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The collision efficiency of cloud droplets settling under gravity in quiescent air is
investigated by means of numerical simulations. In the developed model, the droplets are
represented as either rigid spheres or nondeformable liquid particles of finite viscosity.
For the latter, both the internal circulation of the fluid and the mobility of interfaces are
accounted for. The aerodynamic interaction, resulting from relative motion of the particles
in a viscous medium, is evaluated by making use of a Stokes flow solution. The effect
of noncontinuum lubrication for the flow in the gap between surfaces of the droplets is
also analyzed. This provides a more physical description of aerodynamic interactions valid
for a wide range of the Knudsen number and gap sizes. In contrast to an earlier study by
Rother et al. [Int. J. Multiphase Flow 146, 103876 (2022)], noncontinuum lubrication and
internal circulation effects have been analyzed separately. Additionally, rotational motion
is considered for rigid particles. An objective comparison of the obtained results with the
reference data has been performed as well. Compared to the standard continuum descrip-
tion of aerodynamic interaction for nonrotating rigid spherical particles, noncontinuum
lubrication and internal circulation effects both lead to a larger collision efficiency, whereas
rotation reduces collision efficiency. In general, noncontinuum lubrication has a larger
impact on the collision efficiency compared to the internal circulation of drops, which
loses its influence as their inertia (size) increases. In numerical simulations, therefore,
treating medium-sized cloud droplets as rigid particles is an accurate assumption, but
considering noncontinuum effects in their aerodynamic interaction is expected to alter the
results. In the limit of a large viscosity ratio, the values of collision efficiency for the liquid
drops and freely rotating rigid particles are in a quantitative agreement. Numerical aspects
are also discussed, with a focus on assessing computational complexity and algorithm
parallelization. The simplified problem studied here is an important step towards improving
the representation of aerodynamic interaction in systems with a large number of droplets
interacting in a turbulent flow.
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I. INTRODUCTION

Thermodynamic processes in the atmosphere constitute the weather and climate of a given
area. These processes are influenced by many factors such as orography, the vicinity of water
bodies, or the presence of various types of clouds. Clouds govern precipitations, contribute to
the water cycle, and influence the Earth’s radiative properties, to name but a few examples [1].
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The role of clouds in the atmospheric processes extends over a wide range of temporal and
spatial scales. The quantitative description of such multiscale phenomena is a challenging task
requiring a special experimental facility and advanced modeling techniques [2]. Knowledge in
this area, in turn, is essential for the development of reliable weather and climate forecasts.
Of particular interest are the microphysical effects related to both droplet-droplet and droplet-
air interactions. The small-scale processes determine the collision rate and consequently the
precipitation formation [3]. These phenomena cannot be resolved in the numerical weather pre-
diction (NWP) systems since the horizontal grid spacing of these models is of the order of one
kilometer.

In recent decades, considerable research has been conducted to quantify the cloud microphysical
processes under different atmospheric conditions [4–6]. Their accurate description is important
to develop a more realistic parametrization for the NWP models. Despite enormous efforts and
advancements in research methods, knowledge in the area remains insufficient. Of specific attention
are the mechanisms that lead to a fast broadening of droplet size distribution, including the
entrainment mixing of unsaturated air with the cloud [7], the effects of giant aerosol particles [8],
turbulent fluctuations of the water-vapor supersaturation [9], and turbulent collision-coalescence
[10]. Growth of the medium-sized droplets, 10–60 μm in radii, is driven mainly by turbulent
collisions. The turbulent flow enhances the radial relative velocity and alters spatial distribution
of the droplets [11]. Under certain conditions, the disturbance generated by the moving particles
also has an important effect on the collision efficiency [12]. Yet an important factor often neglected
in numerical models is the aerodynamic interaction.

The aim of this study is to investigate the effects of aerodynamic interaction, noncontinuum
lubrication (NCL), and internal circulation of fluid droplets (FDs) on the collision efficiency of a
pair of inertial water droplets settling under gravity in quiescent air. Doing so leads to an in-depth
understanding of how an improved representation of aerodynamic interaction affects collision. This
is an intermediate step enabling us to extend the problem to a more general case of a large number
of droplets interacting in a turbulent field of air.

In the most common numerical approach, the dynamics of cloud droplets is governed by the
Stokes equation. This approximation is sufficient in the limit of low Reynolds number where inertial
effects can be safely neglected [13]. Due to high complexity of particle-particle and particle-fluid in-
teractions at a wide range of spatiotemporal scales, the analytical solution to the Stokes equation can
be easy derived only for a single particle in a uniform flow. To represent the dynamics of systems
with many mutually interacting particles several approximate approaches have been proposed. The
most common one is the superposition method [14], in which the net drag force acting on a given
particle is evaluated by considering perturbations generated by all other particles in its proximity.
The superposition method was improved by Wang et al. [15] and then found application in the
so-called hybrid direct numerical simulations introduced by Ayala et al. [16]. While accurate for
droplets interacting from large separation distances, superposition methods do not precisely predict
the drag forces when they are very close to each other. This inaccuracy stems from the superposition
of the Stokes solutions that represent the flow around a single isolated sphere. In the literature,
there are several studies that provide exact solutions to the Stokes equation for two interacting
particles. A brief review of the prominent exact solutions to the two-sphere problems is deferred
until Appendix A.

The studies that have particularly focused on two spheres approaching (or retreating) along their
line of centers, e.g., Maude [17], predict resistance coefficients that grow without bound as the
gap between the pair diminishes. This singular behavior prevents the collision under a constant
force applied within finite time [18,19]. To avoid this problem in the numerical models additional
treatments are needed. One of the remedies is to cut these singular resistances at a specific gap size,
thereby ignoring any further increase in the lubrication force beyond this limit. For instance, the
collision gap model assumes that the collision takes place when the gap between the pair is smaller
than a tiny predefined value [20]. Another approach to overcome the lubrication singularity is to
include the attractive van der Waals forces [13,21]. Rosa et al. [21] showed that the collision gap
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model leads to an underestimation in the collision efficiency compared to the simulations with van
der Waals forces.

The vast majority of solutions to the Stokes equation that predict lubrication forces are based on
the assumption that the fluid is a continuous medium. However, when the gap between the droplets
is comparable to the mean-free path of the fluid’s molecules, the continuum mechanical theories
are no longer valid [19,22], and the exact analytical solutions lose their accuracy. At such gaps the
discrete molecular character of the fluid, i.e., noncontinuum effects, must be considered. This results
in lubrication resistance increasing with the inverse of the gap size at a much slower logarithmic pace
[13], leading to lower forces compared with the drag from continuum-based solutions. Therefore,
once noncontinuum effects are considered, the particles are able to make contact within finite
time [19,23,24]. Sundararajakumar and Koch [19] solved the flows under different noncontinuum
regimes depending on the size of the gap, providing analytical expressions for pressure distribution
and drag force. Dhanasekaran et al. [23] fitted a function to these solutions in such a way that it
uniformly covers all the regimes by smooth transitions. These solutions are valid for large Knudsen
numbers.

