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Transport equations for heavy inertial particles in turbulent boundary layers may be de-
rived from an underlying phase-space probability density function (PDF) equation. These
equations, however, are unclosed, and the standard closure approach is to use a quasinormal
approximation (QNA) in which the fourth moments are approximated as behaving as if the
velocities were Normally distributed. Except for particles with weak inertia, the QNA leads
to large quantitative errors, and is not consistent with the known asymptotic predictions of
[D. P. Sikovsky, Flow, Turbul. Combust. 92, 41 (2014)] for the moments of the PDF in
the viscous sublayer. We derive a closure approximation based on an asymptotic solution
to the transport equations in regions where the effect of particle inertia is significant. The
closure is consistent with the asymptotic predictions of Sikovsky, but applies even outside
the viscous sublayer. Comparisons with direct numerical simulations (DNSs) show that the
closure gives similar results to the QNA (with the QNA results in slightly better agreement
with the DNS) when the viscous Stokes number is St < 10, but for St > 10 our model
is in far better agreement with the DNS than the QNA. While the predictions from our
model leave room for improvement, the results suggest that our closure strategy is a very
effective alternative to the traditional QNA approach, and the closure could be refined in
future work.

DOI: 10.1103/PhysRevFluids.8.014301

I. INTRODUCTION

The classical model for predicting the concentrations of settling inertial particles in wall-bounded
turbulence is that of Rouse [1]. This model is purely phenomenological and assumes that the effect
of particle inertia is negligible except for the finite gravitational settling velocity it introduces. While
extensions of this model to particles with small but finite Stokes number have been considered using
regular perturbation theory [2], developing a model for moderate to large Stokes numbers remains
a significant challenge. To understand in detail the additional physical mechanisms introduced by
finite particle inertia, and therefore the additional terms that an extended Rouse model must capture,
in Ref. [3] the settling and concentration profiles of settling inertial particles in wall-bounded
turbulence was explored using theory and direct numerical simulations (DNSs). The particles were
assumed to be small and heavy, with their motion governed by a Stokes drag force and gravity. In
contrast to the phenomenological approach of Ref. [1], a rigorous, systematic approach for deriving
transport equations for inertial particles in turbulent flows is to derive them as moments of an
underlying phase-space probability density function (PDF) equation [4–8]. Therefore, in Ref. [3] the
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exact (but unclosed) transport equations governing the particle concentration and settling velocities
were constructed as moments of a PDF equation for the particle position and velocity. An analysis of
the equations led to insights into the physical mechanisms governing these processes and how they
differ from those in homogeneous turbulence that was explored in Refs. [9,10]. Data from DNSs
was then used to evaluate the various terms appearing in these equations, providing insights into
the role played by the inertial mechanisms that are absent from the classical model of Rouse [1].
These additional terms were shown in Ref. [3] to be of leading order importance in determining the
particle settling and concentrations, unless the particle Stokes number is very small, and these terms
must therefore be accounted for if a Rouse-type model is to be extended to the case of finite Stokes
number particles.

While the analysis of Ref. [3] led to unique physical insights, to develop a predictive theoretical
model the hierarchy of moment equations derived from the PDF equation must be closed. The
usual closure assumption is to make a quasinormal approximation (QNA) [11] (which can also
be derived using a Chapman-Enskog approach [12]), according to which the hierarchy of moment
equations is closed by assuming that the fourth moment behaves as if the particle velocities were
normally distributed. Aside from being ad hoc (in general), this closure approach is known to
lead to significant errors in the predictions from the closed moment equations, errors that are both
quantitative and qualitative in nature (similar issues also arise when the QNA is used in models
of inertial particle-pair transport in isotropic turbulence [13,14]). These issues will be discussed in
detail in Sec. II B.

