. The
minimum I values reached are not very low, and so nonlocal behavior in these regions is likely to be
minimal. Furthermore, φ < φs throughout the selected region, which is necessary for CMUIR and
iCIDR.

The results of this analysis are shown in Fig. 10, plotted for the x position closest to the insert
(the result nearer the center is similar and given in the Supplemental Material [44]). For comparison
we show the results found when integrating the data using ∇ · u taken from the simulations
(∇ · uDEM) and using ∇ · u = 0. Using ∇ · uDEM to solve for φ results in a curve that closely
matches this observed data. This provides confirmation that our coarse-grained values are accurate
and conservation of mass is recovered. If we assume incompressibility and ∇ · u = 0, we get the
red line, which shows a poor fit to the data. Figure 10 shows that, in both systems, φ decreases
as we approach the insert and then increases again after the flow passes the insert. This peak is
more prominent in the chute with wedge inserts compared to the chute with hemicylindrical inserts,
though the difference between the maximum and minimum φ is similar. The peaks are clearly
correlated with shifts in ∇ · u about the inserts [Fig. 10(b)].

Looking at the predictions of the models they all capture key features of the DEM simulations,
and improve on the result obtained when ∇ · u = 0. The models all capture the initial drop in φ,
and the position of the minimum φ (even if they don’t reach the correct minimum). In the case of
the vertical chute with hemicylindrical inserts, the models align particularly well with the results
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FIG. 11. DEM |σ | vs predicted |σ | for CMUIR (a), iCIDR (b) and DL (c). These are plotted in cyan.
|σ | predicted by IMUIR is plotted in red. Symbols are as in Fig. 7. The black line shows the ideal result
(|σ |model = |σ |DEM). For (a) and (b), the data have been truncated to keep axes consistent. The inserts show the
full results.

using ∇ · uDEM. Similarly, all three models partially capture the subsequent rise in φ, though none
correctly recovers the value and position of the maximum φ. Figures 10(b) and 10(d) show that the
models correctly describe the regions where ∇ · u is close to 0 and capture the drop in divergence
about the insert. Thus, they capture some of the true behavior quite well. They don’t fully capture
the subsequent rise in ∇ · u, which is likely why they can’t replicate the spike in φ. This is most
notable in the chute with wedge inserts geometry with the large φ increase being poorly captured.

Of all the models, it is CMUIR which seems to give the best results. All the models show
improvement over ∇ · u = 0, which indicates that there is potential for these models to be applied
to accurately model dilatancy and packing for compressible, nonisochoric flows.

2. Prediction for |σ| equivalent shear rate

How well these different models handle dilatancy is key to determining their applicability to
complex systems. However, equally important is their prediction for |σ |. All the models considered
in some way modify the prediction of IMUIR, |σ | = μ(I )P, to account for the impact of dilatancy
on stress. In Fig. 11 we examine how these modifications affect the predicted |σ | compared to the
coarse grained |σ | recovered from the simulations. Alongside the model predictions, we also include
the prediction of IMUIR (red symbols). To calculate the stress using these models and minimize
the impact of fitting parameters we do as follows. For DL, rather than use Eq. (10a), we instead
modify the equation by substituting in Eq. (7) so |σ | = P(μ(I ) + 2∇ · u/3|γ̇ |). This allows us to
examine the model’s underlying assumptions regarding how dilatancy impacts stress independent
of the validity of Eq. (9). For oCIDR, the multiple constants in the C(φ) expression make Eq. (15a)
difficult to implement. However, given the definitions for α(I ) and β(I ) it is possible to rearrange
Eqs. (15a) and (15b) to obtain |σ | = P(μ(I ) + ∇ · u/2|γ̇ |), which is effectively the value of |σ | if
Eq. (15b) correctly describes ∇ · u. This is very close to the prediction of DL, barring the small
difference in the coefficient on the ∇ · u/|γ̇ | term. As such, only the result for DL is shown (the
oCIDR result is shown in the Supplemental Material [44]).

The results in Fig. 11 show that the prediction of IMUIR already gives a close match to the
observed data, something that isn’t apparent from Figs. 5(a) and 5(d). The results of CMUIR and
iCIDR [Figs. 11(a) and 11(b)] are similar. The majority of points appear to fall close to the black
line (denoting |σ |model = |σ |DEM); however, points drop below the line as |σ |DEM increases. This
difference is more notable for CMUIR and likely arises due to both models incorporating an inverted
φ(I ) relationship (�(φ)) . The deviation suggests that �(φ) produces a value generally larger than
I , which means for iCIDR I/φ(I ) < 1 and for CMUIR Peqb < P and hence |σ |model < |σ |DEM.
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Despite this general trend, there are a few points where |σ |model � |σ |DEM, as seen in the inserts
in Figs. 11(a) and 11(b). These points are associated with dense regions of flow wherein φ → φs.
Given the form of φ(I ), and CMUIR and iCIDR both incorporating a dependence on 1/�(φ), as
φ approaches φs, |σ |model approaches infinity. Thus while CMUIR and iCIDR produce reasonable
predictions for |σ |, these predictions are poorer than that of IMUIR particularly in dense regions.