The lubrication forces are also modified when the internal circulation of droplets is taken into
consideration. Instead of an increase inversely proportional to the gap size derived for rigid spheres,
it has been shown that the growth in lubrication forces acting on a pair of spherical fluid drops is
inversely proportional to the square root of the separation distance [18,25]. Accordingly, collision
is possible within finite time under an exerted constant force. Haber et al. [26] developed the exact
solution to two unequal fluid drops having different viscosities and moving with any orientation
along their line of centers. An exact solution to the translation of such a pair normal to their
line of centers was derived by Zinchenko [27]. Taken together these two studies yield an exact
representation for the forces acting on two fluid drops interacting inside a viscous flow. Using
these solutions, Zinchenko [28] assessed the collision efficiency for a noninertial pair of droplets.
In a recent study, Rother et al. [6] computed the collision efficiency of an inertial pair of fluid
droplets taking into account Maxwell slip and van der Waals forces. Thus, in their approach both
effects, internal circulation and noncontinuum lubrication, albeit limited to low Kn, were considered
simultaneously. The aim of the present study is to examine each effect separately and assess their
significance on the collision efficiency. Additionally, we address the impact of particle rotation at
different ranges of the radii ratio and inertia. The results will be compared with the reference data of
Rother et al. [6] and those calculated using the approximate model developed by Wang et al. [15],
which is accurate for widely spaced particles (droplets).

The remainder of the article is organized as follows. Section II describes the methodology to
compute the collision efficiency, the equations of motion, and force representations used in the
simulations. The first part of Sec. III focuses on a detailed comparison between various representa-
tions for aerodynamic interaction. Then the results of simulations are presented and discussed. The
second part of Sec. III deals with numerical aspects of simulations, including computation time and
improvements to the algorithm. Finally, Sec. IV states the key conclusions drawn from this study.

II. METHODOLOGY

The numerical method for computing the collision efficiency is based on Lagrangian particle
tracking. In the modeled system, the relative motion of two unequal aerodynamically interacting
droplets settling under gravity in quiescent air is considered. The droplets are treated as nonde-
formably spherical particles that are either fluid (having an internal Stokesian circulation) or rigid
(nondeformable and solid). The larger droplet assumed here is of radii a1 = 10, 20, and 30 μm,
while the radii of the smaller one are defined by the parameter λ = a2/a1. In each simulation series,
λ varies in the range 0.05 � λ � 0.99. For such a setting the inertia of the surrounding fluid, i.e., air,
is negligible. To compute the collision efficiency, the far-field off-center horizontal separations for
the grazing trajectories need to be determined. In other words, it is necessary to find the maximum
horizontal shift beyond the area of aerodynamic interaction for which the collision of the droplets
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FIG. 1. A parallel procedure, with np = 3, for evaluation of collision efficiency

may occur. To find this, a modified bisection method was employed. The simulations were initialized
with arbitrary values of the shift and successively corrected based on the information whether the
droplets collided or not. Each iteration in this procedure is called a generation. Since the collision
efficiency is very sensitive to small differences in aerodynamic interaction representations, it is
expected that the noncontinuum effects or the internal circulation of water inside droplets will
have a noticeable impact on the probability of collision. Thus, these effects will be examined by
employing force representation models derived based on each effect. Still, the physical properties of
surrounding air and water droplets, including the densities ρ f = 1.3 × 10−3 and ρi = 1 g/cm3, and
the dynamic viscosity μ f = 1.7 × 10−4 g/(cm s), remain the same in all simulations. Moreover,
two values, μi = 100μ f and μi → ∞, are assumed for the dynamic viscosity of water when the
internal circulation of droplets is taken into consideration. This model offers a basic understanding
of the interaction between a pair of droplets, which can be later employed in a many-body system
of interacting droplets.

A. Numerical method

Figure 1 illustrates the methodology to evaluate the collision efficiency. A parallel scanning
procedure is used to speed up the convergence rate. Initially, the larger droplet is placed at the origin,
Y 1 = (0, 0, 0) and several smaller ones at Y 2 = (0, y0, z0), each setting being an independent prob-
lem. The initial vertical separation is always the same and equal to z0 = 50R, where R = a1 + a2.
This distance is large enough to ensure that the collision efficiency does not depend on the initial
vertical separation distance. As for the initial horizontal separation distance y0(t = 0), different

014102-4



COLLISION EFFICIENCY OF CLOUD DROPLETS IN …

values are simultaneously considered, y(1)
0 , . . . , y

(np)
0 . This configuration comes down to placing np

smaller droplets at equally spaced distances within the entire possible (initial) range of collision,
namely, [0, R]. Here np is the number of processes (subgenerations) per each generation. The initial
velocities are the terminal velocity of each droplet to which the Stokes disturbance of the other
droplet is added to ensure that collision efficiency and droplet trajectories are independent from
the initial vertical separation distance, z0. These settings reduce the three-dimensional problem to
a quasi-two-dimensional one with the droplets moving only in a y-z plane and rotating around the
axis pointed in the x direction. Every subgeneration independently begins to evolve by integrating
the equations of motion for each pair of droplets. An entire generation finishes once all of its
subgenerations are completed with an outcome, either a collision or not. Based on this information,
the range of y0 is narrowed down for the next generation. This procedure continues until the range
is narrow enough, where the maximum initial horizontal separation distance leading to a collision,
yc(≈ yb ≈ ya), is found, providing an estimation for collision efficiency [14]:

E12 = y2
c

R2
.

The collision efficiency can alternatively be defined based on the size of larger droplet as E ′
12 =

y2
c/a2

1 = E12(1 + λ)2, which can be greater than unity [29].

B. Equations of motion

The acceleration of a pair of inertial particles can be expressed using the following compact
notation:

dV i

dt
=

(
1 − ρ f

ρi

)
g + F i

mi
, (i = 1, 2), (1)

where the first term on the r.h.s. includes gravity and buoyancy. The second term handles all the other
forces e.g., attractive van der Waals forces, hydrodynamic (aerodynamic, in this case) interaction
between the particles (water droplets), etc.