In this paper, we explore an alternative closure approximation that captures the asymptotic
behavior of the relation between the fourth and second moments of the particle velocity in regimes
of the flow where locally the effect of particle inertia is significant. This closure captures the strong
non-Gaussianity of the particle velocities in the near-wall region of the flow, and is consistent with
the asymptotic behavior of the moments in the viscous sublayer that was described in Refs. [15,16].
The predictions of this closed model are compared with DNS data and we find that while this model
is not always in full quantitative agreement with the DNS, it does provide far superior predictions
compared to the QNA when the particle inertia is moderate to strong. Moreover, even when there are
quantitative discrepancies, the predictions are qualitatively consistent with the DNS data, unlike the
QNA model whose solutions also feature a spurious bifurcation near the wall as the Stokes number
is increased beyond a threshold value [17]. Therefore, while there is still room for improvement, the
results suggest that our closure approach is promising, and could be further refined in future work.

II. TRANSPORT EQUATIONS FOR INERTIAL PARTICLES IN
A TURBULENT BOUNDARY LAYER

A. Hierarchy of moment equations

In this paper, we consider the transport of small, heavy inertial particles subject to the equation of
vertical motion (in what follows, all variables are in wall units, with the usual + superscript omitted
for notational simplicity),

z̈p(t ) ≡ ẇp(t ) = 1

St
(up(t ) − wp(t )), (1)

where St ≡ τp/τ∗ is the particle Stokes number, τp is the particle response time, τ∗ ≡ νu−2
∗ is the

fluid timescale based on the friction velocity u∗, zp(t ),wp(t ) are the vertical particle position and
velocity, and up(t ) is the vertical fluid velocity at the particle position. The particle volume and mass
loadings are assumed sufficiently small to ignore particle-particle collisions and two-way coupling.
While this is a highly simplified system, the great difficulties in developing statistical transport
equations even for this simple system mean that incorporating additional complexities are best left
for future work. Moreover, while, as discussed in the Introduction, our ultimate interest is in a model
for settling inertial particles, we are here focusing on developing an improved closure method for
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the simpler case of nonsettling particles. An extension of the model proposed in this paper to the
case of settling particles will be the subject of a future study.

The joint PDF for zp(t ),wp(t ) in a 2D phase-space with time-independent coordinates z,w is
defined as

P (z,w, t ) ≡ 〈δ(zp(t ) − z)δ(wp(t ) − w)〉, (2)

where δ(·) is the Dirac delta distribution, and the evolution equation is (see Refs. [3,16])

∂tP = −∇z(Pw) − ∇w(P〈ẇp(t )〉z,w ), (3)

where the operator 〈·〉z,w denotes an ensemble average conditioned on zp(t ) = z, wp(t ) = w, and
∇z and ∇w denote differentiation with respect to z and w, respectively.

The N th order moment MN (z, t ) of the PDF is defined as

MN (z, t ) ≡
∫
R

wNP dw = �WN , (4)

where � ≡ M0 is the concentration PDF and WN ≡ 〈[wp(t )]N 〉z are the moments of the particle
vertical velocity.

The evolution equation for MN (z, t ) can be obtained from Eq. (3) and is given by [16]

∂tMN = −∇zMN+1 + N�〈ẇp(t )[wp(t )]N−1〉z. (5)

Both terms on the right-hand side (rhs) of this equation are unclosed. Given Eq. (1), we have

〈ẇp(t )〉z,w = 1

St
(〈up(t )〉z,w − w), (6)

leading to

�〈ẇp(t )[wp(t )]N−1〉z =
∫
R
〈ẇp(t )〉z,wwN−1P dw

= − 1

St
MN + 1

St

∫
R
P〈up(t )〉z,wwN−1 dw,

(7)

and the integral can be evaluated once P〈up(t )〉z,w is closed. Various approximations have been
introduced for closing the conditional average P〈up(t )〉z,w (see Ref. [8] for a detailed discussion).
The closure approximation that can be proven to be formally consistent with the fully mixed
condition in the limit St → 0 is that derived using the Furutsu-Novikov formula, assuming that
the fluid velocity field has Gaussian statistics [6,8], leading to the closure