While CMUIR and iCIDR both perform significantly worse than IMUIR, DL [Fig. 11(c)] closely
matches the simulations results (as does oCIDR). This model modifies IMUIR through the addition
of a dilatancy term ∇ · u/|γ̇ |. The magnitude of this dilatancy term is generally small, and hence
the differences between the predictions of DL and IMUIR are also small. Thus DL (and oCIDR)
give a good match to |σ |. However, the expression |γ̇ |K (φ − φ(I )) fails to fully capture ∇ · u (as
shown in Fig. 10), and therefore it’s unclear how well Eq. (15) would perform in practice.

3. Potential improvements

The models examined all capture some features of the simulated granular flows, but cannot
account for all features. IMUIR and DL describe stress well, but not ∇ · u. Conversely, CMUIR
and iCIDR describe ∇ · u well, but do not describe stress well. Thus, the question is, are there any
changes that could be made to improve the models? In this section we focus on CMUIR, looking
at improving the result obtained when using the model to integrate the mass continuity. This model
previously gave the best prediction for ∇ · u and φ. The model also offers an immediate way of
adjusting its prediction, by varying the parameter μb.

Figure 12 shows the prediction of CMUIR using different μb values. When a low value is used
the model’s prediction of the peak in φ (at z/dm ≈ 15) improves with the maximum φ closer to
the true maximum. The peak is, however, shifted to the left (i.e., greater z). Figure 12 shows that
by lowering μb, the prediction of CMUIR is improved, at least over the μb range considered.
Particular improvement is seen for the vertical chute with hemicylindrical inserts, wherein the φ

range examined is further from φs. A similar result is achieved using DL with a high K value (as
shown in the supplemental material [44]). However, Fig. 9 suggests that using a low μb will worsen
the prediction for ∇ · u where ∇ · uDEM is very high or low. While Fig. 12 shows some improvement
is possible, this is still insufficient. Heyman et al. [22] suggested μb is a function of φ. While it’s
possible that further improvements could be made by refining μb we were unable to derive a function
μb(φ) that would improve the results beyond what was achieved using a low μb value.

Next, we examine the definition of Peqb. In Fig. 11 the use of Peqb based on φ(I ) to predict |σ |
gives poor results, and it may be causing similar issues with modeling ∇ · u and φ. Thus, rather
defining Peqb using φ(I ), we instead invert Eq. (11a) to get

Peqb = |σ |/μ(φ). (19)

Equation (19) is then used to integrate the mass continuity equation (6). The result of this integration
is shown in Fig. 13, again using a range of μb values.

Figure 13 shows that the predictions of CMUIR are improved by using Eq. (19), with the best
results achieved for μb ≈ 1. For the vertical chute with hemicylindrical inserts geometry [Figs. 13(a)
and 13(b)], the improvement is similar to that achieved using a low μb with the standard CMUIR
[hereafter we refer to CMUIR using Eq. (19) as CMUIRS]. For CMUIRS, we see that as the flow
approaches the insert, the decrease in φ and ∇ · u are captured quite well (something that is also
seen in Fig. 12). However, the subsequent increase in φ and ∇ · u as z decreases further are captured
by the CMUIRS model significantly better than it was by the CMUIR model (Fig. 12).

The improvement for the chute with wedge inserts geometry [Figs. 13(c) and 13(d)], is even
more significant. The minimum φ and ∇ · u are both well captured, and the spike in φ and ∇ · u are
well defined, something CMUIR could not capture, even when μb was low. CMUIR’s inability
to capture this spike is likely due to ψ (φ) → ∞ as φ → φs, which does not occur with μ(φ)
or Eq. (19). Regardless, Fig. 13 demonstrates how, by using CMUIRS, we can improve on the
prediction of CMUIR, particularly for behavior in dense regions (though still in regions which would
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FIG. 12. Integration of the mass continuity to obtain φ in vertical chute with hemicylindrical (a) and wedge
(c) inserts, using CMUIR. Panels (b) and (d) show the corresponding ∇ · u. Colors are as in Fig. 10.

be considered local). Alongside this analysis we also directly compared ∇ · uDEM with ∇ · umodel for
CMUIRS, finding that while predictions were not notably better than CMUIR when |∇ · umodel| was
large, they were somewhat improved when ∇ · uDEM was close to 0 (see the Supplemental Material
[44]). This is likely why CMUIR predicts an immediate jump in φ (in Fig. 10) where CMUIRS does
not.

Using Eq. (19) demonstrates the improvements that can be made through modifying Peqb.
However, by removing the φ(I ) equation, the set of equations is incomplete and the model is
not closed. An additional relationship must be introduced to close the system. We considered
introducing |σ | = μ(I )P from IMUIR to close the system, as Fig. 11 demonstrates IMUIR holds
fairly well, but found the predictions of μ(I ) and μ(φ) were too similar and so unable to account for
the difference between P and Peqb obtained with Eq. (19). Other possibilities include deriving a new,
more accurate, formula for Peqb whilst maintaining Eq. (11a), or finding another way to define P.
For example, Sun and Sundaresan [51] define local pressure from the fabric tensor and coordination
number. Introducing these additional variables requires additional equations and so increases the
complexity of the model. However, a modification like this may be necessary to allow CMUIR to
accurately describe behavior in complex systems.