Treating a rigid sphere as a special case, the drag force (F s
i , where s stands for single sphere)

exerted by a fluid of viscosity μ f on an isolated spherical fluid drop of viscosity μi is (Hadamard–
Rybczyński problem in Sec. 4.9 of Ref. [30] or Example 4.3 of Ref. [31])

F s
i = −4πμ f aiVi

3
2 μ̂r + 1

μ̂r + 1︸ ︷︷ ︸
μ̂d

= −4πμ f d aiVi, (2)

where μ̂r ≡ μi

μ f
is the viscosity ratio and μ f d ≡ μ f μ̂d is a factor defined for convenience to avoid

repetition. Here “hats” indicate the values that are dimensionless. The special case of Stokes drag
acting on a rigid sphere, −6πμ f aiVi, is recovered when μ̂r → ∞ [31]. Based on Eq. (2), the fluid
droplet inertial response time is defined as

τi ≡ mi

4πμ f d ai
, (3)

yielding terminal velocities

Wi =
(

1 − ρ f

ρi

)
τig. (4)

It is worth noting that the inertia (τi) of the liquid particle (fluid drop) is larger than that of the rigid
particle, and thus its settling velocity is correspondingly faster.

Equation (1) can be rewritten using the definitions given in (3) and (4). Moreover, the force
representing the aerodynamic interaction (F AI

i ) can be normalized by the Stokes drag factor for a
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single spherical fluid drop and then expressed in terms of the velocity perturbation, namely, ui ≡
F AI

i / − 4πμ f d ai. Accordingly, the equations of motion for a pair of particles reduce to

dV i

dt
= W i − ui

τi
, (5)

dY i

dt
= V i, (6)

d�i

dt
= T i

Ii
(only rigid). (7)

Here Y i and V i denote the position and velocity of the droplets, respectively. Equation (7) applies
only to rigid spherical particles with angular velocities, torques, and moments of inertia referred to
by �i, T i, and Ii, correspondingly. For fluid drops, this equation must be replaced with dL/dt = T
where the angular momentum is defined as L = ∫

V r × UρdV over the drop volume, with r being
the radial vector from the center of the drop and U the surrounding fluid velocity. Zinchenko [27]
proved that the hydrodynamic torque acting on a fluid drop is always zero. The proof holds even for
a Navier-Stokes flow inside each drop:

T =
∮

S
r × σ

(n̂)
f dS, (8a)

=
∫

V
r × ∇ · σ i dV, (8b)

=
∫

V
r × ρ

DU
Dt

dV, (8c)

= dL
dt

, (8d)

which is zero in the case of Stokes flow, ∇ · σ i = 0, where σ is the stress tensor and σ (n̂) is the
stress vector on the surface dS. Note that Eq. (8b) switches the integration over the external to the
internal surface of the drop owing to tangential stress continuity and employs the Gauss theorem to
transform this into a volume integral [27]. Since angular momentum is automatically conserved for
a fluid drop, there is no need to solve an equation equivalent to Eq. (7) even for a massive drop with
inertia. Moreover, the hydrodynamic torque vanishes when the internal circulation is approximated
as a Stokes flow. This is plausible for small atmospheric drops due only to their large dynamic
viscosity ratio.

C. Force and torque representations

The terms representing the aerodynamic interaction in Eqs. (5)–(7) are evaluated using both
approximate and exact solutions of the Stokes equation. The torque does not need to be evaluated
if the droplet rotation is neglected. An approximate representation of the aerodynamic force is
obtained using (1) the improved superposition method (ISM) of Wang et al. [15]. This method
was originally developed for modeling systems comprising solid spherical particles. To employ the
ISM for modeling the collision efficiency of water droplets, it first had to be generalized to the
case of liquid particles. This method is based on the exact solution to the Stokes flow induced by a
single translating sphere. Exact force representations utilized here are based on analytical solutions
to the two-sphere problem. We used two alternative solutions available in the literature, namely, (2)
the twin multipole expansion method and (3) solutions in bispherical coordinates system. Finally,
we use (4) an accurate representation of AI which additionally accounts for the noncontinuum
lubrication effects.
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1. Hadamard-Rybczyński problem: Approximate representation

A Stokes disturbance field generated by a single nondeformably spherical fluid drop of radius a
and dynamic viscosity μi moving at the velocity V in a fluid of viscosity μ f is [32,33]

uSt(r; a,V ) =
[

A1

(a

r

)
− 3B1

(a

r

)3
]

V · r
r2

r +
[

A1

(a

r

)
+ B1

(a

r

)3
]
V , (9)

in which r = ‖r‖ is the magnitude of the vector connecting the center of the sphere to any
arbitrary point at which the disturbance uSt is felt; A1 = 2+3μ̂r

4(1+μ̂r ) and B1 = μ̂r

4(1+μ̂r ) are derived in
hydrodynamics textbooks (e.g., Example 4.3 in Kim and Karrila [31]). We note that in the limit
μ̂r → ∞, Eq. (9) converges to the formula representing the Stokes disturbance field generated by a
rigid sphere translating in a viscous fluid (Exercise 2.7 in Ref. [31]).

The ISM of Wang et al. [15] is generalized for spherical fluid drops by replacing the Stokes
disturbance velocity field generated by a rigid sphere with Eq. (9). This yields an approximate
representation for the forces acting on a pair of liquid, as well as solid, spheres. Since the ISM is
based on the superposition of solutions for single spheres, the forces of aerodynamic interactions
are accurate only for large separation distances. Nevertheless, the important advantage of ISM is its
ability to be extended for a many-body system of interacting particles [16]. It should also be added
that the rotational motion is intrinsically not handled by the ISM.

2. Resistance problem: Exact representation

The general resistance problem relates the forces and the torques acting on two spheres (F i, T i )
to their linear and angular velocities (V i,�i ). This relation is given, for example by Jeffrey and
Onishi [34] [Eq. (1.3) therein], as follows:⎛

⎜⎜⎝
F1

F2

T 1

T 2

⎞
⎟⎟⎠ = μ f

⎡
⎢⎢⎣

A11 A12 B̃11 B̃12

A21 A22 B̃21 B̃22

B11 B12 C11 C12

B21 B22 C21 C22

⎤
⎥⎥⎦

⎛
⎜⎜⎝

V 1

V 2

�1

�2

⎞
⎟⎟⎠, (10)

in which μ f is the dynamic viscosity of the ambient fluid. The resistance tensors Aαβ , B̃αβ , Bαβ ,
and Cαβ comprise the resistance functions X A

αβ,Y A
αβ,Y B

αβ, XC
αβ, and Y C

αβ . A complete set of these
functions for two rigid spheres assuming the no-slip boundary condition has been derived making
use of twin multipole expansions [34]. Each function takes the form of a high-order series in inverse
powers of center-to-center separation. The singularities are removed using asymptotic expressions
that are valid for nearly touching spheres. The functions depend on the spheres radii ratio λ = a2/a1

and normalized separation distance s = r/ 1
2 (a1 + a2). Here r is the distance between the centers of

the particles. The functions X and Y handle motion along the line of centers and normal to that,
respectively. The indices α and β are integers {1, 2}, introduced to distinguish particles in the pair.
These resistance functions provide an exact force-torque representation exerted on a pair of rigid
spheres that is valid only in the limit of continuum fluid mechanics. Further on, we will discuss
the noncontinuum lubrication description that is based on these resistances with a modified X A

αβ

function.