1

St
P〈up(t )〉z,w ≈ Pκ − ∇z(Pλ) − ∇w(Pμ), (8)

where κ (z,w, t ) is a drift coefficient and λ(z,w, t ), μ(z,w, t ) are dispersion coefficients for
diffusion in z,w space, respectively. The details of these coefficients are not important for the
present discussion, and so will be given later, except to note that under standard approximations,
their dependence on w is neglected, and κ = ∇zλ is assumed [18] (although this is strictly only
valid in the steady state when St → 0 [8]). These approximations will be assumed throughout this
paper, under which Eq. (8) simplifies to

1

St
P〈up(t )〉z,w ≈ −λ∇zP − μ∇wP . (9)

While the focus of this paper is on moment equations derived from a kinetic PDF equation,
higher dimensional PDF equations that also include up(t ) in the phase space have been considered
extensively. For these, up(t ) is usually modeled via a generalized Langevin model (GLM) [19],
which is an approach that was developed in the context of single-phase turbulent flows [20]. The
kinetic and GLM PDF approaches have their own merits, as discussed in Refs. [7,21]. Since an
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ultimate goal of our paper is to develop a model that extends that of Ref. [1] to the case of
finite inertia particles, the kinetic approach is preferred here, since the use of a GLM-based PDF
equation ultimately requires one to construct the solutions to the moment equations via a Monte
Carlo method rather than simply as the solution to a set of coupled PDEs (although Ref. [22]
explores direct numerical solutions of the PDEs defined via the GLM PDF model).

B. Quasinormal approximation

The standard approach for closing the first term on the rhs of Eq. (5) is to use a QNA [11] (also
derived using a Chapman-Enskog approach [12]). This approach may be summarized as follows.
By specifying the particle acceleration ẇp(t ) that appears on the rhs of Eq. (5) using Eq. (1), then
the steady-state form of the N = 3 equation can be rearranged to give

M3 = −(St/3)∇zM4 + �〈up(t )[wp(t )]2〉z. (10)

Assuming that W4 behaves as if wp(t ) were normally distributed leads to W4 ≈ 3W2
2 and hence

M4 ≈ 3M2
2/�. Inserting this into Eq. (10), and using Eq. (9) then leads to

M3 ≈ −St∇z
(
M2

2/�
) − Stλ∇zM2. (11)

This equation can then be substituted into the transport equation for M2 and after some manipula-
tion, this leads to a second-order ODE for W2 [23]

0 = (W2 + λ)∇2
z W2 + ∇zλ∇zW2 − 2W2/St2 + 2μ/St, (12)

whose solution can be be used to obtain � from the steady-state N = 1 equation, namely,

0 = −St(λ + W2)∇z� − St�∇zW2. (13)

Since the model assumes that the fluid velocity field is Gaussian when closing 〈up(t )〉z,w, then the
QNA is self-consistent in the regime St 	 1. However, for St � O(1), the statistics of wp(t ) are
expected to be strongly non-Gaussian even if the fluid velocity field is Gaussian [15], owing to the
nonlocal nature of the inertial particle dynamics. There are also known to be two particular errors
introduced by the QNA, which we now discuss.

First, the QNA leads to behavior for WN that is inconsistent with the asymptotic behavior for
z → 0 when St � O(1) [15]. In particular, for St → 0, the scaling of the vertical fluid velocity field
for z → 0 implies WN ∝ z2N , and the QNA result W4 ≈ 3W2

2 is consistent with this. However,
for St � O(1), WN ∝ zγ [15,16], where γ (St) is the power-law exponent describing � in the limit
z → 0, namely, � ∼ z−γ . The QNA is not consistent with this because it predicts W4 ∝ z2γ rather
than the correct behavior W4 ∝ zγ .

The second issue is that the QNA equation for W2 given by Eq. (12) predicts a bifurcation in
the solution as St exceeds a threshold value [17], which through Eq. (13) also leads to a bifurcation
in the solution for �. This predicted bifurcation is not supported by DNS data and is argued to be
unphysical [17], and will be illustrated in Sec. III.

In view of these serious issues with the QNA for St � O(1), an alternative closure approximation
for M4 is desirable that is both consistent with the known asymptotic behavior of the particle
velocities in the limit z → 0 and also avoids the unphysical bifurcations predicted by the QNA
model.