While not shown, it is possible to make similar modifications to DL, replacing φ(I ) in Eq. (10b)
with φ(μ), and so introducing a dependence on stress into the definition of ∇ · u. The relevant
figure is provided in the Supplemental Material [44] and the resulting improvements are similar,
though not as significant, as those achieved with CMUIRS.
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FIG. 13. Integration of mass continuity to obtain φ in vertical chute with hemicylindrical (a) and wedge
(c) inserts, using CMUIRS. Panels (b) and (d) show the corresponding ∇ · u. Colors are as in Fig. 10, with
black denoting CMUIRS.

The compressible models discussed all describe ∇ · u as an approach to an equilibrium condition.
This equilibrium is defined as the conditions at steady isochoric flow. For example, in CMUIR this
equilibrium is defined (via Peqb) through the φ(I ) relationship that was derived in steady isochoric
flow geometries. The results in Figs. 12 and 13 show that CMUIR can be improved by replacing
the φ(I ) relationship with the φ(μ) relationship, which has also been recovered in steady isochoric
flows and is valid over a wider range of conditions. However, it remains unclear how the equilibrium
condition in nonisochoric and/or transient flows should be defined. Future work should consider
whether other properties and/or relationships are needed to define equilibrium.

B. Nonlocal model analysis

The compressible models discussed to this point are all local models. The use of the φ(I ) and
μ(I ) relations (which cannot describe any nonlocal effects and do not hold when φ > φs or μ < μs)
inherently restricts these models to local flows, even if we just consider the formulations for ∇ · u.
Nonlocal models have been developed which introduce new variables and additional conservation
equations [3,4,11]. However, most of these models were not developed for nonisochoric compress-
ible flows, and maintain the assumption ∇ · u = 0. The need to account for nonlocality alongside
dilatancy is apparent from Fig. 2, where deviations from φ(μ) in nonisochoric systems occur most
clearly in dense, low-shear, regions of flow where nonlocal effects are likely significant.
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FIG. 14. Integration of mass continuity to obtain φ along centerline of vertical chute with hemicylindrical
(a) and wedge (c) inserts, using CMUIRS. Panels (b) and (d) show the corresponding ∇ · u. Colors are as in
Fig. 13.

In the prior section we proposed the CMUIRS model, in which φ(μ) is used in place of φ(I ).
Thus CMUIRS could potentially be valid in dense regions of flow. We test this model in dense
regions by taking the centerline of the two chute with inserts geometries (x = 25dm) and again
integrating the mass continuity equation, with the results shown in Fig. 14. These results show that
in dense, nonlocal regions, CMUIRS is not able to capture the observed packing response. The
CMUIRS model produces a much lower packing than is observed in the DEM simulations. This
discrepancy appears to arise because when |σ | is close to 0, ∇ · umodel → ∞ and hence CMUIRS
cannot describe φ. This observation may indicate that nonlocality is manifesting both in the stress
response, and in the velocity divergence, though further work would be needed to confirm this
hypothesis.

Additionally, as discussed in the Sec. IV (and shown in Fig. 7), in dense regions of nonisochoric
flows the alignment criterion [Eq. (5)] breaks down. Dilatancy results in a more complex response
in these regions, which may be associated with nonlocality. There is at least one nonlocal model
which uses a nonlocal form of the alignment criterion [52]. In this model, the orientation of the
stress tensor is determined by the deviatoric strain rate but is modified by the deviatoric strain rate
in the surrounding region using a diffusive term, i.e., ∇2D′. Such an approach appears promising
and may be consistent with our data, however we were unable to confirm improved alignment with
this approach.
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It is clear from the results presented in this paper that, when describing nonisochoric flows, a
model which accounts for both nonlocality and compressibility, and specifically their interaction, is
necessary. The development of any such model is challenging, but remains a crucial area for further
research.

VI. CONCLUSION

We have examined various compressible local continuum models in nonisochoric flows. The
predicted velocity divergence and stress for these models was significantly different from the
discrete simulation results. However, when applied to solve for the packing fraction by integrating
the mass continuity equation, all of the models tested were able to capture key features of the
flow. This included correctly predicting regions where packing fraction would increase or decrease
in value. We demonstrate that the prediction of the CMUIR compressible model may be further
improved by redefining how the equilibrium pressure is defined. While the modification made is
impractical for general use, it suggests a direction for how this model might potentially be refined
to improve the predictions in the future.

Despite the successes of these different local continuum models, it is unclear whether they
could be extended into dense, potentially nonlocal, flow regions. We have examined the alignment
criterion, showing that while it holds in these regions, provided flow is isochoric, it does not hold
in these regions for nonisochoric flows. The observed failure of the alignment criterion in these
regions complicates any nonlocal modification, particularly because this failure is evidently linked
to the nonisochoric flows being compressible.
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