3. Bispherical solutions: Exact representation

The literature offers a number of solutions, both partial for selected cases and complete, to the
Stokes equation for a system of two interacting spheres. A brief survey of the exact solutions
developed in bispherical coordinates is carried out in Appendix A. A few of them are employed
in this study to obtain the accurate representation of the aerodynamic interactions. For example, the
translational motion along the line joining particle centers is handled by an implicit implementation
of Stimson and Jeffery [35]. In turn, forces and torques driving the relative motion in the direction
normal to the line of centers are obtained from O’Neill and Majumdar [36]. The complexity of the
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modeled system can be significantly reduced by mapping particle motion onto a (2D) vertical plane.
Due to the geometrical setting, there is neither rotation nor torque around the line of centers.

For modeling the motion of a pair of spherical drops, we use the methodology developed by
Haber et al. [26] and Zinchenko [27]. These solutions enable us to calculate the interactions of
particles in the direction parallel and perpendicular to the line connecting their centers. It is worth
mentioning that these representations [26,27] have already been used to compute the collision
efficiency of noninertial liquid spheres [28]. In this paper, we use the same method for a more
general case, i.e., inertial droplets of unequal size.

4. Noncontinuum lubrication

The analytical solutions to the Stokes equation for two rigid spheres discussed above were
developed assuming that the surrounding fluid is a continuous medium. This assumption is valid
as long as the gap between the surfaces of the spheres is significantly larger than the mean-free path
of the fluid molecules. When the collisions of cloud droplets are considered, the discrete molecular
structure of air becomes important, and this effect needs to be adequately taken into account. In
particular, consequences of noncontinuum interactions are the most pronounced for the squeezing
flow, i.e., a pair of particles approaching each other. For the other types of motion, e.g., shearing
flow, these effects are less important or even negligible. This is because the tangential mobilities,
even under continuum hydrodynamics, remain finite at contact [23]. In general, the noncontinuum
lubrication forces are lower, although the reduction depends on the gap between the spheres.

Depending on the thickness of the gap relative to the mean-free path of air molecules, the flow
between the spheres falls in different regimes. Sundararajakumar and Koch [19] combined several
approaches and computed the pressure distribution in the gap between spheres within a wide range
of gap sizes. Then, the noncontinuum lubrication forces were derived via integrating the pressure
over particle surfaces. Dhanasekaran et al. [23] have fitted a smooth function f nc to these solutions
[19], uniformly covering separation distances under different regimes (see Sec. 4.1 therein). This
noncontinuum representation converges to the continuum one at large separations. Moreover, it is
given in a convenient form as a generalization of the solution for a continuum flow regime in a
bispherical coordinate system. A similar approach is adopted here for representing noncontinuum
lubrication through the resistance functions of Jeffrey and Onishi [34]. For two nearly touching
spheres the resistance functions [(3.17) and (3.18) therein] are

X A
11 = g1(λ)ξ−1 + g2(λ) ln(ξ−1) + X ns

11 , (11)

X A
12 = −2

1 + λ

[
g1(λ)ξ−1 + g2(λ) ln(ξ−1) + X ns

12

]
, (12)

in which ξ = h/ 1
2 (a1 + a2) = s − 2 is the normalized gap between the surfaces of two spheres, and

the size of the gap is h = r − (a1 + a2). The functions g1(λ) = 2λ2/(1 + λ)3 and g2(λ) = λ(1 +
7λ + λ2)/5(1 + λ)3 depend only on radii ratio, and X ns

11 and X ns
12 stand for the nonsingular terms in

the resistance functions remaining finite as ξ → 0. Conversely, the first two terms are singular with
the second term having a much slower logarithmic growth rate. Taking noncontinuum effects into
account, analogous to (4.5) and (4.6) of Dhanasekaran et al. [23], the first singular term will be
replaced with the fit expression as follows:

X nc
11 = X A

11 + g1(λ)

(
f nc

Kn
− 1

ξ

)
, (13)

X nc
12 = X A

12 + −2

1 + λ
g1(λ)

(
f nc

Kn
− 1

ξ

)
, (14)

where

Kn ≡ lm
1
2 (a1 + a2)

(15)
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FIG. 2. Two symmetric cases of free rotation for a rigid pair.

is the Knudsen number representing the strength of noncontinuum effects, and lm(≈ 0.1 μm for air)
is the mean-free path of molecules. The modified resistance functions, (13) and (14), yield the
resistance for a rigid pair translating with an opposing orientation along their line of centers, X nc

11 −
1
2 (1 + λ)X nc

12 . However, they give a representation identical to the continuum one for a pair with the
same orientation, X nc

11 + 1
2 (1 + λ)X nc

12 = X A
11 + 1

2 (1 + λ)X A
12. In a range of low Knudsen numbers

(Kn) of the order O(10−1), Reed and Morrison [37] have obtained an analytical solution for this
type of motion. Their solution is developed under a continuum assumption for the fluid with slip
boundary condition at the surfaces of spheres. Since Kn for the smallest droplets considered in
this study is about O(10−2), this solution can be used to represent noncontinuum effects for a pair
following each other along their line of centers.

D. Force acting on liquid particles in the limit of high-viscosity ratio

The drag force acting on a pair of spherical drops immersed in a viscous flow is a function of
the viscosity ratio μ̂r . When the viscosity of the fluid circulating inside the spheres greatly exceeds
the viscosity of the external fluid, the dynamical properties (e.g., inertia) of these bodies become
similar to those of rigid particles. In the limit of large μ̂r , the drag forces predicted by the solution
of Wacholder and Weihs [38] approach those resulting from the analytical solutions developed for
rigid spheres (e.g., Stimson and Jeffery [35]). For a pair of particles interacting normal to their line
of centers, the solution for liquid spheres (e.g., Zinchenko [27]) at high viscosity ratios corresponds
to that of rigid particles (e.g., O’Neill and Majumdar [36]) only in a particular case that the rigid
pair is undergoing free rotation. This was put forward by Zinchenko [27] based on the solution
he developed for the normal interaction of a pair of liquid spheres. According to that study, the
moments of hydrodynamic forces about the centers of mass of spheres are always zero, even in the
limit of high μ̂r . Therefore, the forces acting on liquid particles in the limit of high viscosity ratios
must approach those due to translation of freely rotating rigid particles, because the net torque,
i.e., sum of the torques caused by translation and rotation, acting on a pair of freely rotating rigid
particles is zero.