014301-4



ASYMPTOTIC CLOSURE MODEL FOR INERTIAL …

C. Asymptotic closure approximation

An alternative closure approximation is motivated by the observation in Ref. [16] that the
normalized solutions to the steady-state transport equations for WN can be written as

WN

/
WN/2

2 = CN�N/2−1 exp

(
N − 1

St

∫ z

W−1
N (q)〈(up(t ) − wp(t ))[wp(t )]N−2〉q dq

− N

2St

∫ z

W−1
2 〈up(t )〉q dq

)
,

(14)

where CN are constants with respect to z, but will in general depend on St. In view of this result, for
St � 1 the quantity WN/WN/2

2 behaves asymptotically as

WN

/
WN/2

2 ∼ CN�N/2−1(1 + O(1/St)). (15)

This asymptotic result is valid for arbitrary z, however, it is expected that very large values of St
would be needed in practice to observe this behavior across the entire boundary layer (in particular,
it would require that the Stokes number based on the largest timescale in the flow is � 1). The
results in Ref. [15] also imply that Eq. (15) is valid in the viscous sublayer even for St = O(1) since
for z → 0 the result in Eq. (15) reduces to the asymptotic results for the regime St � O(1) predicted
by Ref. [15].

The result in Eq. (15) yields the asymptotic closure approximation (ACA)

M4 ∼ C4M2
2, (16)

whose most important difference compared to the QNA result M4 ≈ 3M2
2/� is the absence of the

factor 1/�. It is precisely because the QNA contains the factor 1/� that it leads to a behavior for W4

that is inconsistent with the asymptotic behavior predicted by Ref. [15] in the limit z → 0. In the
near-wall region, where � can be very large and exhibits a power-law dependence on z [15,16], the
QNA and ACA for M4 will be radically different, both in terms of their qualitative and quantitative
behavior.

To use Eq. (16) to close the moment equations, the constant C4 must be specified. While
this will, in general, depend upon St, the simplest choice is to use C4 = 3/�(zb), where zb is
the upper boundary of the solution domain and �(zb) is the boundary condition imposed when
solving Eq. (13). In a flow with friction Reynolds number Reτ → ∞ and St large but finite, then
provided that zb is large enough to correspond to a height at which the effects of the particle
inertia are negligible, M4 ∼ C4M2

2 approaches the QNA result M4 ≈ 3M2
2/� as z → zb. This

is a self-consistent choice given that the closure for 〈up(t )〉z,w assumes that the wall-normal fluid
velocities are normally distributed, and therefore the PDF of wp(t ) should be only weakly perturbed
from a normal distribution in regions where the effect of particle inertia is weak.

An important point is that although Eq. (16) will not be accurate when St 	 1, this does not in
practice matter. The reason for this is twofold. First, since

M3 = −(St/3)∇zM4 + �〈up(t )[wp(t )]2〉z, (17)

then in the regime St 	 1 the contribution from the term involving M4 [whose closure based on
Eq. (16) is not accurate for St 	 1] will be very small (noting that C4M2

2 and its gradient are
finite in the limit St → 0). Therefore, errors in the closure for M4 will only lead to small errors in
the overall model predictions for M2. Second, with the aforementioned choice C4 = 3/�(zb), then
Eq. (16) asymptotes to the QNA for small St (for which � is almost uniform), and this is known to
yield reasonable predictions for St 	 1.
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Using Eq. (16) to specify M4 in Eq. (17), and substituting the resulting equation for M3 into the
equation for M2 leads to the second-order ODE for M2

0 = A∇2
z M2 + ∇zA∇zM2 − 2M2/St2 + 2μ�/St, (18)

where

A ≡ (2C4/3)M2 + λ. (19)

Since Eq. (18) explicitly contains �, then Eq. (18) must be solved simultaneously with the equa-
tion governing �, namely, Eq. (13). However, we have found that the numerical stability of solutions
to the coupled equations for � and M2 is improved if instead a second-order ODE is solved for �.
This may be obtained by substituting Eq. (13) (which comes from the equation for M1) into the
equation for M0, yielding

0 = −λ∇2
z � − ∇zλ∇z� − ∇2

z M2. (20)

D. Boundary conditions and numerical solution

For the QNA model, two boundary conditions must be specified for W2. A standard choice is
to use ∇zW2|za = 0 and either ∇zW2|zb = 0 [17] or W2|zb = Stμ(zb), where za, zb are the lower
and upper boundary points. The Neumman condition ∇zW2|zb = 0 is suitable if zb lies in the
quasihomogeneous region of the wall-bounded flow, or at the centerline of, e.g., a channel flow.
The Dirichlet condition W2|zb = Stμ(zb) is less restrictive since it is appropriate provided that the
local equilibrium solution to Eq. (12) is accurate, without requiring anything about the gradients of
W2. In the QNA solutions shown later, this Dirichlet boundary condition will be used. The point za

can be specified as za = dp/2, where dp is the particle diameter.
Since � is decoupled from W2 in the QNA model, the solution for � can be obtained after

obtaining W2 by solving Eq. (13), for which a Dirichlet boundary condition �(zb) can be used. Given
that � is a PDF for zp(t ), its integral over the full flow should be equal to one. Due to the linearity
of Eq. (13), �(zb) can be chosen arbitrarily, and the solution can be subsequently renormalized to
satisfy this integral condition. However, if the model is only being solved over a portion of the
flow (e.g., the boundary layer), then the absolute values of � cannot be determined, but only the
concentration profile relative to some reference value. In this case, the choice of �(zb) is arbitrary
and may be simply set to one.

In our ACA model, the equations for � and M2 are coupled and the boundary conditions should
be chosen to be consistent with Eq. (13), which requires

∇zM2|za = −λ∇z�|za . (21)

One choice would be to use ∇zM2|za = −λ∇z�|za = 0, and this is the appropriate choice for St � 1
because limSt→∞ λ = 0. For moderate values of St, an alternative is to specify ∇z�|za based on the
local equilibrium solution to �. This is obtained by using the local equilibrium solution W2 = Stμ
in Eq. (13) yielding �eq. With this, the Neumman boundary condition for M2 is obtained:

∇zM2|za = −λ∇z�
eq|za . (22)

This is similar to the approach described in Ref. [17] to specify ∇zW2|za as an alternative boundary
condition for the QNA model. However, we found that Eq. (22) can lead to numerical instability of
the solution of the ACA model, and therefore we will use ∇zM2|za = 0 for all St values considered.
Note that this is consistent with the use of ∇zW2|za = 0 when solving the QNA model.

For the upper boundary, the local equilibrium solution M2|zb = Stμ(zb)�(zb) may be used. Given
the linearity of the equation for �, we may use �(zb) = 1, and the solution can be subsequently
normalized to yield

∫ zb

za
�dz = 1 in the case where the interval [za, zb] spans the height of the whole

flow. Since we are using ∇zM2|za = 0, then consistent with Eq. (21) we use ∇z�|za = 0 to specify
the second boundary condition for Eq. (20).
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FIG. 1. Comparison of the predictions from the ACA and QNA models for (a) the particle concentration
�(z) and (b) the particle velocity variance W2(z) as a function of St and for z = za and z = 1.

The QNA and ACA models involve second-order, nonlinear ODEs. To solve them, linearization
with Newton-Raphson iteration was used. The local equilibrium solution W2(z) = Stμ|zb is used
as the initial guess [using W2(z) = Stμ(z) leads to numerical issues for larger St values], and the
solutions converged rapidly, usually within three or four iterations.

III. COMPARISON BETWEEN MODELS AND DNS

In this section, we compare the predictions from the QNA and ACA models for � and W2 with
DNS data of particle transport in an open channel flow. The DNS data is from the same data set as
that in Ref. [3], except that here there is no gravitational settling, and elastic particle-wall collisions
are used which leads to a steady state with M1(z) = 0∀z. In the DNS results, the ensemble average
〈·〉 used in defining � and W2 is approximated by a time average in addition to spatial averages in
the streamwise and spanwise directions of the flow.