A mathematical description of free rotation is presented here. Figure 2 shows two cases for an
identical pair of rigid spheres symmetrically translating with velocity V perpendicular to their line
of centers and rotating with 	 about their central axes that are normal to their line of centers. In
both cases, if the torque due to translation is counterbalanced by an equal and opposite torque due
to rotation, then the angular velocity 	 can be expressed in terms of translational velocity V as
follows:

T

−8πμa2
= T̂ trV + T̂ roa	 = 0 ⇒ a	 = − T̂ tr

T̂ ro
V. (16)
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FIG. 3. Comparison of the normalized aerodynamic force (resistance) acting on a pair of equal-sized
spherical drops moving with the same velocity but an opposing orientation along their line of centers. The
approximate value (order) for the limit of each solution is marked with ∞, indicating an insignificant change
for a larger μ̂r or Kn.

Consequently, the net force due to translation and rotation would be

F

−6πμa
= F̂ trV + F̂ roa	 =

(
F̂ tr − F̂ ro T̂ tr

T̂ ro

)
V, (17)

which is smaller than F̂ trV , the force which would exist if the particles were merely translating,
e.g., when rotation is neglected. Here F̂ and T̂ are nondimensional resistance coefficients for equal
pairs [39,40]. Note that the translational and rotational orientations of the pair differ; namely, if the
pair is translating with equal velocities in the same direction, the angular velocities are equal but
have opposite signs, and vice versa. Such a simple description is possible only when the problem is
symmetrical, which means the spheres have the same radius and move with equal translational and
rotational velocities. In a more general case, i.e., when the particles have different radii and different
velocities, the resistance coefficients (F̂i, T̂i ) and consequently the forces and torques (Fi, Ti ) acting
on them are not identical.

III. RESULTS

A. Comparison of the force representations

In the step preceding the computation of the collision efficiency, a detailed comparison of
different representations for the aerodynamic forces is made. The analysis concerns the relative
motion of two spheres with equal and unequal radii. Two different cases are considered where the
liquid spheres move at the same velocity in directions normal and parallel to the line connecting
their centers. Figures 3–6 show interaction forces normalized by the Stokes drag acting on a single
droplet for a wide range of normalized gap sizes, ξ .

Figure 3 shows the normalized drag force acting on an equal-sized pair of spheres moving with
the same velocity in opposite directions along their line of centers. Such a comparison enables us
to quantify distinctions in different formulations of aerodynamic forces, i.e., rigid particles under
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continuum or noncontinuum lubrication, fluid drops, etc. The growth rate of each representation is
shown next to the curves as ξ → 0, that is, the slope of the line for small ξ . Similar to rigid spheres,
the resistance coefficients for a pair of fluid drops at large viscosity ratios (blue lines) increase to
infinity but the growth rate, ξ−1/2, is slower at moderate viscosity ratios [18,25]. These rates for
the limiting cases of highest and lowest viscosity ratios, μ̂r → ∞ and 0, approach ξ−1 and ∼0,
respectively. The former is consistent with the solution that assumes a no-slip boundary condition
on the surfaces of rigid spherical particles. The latter is quantitatively identical to the case of rigid
particles under perfect slip (lower red dashed line) [37]. The noncontinuum lubrication force (red
line) starts to deviate from both the continuum one (black dashed line) and the continuum-slip one
(higher red dashed line) for ξ < 10−1. For larger separation distances the differences are negligible.
There are two key differences in the representation of the drag force for a noncontinuum flow in the
gap. First, the growth rate as ξ → 0 is weaker with F̂ ∝ ln(ln ξ−1) [19,23]. Second, the value of
this lubrication force is smaller, and the reduction depends on the Knudsen number. In this study,
the mean-free path is constant, and equal to lm = 0.1 μm; therefore Kn is only a function of the size
of the pair. In practice, the mean-free path is inversely proportional to the ambient pressure [41].
This dependence should be taken into account when modeling convective clouds, as the atmospheric
pressure decreases with altitude.

The strict comparison of different formulations of aerodynamic interactions between a pair of
typical cloud droplets, i.e., a = O(10 μm) and μ̂r = O(100), has been made with a rigid pair under
no slip. The comparison reveals that the noncontinuum effect has a much stronger influence on the
reduction of lubrication forces than the mobility of interfaces of liquid particles. In other words,
although each effect noticeably impacts lubrication forces, a combined description of both effects
using the solution developed by Rother et al. [6] would be close to the continuum-slip one. Finally,
the drag forces approximated by the ISM for two limits of viscosity ratio are shown. The two purple
lines in Fig. 3 represent the interacting force for a rigid pair, i.e., when μ̂r → ∞ (rigid particle
limit) and for a fluid pair with μ̂r = 0 (inviscid bubble limit). Both functions flatten for ξ < 10−2

suggesting that under the ISM, it is not feasible to accurately represent the short-range lubrication.
Note that the resistances with μ̂r = 0 are presented only to show the limit of each representation,
but they are not relevant to cloud droplets.

Figure 4 shows the normalized drag acting on two approaching rigid particles and quantify the
differences resulting from considering the noncontinuum effects. These drag forces are evaluated
for a system with two equal-sized spheres at different Knudsen numbers, corresponding to different
radii. The curves compare the standard solutions that assume continuity of the medium (black line)
to those with noncontinuum assumptions. The continuum-slip resistance (green dashed lines) is
derived analytically assuming continuity of flow in the gap and having a Maxwell slip boundary
condition on particle surfaces. In the calculations we used lm = 0.1 μm and Cm = 1 [42]. This
representation is valid when the gap is much larger than the mean-free path of air molecules,
and hence is limited to small Knudsen numbers (Kn < 0.1). In addition, noncontinuum lubrication
force (red lines) evaluated analytically at different noncontinuum regimes (including slip-flow) is
shown, which is also valid at large Kn. The comparison shows how the noncontinuum effects change
the drag acting on rigid particles. For large separation distances the noncontinuum representation
[19,23] agrees well with the continuum-slip solution of Reed and Morrison [37], because the
noncontinuum lubrication of Sundararajakumar and Koch [19] considers the slip flow for gaps
much larger than the mean-free path of molecules. Furthermore, all representations are identical
in the limit Kn = 0 for the entire range of the normalized gap. For small separations, however, the
noncontinuum lubrication deviates from the continuum-slip representation especially at larger Kn.
Figure 5 presents the normalized drag acting on a pair of spheres moving in the same direction
parallel to the line of centers. As expected the force representation for a pair of fluid drops with
μ̂r → ∞ is the same as that of rigid spheres without slip under the continuum assumption. A
reduction in the viscosity ratio of a fluid pair enhances the drag until the limit μ̂r = 0. In this extreme
case, the interactions between liquid particles and rigid particles under perfect slip are identical.
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FIG. 4. Comparison of drag forces acting on two rigid spheres that move along the line connecting their
centers. The forces were evaluated at different Kn using two different approaches: (1) continuum flow with slip
boundary condition and (2) noncontinuum lubrication.

The approximate representations from the ISM are also presented at the same limits μ̂r → ∞ and
0, which can be compared with the exact representations (lower and higher blue lines, respectively).

In this study, depending on Kn of each pair, the noncontinuum effects for this type of motion
is handled using the continuum-slip resistances of Reed and Morrison [37] since, as mentioned,
the solution by Dhanasekaran et al. [23] has been developed for an opposing orientation. When
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FIG. 5. The drag acting on a pair of spheres translating in the same direction along their line of centers.
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FIG. 6. Comparison of the normalized drag acting on a pair of spheres translating normal to their line of
centers in (a) an opposing or (b) the same direction. The two expressions for F̂ T =0 follow the notations in each
corresponding study.

computing the collision efficiency of cloud droplets, this case is of particular importance. Small
differences in the lubrication forces may result in large variations in E12. The reason is that the
velocity at which the droplets follow each other is relatively large and roughly proportional to their
terminal velocities. In the former case, i.e., squeezing flow, the relative velocities are definitely
smaller and proportional to the differences in the terminal velocities.

Further analysis concerns aerodynamic interactions of particles moving normal to their line of
centers. Figures 6(a) and 6(b) show the normalized drag acting on two equal and nonequal spheres
moving in an opposite and the same direction, respectively. For a pair of fluid drops with equal radii
(blue lines), the drags change with the viscosity ratio until reaching their limits. At this extreme
value, the drag has an identical representation as the drag acting on a pair of freely rotating rigid
spheres (black long-dashed line) [27]. The expressions for F̂ T =0 shown in Fig. 6 are the same as
Eq. (17). The notations differ because they are adopted from the corresponding studies by Goldman
et al. [39] and O’Neill [40].

The drag force at the limit of high viscosity ratio is additionally presented for spheres with
unequal radii (green lines). The representations are also in accord with the net forces acting on an
unequal pair of freely rotating rigid spheres (black short-dashed lines). For the comparison we used
the solution developed by Zinchenko [27].

B. Collision efficiency

The collision efficiency computed using different representations of aerodynamic forces dis-
cussed above is presented in Figs. 7(a)–7(c). Three panels correspond to simulations with different
radii of the larger droplets: a1 = 10, 20, 30 μm. The radius of the smaller droplet depends on the
parameter λ specified on the horizontal axis. The effects of droplet inertia, radii ratio, and van der
Waals force have already been discussed in several former studies [13,20,21]. Accordingly, van der
Waals forces are not taken into consideration in the present simulations. Here the main focus is on
the impact of noncontinuum lubrication and internal circulation of the water inside droplets (fluid
pairs with mobile interfaces). The reference E12 has been computed for a pair of rigid spheres under
the continuum flow assumption using two different force representations: (1) resistance functions of
Jeffrey and Onishi [34] and (2) solutions in bispherical coordinates of Stimson and Jeffery [35] and
O’Neill and Majumdar [36]. Both methods give similar results, and the difference is much less than
1%. Therefore, in Figs. 7(a)–7(c), only the results from the Jeffrey and Onishi [34] representation are
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FIG. 7. Collision efficiency as functions of radii ratio under various force representations.

shown (black solid line), marked with “Exact RP: CL.” The raw numerical data are also tabulated
in Appendix C in Tables II, III, and IV. In all three panels, E12 computed under the exact force
representation (black solid line) agrees well with results of Hocking and Jonas [20] (Fig. 3 therein).
Also, E12 evaluated using the ISM for a rigid pair matches well the data in Wang et al. [15] (Fig. 8
and Table 5 therein). A slight discrepancy is, among other factors, due to the different definitions for
the collision gap. A common method to avoid the problem of drag singularity is a tiny enlargement
of the collision radius. This is usually done by increasing the radius of the larger particle, such
that the new collision radius is Rcol = R + εcola1 [15,20,21]. However, in the present study the
minimum separation distance below which the collision is assumed is a fraction of the average
radius: Rcol = R(1 + 1

2ξcol ) where ξcol = 10−3.
The colors, marks, and patterns of curves are chosen to make comparison more convenient.

The purple lines represent E12 computed using the ISM. Black and blue correspond to the models
for rigid particles and fluid drops, respectively. The blue lines are marked with circles to be
compared with the circle-marked black line that takes the rotation of rigid particles, Eq. (7), into
consideration. The red line marks the simulations that account for the noncontinuum effects in
lubrication forces. The green line shows a particular case from the reference data of Rother et al.
[6] in which the van der Waals forces are excluded. As such, the data can be fairly compared with
the models utilized here. These collision efficiencies are computed using a model through which the
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TABLE I. List of misprints found in the studies on two-sphere problem.

Study Equation Misprinted form Corrected form Description

Stimson
and Jeffery
[35]

(37) 2
3

4
3 Refs. [17,49,50]

Maude
[17]

F1 and F2 (An ∓ Bn + Cn ∓ Dn) (A′
n ± B′

n + C′
n ± D′

n) Goddard et al. [50]
provided the correct form.
Also, computational tests
based on
cross-comparison of the
factors with their
counterparts in Stimson
and Jeffery [35].

�B′
n [ − 4 exp(n + 1

2 )(α −
β ) · · ·

{ − 4 exp[−(n + 1
2 )(α −

β )] · · ·
+ · · · cosh(α − β )] + · · · cosh(α + β )}

�C′
n [ · · · sinh(n + 3

2 )(α −
β )

[ · · · sinh(n + 3
2 )(α + β )

− · · · sinh(n + 1
2 )(α −

β )
− · · · sinh(n + 1

2 )(α − β )

× sinh(n + 1
2 )(α −

β ) · · · ]

× sinh(n + 1
2 )(α +

β ) · · · ]
�D′

n [ · · · sinh(n + 1
2 )(α +

β ) · · · ]

[ · · · sinh(n + 1
2 )(α −

β ) · · · ]
O’Neill
and
Majumdar
[36]

(5.10) sinh2 |β| sinh3 |β| Torque: G	 ∝ b3

Wacholder
and Weihs
[38]

(2.46):
last

factor

(2n − 1) (2n + 1) aRef. [35]; computational
tests compared with Table
1 therein [38]

Haber et al.
[26]

[32] and
[33]

c c2 Zinchenko [28]; note:
c = a sinh(α)

[C-7] δ3 = 2(2n + 1)2 δ3 = −2(2n + 1)2 Zinchenko [28]
[B-8] −Cα

n e(n+3/2)α +Cα
n e−(n+3/2)α Cross-comparison of the

systems of equations in
Ref. [38] [third line of
(2.30)] and in Ref. [26];
computational tests

Reed and
Morrison
[37]

(20): last
line

∓n(n + 1) ±n(n + 1) Cross-comparison with
(26) in Stimson and
Jeffery [35]

Beshkov
et al. [51]

[1]: last
line

{ · · · − (2n −
1) sinh 2α]}

{ · · · − (2n + 1) sinh 2α]} Section III.C in Ref. [18],
Sec. 9.4.3 in Ref. [31],
and (B-12) in Ref. [26]

[3] Kn = (n+1)
(2n+2)(2n−1) Kn = n(n+1)

(2n+3)(2n−1)

Kim and
Karrila
[31]

(9.39):
N (n)

1

−2(2n + 1) sinh 2α +2(2n + 1) sinh 2α bRef. [17]; computational
tests compared with
Refs. [26,51].