For the transport equations, the dispersion coefficients λ and μ must be specified, and for these
we use the standard local approximations [18,24]

λ(z) ≈ τL〈uu〉
St(1 + St/τL )

, (23)

μ(z) ≈ λ

τL
, (24)

where u is the vertical fluid velocity at a fixed position (in contrast to up(t ) which is the vertical
fluid velocity along a particle trajectory). In the results that follow, the DNS data for the fluid wall-
normal Reynolds stress 〈uu〉 is used, while the model discussed in Ref. [17] for the fluid Lagrangian
timescale seen by the particle τL was used.

The model equations were solved on a domain z ∈ [dp, zb] with zb = 200. Regarding this choice
of zb, in the DNS the open channel surface is located at z = 312.5, and the solutions to the model are
insensitive to the choice of zb for the St values considered if it is chosen in the range zb ∈ (150, 250).
For zb significantly outside of this range, the model predictions are compromised because the
Dirichlet boundary conditions W2|zb = Stμ(zb) and M2|zb = Stμ(zb)�(zb) are no longer appropri-
ate, given that they are based on a local equilibrium solution to the equations for W2 and M2.

We begin by comparing the QNA and ACA model predictions with each other to highlight their
key differences. In Sec. II B, it was discussed that the QNA model leads to a bifurcation in the
solution as St exceeds a threshold value, as also discussed in Ref. [17]. In Fig. 1, we compare the
model predictions for � and W2 as a function of St and for z = za and z = 1. The results in Fig. 1(a)
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show that the QNA model predicts that �(za) gradually increases with increasing St until St ≈ 35, at
which point �(za) suddenly reduces. The results for z = 1 show similar behavior, except the drop in
� is more gradual. Figure 1(b) shows the associated behavior of W2(za), for which the QNA model
predicts that W2(za) slowly decreases with increasing St until St ≈ 35, and then W2(za) rapidly
increases before slowly increasing with increasing St. This is the bifurcation behavior discussed in
Ref. [17], which appears to be spurious, and is not predicted by the asymptotic analysis of Ref. [15].
Once this bifurcation occurs, the solutions for W2 in the viscous sublayer dramatically switch from
exhibiting a power-law dependence on z to becoming independent of z, which in turn causes a
corresponding switch in the behavior of � due to their coupling according to Eq. (13). This can be
observed in Fig. 1 by noting that for St > 35, the solutions for � and W2 from the QNA model are
the same for z = za and z = 1.

By contrast, the predictions from the ACA model do not show such abrupt changes in the
behavior of either � or W2, nor does this model predict that these become independent of z. The
results do indicate, however, that the ACA model predicts that �(z) as a function of St peaks too
early, noting that DNS data suggests the near-wall concentration is strongest somewhere around
St ≈ 30 [16,25]. This is not surprising, however, given that the ACA is effectively derived for
St � 1 as the leading order approximation of an asymptotic series.

We now compare the model predictions with DNS for � and W2 and for Stokes numbers
St = 2.8, 4.6, 9.3, 46.5, 128, 512, spanning particles with relatively weak to strong inertia. Figure 2
shows the results for �, and for St = 2.8, 4.6, 9.3, the QNA and ACA models give similar pre-
dictions that are in quite good agreement with the DNS data, with the ACA performing slightly
better for St = 2.8, 4.6, and the QNA performing slightly better for St = 9.3. Both models slightly
underpredict � in the range 7 � z � 70. While there are various possible explanations for this, one
is that the underpredictions are due to errors introduced by the local approximation for λ, which can
lead to errors for particle transport in turbulent boundary layers [18].