Jeffrey and
Onishi [34]

(4.9) Ps(q−s)(p−n+1) Ps(q−s)(p−n−1) Refs. [21,52,53]

(6.12) f2 j f2k Ichiki [53]

(6.13) { · · · λ2

1+λ
} − 16λ2

(1+λ)4︸ ︷︷ ︸
missing term

· · · { · · · λ2

4(1+λ)︸ ︷︷ ︸
correction

}
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TABLE I. (Continued.)

Study Equation Misprinted form Corrected form Description

(7.10):
g4

4
5

λ2

(1+λ)4
λ2

10(1+λ) Table 11.5 in Kim and
Karrila [31]

(7.10):
g5

4
125

λ(43−24λ+43λ2 )
(1+λ)4 Ref. [31]: 1

250
λ(43−24λ+43λ2 )

(1+λ) Computational tests show
Ichiki [53] suggestion
better approximates g11

and g12 of O’Neill and
Majumdar [36].

Ref. [54]: 2
125

λ(43−24λ+43λ2 )
(1+λ)4

Ref. [53]: 1
125

λ(43−24λ+43λ2 )
(1+λ)4

Goddard
et al. [50]

(60) n+1
2n+3

n+2
2n+3 Printed correctly in (C35)

therein [50]. Also, (3.45)
in Ref. [39].

Rother
et al. [6]

(A.11) e
−(n+3/2)η1

2n+3 − e
−(n−1/2)η1

2n−1 e−(n+3/2)η1

2n+3 − e−(n−1/2)η1

2n−1 Printed correctly in
Ref. [55].

(A.12) e
−(n+3/2)η2

2n+3 − e
−(n−1/2)η2

2n−1 e(n+3/2)η2

2n+3 − e(n−1/2)η2

2n−1

(A.14) En−1e−(n−3/2)(η2 ) En−1e−(n−3/2)(η2−η1 ) Computational tests
compared with
Refs. [26,37]

(A.14) Ene−(n−1/2)(η2 ) Ene−(n−1/2)(η2−η1 )

(A.14) (n+1/2)2e−(n+1/2)η2

2n+1
(n+1/2)2e(n+1/2)η2

2n+1
(A.15)

and
(A.16)

Fi =
−4

√
2πμe/c

∑
f (n, ηi )

Fi = −4πμec
∑

f (n, ηi )

aFor very large viscosity ratios the solution for a fluid drop (σ → ∞ in Ref. [38]) approaches that of a rigid
particle (λ in Ref. [35]). A careful comparison at this limit shows the factor is misprinted.
bFor very large viscosity ratios the solution for a fluid drop (λ → ∞ in Ref. [31]) approaches that of a rigid
particle (λ2 in Ref. [17]). A careful comparison at this limit shows the factor is misprinted.

internal circulation and noncontinuum effects (within free-slip regime) are jointly accounted for.
The differences between the rigid particles and fluid drops are manifested using different values of
the viscosity ratio, which are μ̂r = 105 and 102, correspondingly. The latter corresponds to the water
droplets in air under typical conditions of atmospheric clouds. The black line with circle symbols
is the only case in which the rotation of rigid pairs, Eq. (7), is considered. Based on the obtained
results, noticeable differences in E12 are observed only for the droplets with low inertia (the two
cases for a1 = 10 and 20 μm). For larger droplets, different force representation models predict
similar values for the collision efficiency.

The approximate force representation obtained from the ISM does not capture the singularity of
the lubrication forces [see Fig. 7(a) in Ref. [15]]. Therefore, the resistance remains finite when the
gap between the droplets goes to zero. This allows us to compute E12 even without employing the
collision gap model, i.e., Rcol = a1 + a2. The differences in the collision efficiency between the rigid
particles and fluid drops (solid vs dashed purple line) are clearly visible for a1 = 10 μm. Overall,
E12 of liquid drops is about 10% larger. This is due to the lower drag force acting on a single liquid
sphere compared to the rigid one. In general, the ISM largely overestimates E12 when compared
with the exact representation (purple vs blue lines).

Under exact force representations for a rigid pair, E12 is significantly larger when considering
the noncontinuum lubrication (red vs black line). The relative increase due to noncontinuum effects
is more pronounced for smaller droplets, on average ≈125%; see Fig. 7(a). For larger droplets this
enhancement is about 25% [see Fig. 7(c)] since the higher inertia of these droplets has a stronger
impact on collisions. The reason for the observed increase is the lower drag force acting on particles
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TABLE II. Collision efficiency between pairs of a1 = 10 μm and a2 = λa1. Values on the first and second
lines of every row are computed considering a normalized collision gap of ξcol = 10−3 and 0 (marked with
asterisk), respectively.

λ ISM RP ISM FD Exact RP Exact RP Exact RP Exact RP Exact RP Exact FD Exact FD
μ̂r = 105 μ̂r = 102 CL (JO) CL (Bi) NCL (JO) +Rot. (JO) +Rot. (Bi) μ̂r = 105 μ̂r = 102

0.05 0.001113 0.001569 0.000528 0.000525 0.003776 0.000478 0.000475 0.000475 0.000693
0.001043∗ 0.001494∗ 0.003656∗ 0.000204∗

0.1 0.003474 0.004283 0.001503 0.001503 0.008016 0.001273 0.001275 0.001272 0.001660
0.003348∗ 0.004153∗ 0.007850∗ 0.000490∗

0.15 0.006236 0.007327 0.002751 0.002750 0.012567 0.002199 0.002199 0.002189 0.002749
0.006064∗ 0.007151∗ 0.012323∗ 0.000812∗

0.2 0.008980 0.010298 0.004172 0.004179 0.017132 0.003173 0.003180 0.003158 0.003899
0.008770∗ 0.010085∗ 0.016814∗ 0.001157∗

0.25 0.011544 0.013048 0.005729 0.005727 0.021547 0.004184 0.004184 0.004149 0.005080
0.011303∗ 0.012803∗ 0.021160∗ 0.001517∗

0.3 0.013891 0.015547 0.007347 0.007338 0.025703 0.005196 0.005190 0.005142 0.006269
0.013624∗ 0.015276∗ 0.025252∗ 0.001890∗