Another possibility is that the underpredictions are due to errors in the closure approximation
(1/St)�〈up(t )〉z ≈ −λ∇z� that appears in the transport equation governing �. In general, the exact
expression for (1/St)�〈up(t )〉z would involve contributions from infinitely many other terms involv-
ing diffusion coefficients and derivatives of � of all orders [3]. That the closure (1/St)�〈up(t )〉z ≈
−λ∇z� only involves a gradient term is a consequence of the assumption that the fluid velocity
fluctuations have Gaussian statistics [18]. In Ref. [15], it was demonstrated that a gradient diffusion
closure is asymptotically exact in the viscous sublayer. It might also be expected to be reasonable in
and beyond the log region of a boundary layer where deviations of the fluid velocity statistics from
being Gaussian are not expected to be strong. However, in the buffer region where the turbulent
production term peaks and where there are intense gradients, the higher-order contributions to
(1/St)�〈up(t )〉z arising from non-Gaussian fluid velocity fluctuations could be important. This then
could explain some of the discrepancies between the model and DNS results for � observed in the
region 7 � z � 70.

For St = 46.5, 128, 512, the QNA has gone past the bifurcation St value discussed earlier, and
its predictions for � are in serious error. Not only does it drastically underpredict the values of � in
the viscous sublayer, but it also erroneously predicts that � is independent of z in this region. For
St = 46.5, the ACA model underpredicts the DNS data for �.

However, its predictions are closer to the DNS than the QNA, and, most importantly, the ACA
predicts that for this St, � exhibits a power-law dependence on z, in agreement with the DNS and
asymptotic analysis of Ref. [15], but which the QNA fails to reproduce. For St = 128, the ACA
predictions for � are in very good agreement with the DNS down to z ≈ 4, below which the ACA
underpredicts the DNS data. For St = 512, the ACA is in excellent agreement with the DNS across
the range of z considered. The improvement of the ACA predictions as St is increased is of course
consistent with the asymptotic nature of its closure approximation.

Taken together, these results show that the ACA model provides good predictions for � for small
and large St, but leads to some underpredictions for intermediate St. For both intermediate and large
St, however, our ACA model provides a significant improvement compared with the traditional
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FIG. 2. Comparison of DNS data for the particle concentration � with the predictions from the QNA and
ACA for different St.

QNA, being not only in much better quantitative agreement with the DNS, but also correctly
capturing the power-law asymptotic behavior of � in the viscous sublayer, which the QNA does
not correctly predict for intermediate and large St.

Figure 3 compares the QNA and ACA model predictions with the DNS data for W2(z). The
DNS data for the fluid vertical Reynolds stress is also shown for comparison to highlight the extent
to which the models capture the effect of the particle inertia on the velocities. For St = 2.8, 4.6,

the QNA and ACA models are both in very good agreement with the DNS, with the ACA model
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FIG. 3. Comparison of DNS data for the particle velocity variance W2(z) with the predictions from the
QNA and ACA.

predictions in almost exact agreement with the DNS for St = 4.6, while the QNA model slightly
underpredicts W2(z) for z � 3 when St = 4.6. For St = 9.3, the QNA and ACA models are both in
very good agreement with the DNS down to z ≈ 3, but below this the QNA model underpredicts the
DNS while the ACA model overpredicts the DNS. For St = 46.5, the QNA and ACA models are in
good agreement with the DNS down to around z = 10, with both models capturing the strong effects
of particle inertia in this regime. However, this St value exceeds the bifurcation St value for the QNA
model, and related to this is that the QNA predicts that W2(z) becomes constant with values that far
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exceed those of the DNS at small z. The ACA model also significantly overpredicts the DNS at small
z, but the values are much closer to the DNS than those of the QNA model. Most importantly, while
the QNA model predicts that W2(z) becomes constant for small z, the ACA model preserves the
power-law-like behavior observed in the DNS. This then demonstrates that despite the quantitative
shortcomings of the ACA model at St = 46.5, it significantly improves upon the QNA model in
terms of preserving the right kind of qualitative behavior. For St = 128, the QNA model is accurate
down to around z = 30, but below this its predictions are in enormous error compared with the
DNS, both quantitatively and qualitatively. By contrast, the ACA model is accurate down to around
z = 5. Below this, it overpredicts the DNS data, but again preserves a power-law-like-type behavior
in this region, which is in much better qualitative agreement with the DNS than the QNA model.
Finally, for St = 512, the QNA model is only accurate down to around z = 100, and significantly
over predicts the DNS data below this, while again predicting that W2(z) becomes constant at small
z, in stark contrast to the DNS.

The ACA model slightly overpredicts the DNS for z > 20, but is in excellent qualitative and
quantitative agreement with the DNS below this. Again, the improvement of the ACA predictions
compared with the DNS as St is increased is consistent with the asymptotic nature of its closure
approximation.

In Fig. 4, we again compare the QNA and ACA model predictions with the DNS data for W2(z),
but this time in a linear scale to highlight the behavior at larger values of z. At larger z, the QNA and
ACA predictions are almost identical, and this is because in these regions � does not differ strongly
from one, and if � were identically equal to one, then the QNA and ACA closures would be identical.
The results show that at greater distances from the wall, e.g., z � 50, the QNA and ACA models are
in general in good agreement with the DNS, with some underpredictions for smaller St that become
smaller as St is increased. Comparing the DNS data for W2(z) with the fluid Reynolds stress shows
that for the range of St considered, there is a strong effect of St on W2(z), and the models do a very
good job of capturing this effect of the particle inertia.

IV. CONCLUSIONS

We have developed a closure approximation for the moment equations describing inertial particle
transport in turbulent boundary layers that are derived from an underlying phase-space PDF equa-
tion. Traditionally, a QNA has been used to close the equations, but while this yields good results
when the particle Stokes number St is sufficiently small, it leads to significant errors for larger St,
errors that are both quantitative and qualitative in nature. We derive a closure approximation based
on an asymptotic solution to the transport equations in regions where the effect of particle inertia is
significant. This closure approximation, the ACA, differs strongly from the QNA closure in regions
where the particle concentration � deviates strongly from being uniform, but asymptotes to the QNA
approximation when the concentration is uniform.

Comparisons of the model predictions for � and the variance of the vertical particle velocity W2

with DNS data show that while the QNA and ACA model make similar predictions at smaller St
that are in good agreement with the DNS, their predictions differ dramatically at larger St. The
ACA model predictions are in good agreement with the DNS over a much wider range of the
boundary layer. At smaller distances from the wall, even when the ACA model predictions are
not in quantitative agreement with the DNS, they correctly preserve the power-law-like behavior of
� and W2, unlike the QNA model that erroneously predicts that these functions become independent
of z. For very large St, the ACA model is in excellent quantitative agreement with the DNS data.
The ACA model therefore dramatically improves on the traditional QNA model.

To address the remaining quantitative deficiencies of the ACA model, two possibilities should be
explored in future work. First, the coefficient C4 that appears in Eq. (16) was obtained by enforcing
that in regions of the boundary layer where the particle inertia is weak that the ACA closure
asymptotes to the QNA closure. This yields a value for C4 that is independent of St, whereas in
reality it probably should depend on St. Improving the specification of C4 to include an appropriate
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FIG. 4. Comparison of DNS data for the particle velocity variance W2(z) with the predictions from the
QNA and ACA.

St dependence could improve the accuracy of the ACA model. Second, the ACA closure is formally
obtained as the leading order term in an asymptotic series for the regime St � 1. It may be possible
to improve upon this by either incorporating the next term in the expansion, or perhaps by using a
renormalization approach to perform a partial summation of some of the terms in the series. This
will be explored in future work, together with extensions of the model to include the effect of
gravitational settling.
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A final point is that to further improve the predictions from the model, the closure approximation
for (1/St)�〈up(t )〉z should be improved. In the current model, a closure for this is used that
assumes that the velocity field has Gaussian statistics, leading to a gradient diffusion closure for
(1/St)�〈up(t )〉z [6,8]. As discussed in the paper, this result is asymptotically correct in the viscous
sublayer and is also likely a reasonable approximation in the log layer and beyond. However,
in the buffer layer this approximation is not well justified, and this may explain some of the
errors in the model predictions for � in the buffer layer. Future work should consider the closure
of (1/St)�〈up(t )〉z and its accuracy in detail, especially strategies for incorporating some of the
non-Gaussian contributions to this term.
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