0.35 0.016021 0.017804 0.008962 0.008955 0.029522 0.006181 0.006176 0.006118 0.007441
0.015733∗ 0.017512∗ 0.029013∗ 0.002272∗

0.4 0.017943 0.019832 0.010523 0.010523 0.032943 0.007118 0.007120 0.007056 0.008570
0.017637∗ 0.019522∗ 0.032383∗ 0.002654∗

0.45 0.019660 0.021638 0.011986 0.011993 0.035923 0.007990 0.007997 0.007933 0.009625
0.019340∗ 0.021313∗ 0.035315∗ 0.003029∗

0.5 0.021174 0.023224 0.013309 0.013320 0.038430 0.008774 0.008784 0.008725 0.010578
0.020842∗ 0.022887∗ 0.037780∗ 0.003401∗

0.55 0.022489 0.024596 0.014457 0.014471 0.040451 0.009451 0.009463 0.009412 0.011403
0.022146∗ 0.024249∗ 0.039763∗ 0.003675∗

0.6 0.023616 0.025767 0.015405 0.015420 0.041987 0.010006 0.010019 0.009977 0.012083
0.023265∗ 0.025412∗ 0.041265∗ 0.003641∗

0.65 0.024579 0.026763 0.016140 0.016154 0.043053 0.010430 0.010441 0.010410 0.012605
0.024222∗ 0.026402∗ 0.042297∗ 0.003985∗

0.7 0.025417 0.027624 0.016657 0.016670 0.043672 0.010719 0.010729 0.010708 0.012966
0.025056∗ 0.027259∗ 0.042886∗ 0.004149∗

0.75 0.026188 0.028409 0.016962 0.016973 0.043879 0.010875 0.010884 0.010870 0.013167
0.025823∗ 0.028041∗ 0.043065∗ 0.004246∗

0.8 0.026966 0.029197 0.017067 0.017077 0.043716 0.010907 0.010915 0.010906 0.013220
0.026597∗ 0.028825∗ 0.042874∗ 0.004265∗

0.85 0.027847 0.030084 0.016992 0.017000 0.043226 0.010825 0.010832 0.010827 0.013136
0.027477∗ 0.029710∗ 0.042358∗ 0.004224∗

0.9 0.028948 0.031186 0.016759 0.016766 0.042458 0.010643 0.010649 0.010646 0.012934
0.028576∗ 0.030812∗ 0.041564∗ 0.004133∗

0.95 0.030399 0.032632 0.016394 0.016401 0.041458 0.010377 0.010382 0.010384 0.012631
0.030028∗ 0.032258∗ 0.040539∗ 0.004000∗

0.99 0.031904 0.034125 0.016024 0.016031 0.040524 0.010113 0.010118 0.010114 0.012329
0.031535∗ 0.033753∗ 0.039585∗ 0.003869∗

in squeezing flow. For two closely spaced rigid spheres approaching with equal velocities, the
repulsive aerodynamic force evaluated under the continuum assumption is inversely proportional
to the separation gap, i.e., F̂ ∝ ξ−1. However, if the noncontinuum effects are accounted for, the
drag takes a sluggish logarithmic growth, i.e., F̂ ∝ ln(ln ξ−1) [19,23]. This estimate quantifies the
dependency between lower drag and higher probability of collisions. Moreover, the results of Rother
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TABLE III. Collision efficiency between pairs of a1 = 20 μm and a2 = λa1. Values on the first and second
lines of every row are computed considering a normalized collision gap of ξcol = 10−3 and 0 (marked with
asterisk), respectively.

λ ISM RP ISM FD Exact RP Exact RP Exact RP Exact RP Exact RP Exact FD Exact FD
μ̂r = 105 μ̂r = 102 CL (JO) CL (Bi) NCL (JO) +Rot. (JO) +Rot. (Bi) μ̂r = 105 μ̂r = 102

0.05 0.001016 0.001468 0.000550 0.000547 0.002446 0.000499 0.000496 0.000495 0.000721
0.000947∗ 0.001394∗ 0.002347∗ 0.000220∗

0.1 0.002785 0.003577 0.001728 0.001728 0.006207 0.001475 0.001476 0.001460 0.001897
0.002663∗ 0.003449∗ 0.006019∗ 0.000577∗

0.15 0.005087 0.006202 0.003611 0.003609 0.011288 0.002932 0.002931 0.002859 0.003570
0.004915∗ 0.006023∗ 0.010995∗ 0.001115∗

0.2 0.008881 0.010459 0.006370 0.006380 0.017899 0.004962 0.004973 0.004808 0.005872
0.008644∗ 0.010213∗ 0.017497∗ 0.001892∗

0.25 0.015892 0.018221 0.010261 0.010257 0.026271 0.007749 0.007747 0.007439 0.008987
0.015555∗ 0.017875∗ 0.025749∗ 0.002993∗

0.3 0.029692 0.033148 0.015433 0.015413 0.036512 0.011410 0.011394 0.010916 0.013107
0.029227∗ 0.032684∗ 0.035855∗ 0.004513∗

0.35 0.053900 0.058371 0.021875 0.021857 0.048407 0.015975 0.015961 0.015319 0.018322
0.053365∗ 0.057839∗ 0.047595∗ 0.006529∗

0.4 0.083581 0.088578 0.029291 0.029292 0.061222 0.021286 0.021289 0.020526 0.024465
0.083025∗ 0.088026∗ 0.060242∗ 0.009027∗

0.45 0.111261 0.116508 0.037024 0.037049 0.073750 0.026907 0.026931 0.026110 0.031013
0.110697∗ 0.115948∗ 0.072600∗ 0.011847∗

0.5 0.132948 0.138326 0.044149 0.044191 0.084583 0.032148 0.032189 0.031389 0.037151
0.132378∗ 0.137756∗ 0.083277∗ 0.014721∗

0.55 0.146926 0.152368 0.049694 0.049744 0.092442 0.036232 0.036281 0.035558 0.041982
0.146348∗ 0.151791∗ 0.091008∗ 0.016884∗

0.6 0.152441 0.157926 0.052880 0.052931 0.096407 0.038501 0.038549 0.037967 0.044761
0.151857∗ 0.157342∗ 0.094882∗ 0.017297∗

0.65 0.149126 0.154632 0.053282 0.053328 0.096040 0.038591 0.038634 0.038226 0.045065
0.148536∗ 0.154043∗ 0.094465∗ 0.018001∗

0.7 0.136792 0.142286 0.050902 0.050940 0.091447 0.036522 0.036558 0.036323 0.042878
0.136197∗ 0.141693∗ 0.089867∗ 0.017154∗

0.75 0.115674 0.121072 0.046176 0.046206 0.083281 0.032690 0.032718 0.032613 0.038596
0.115074∗ 0.120476∗ 0.081746∗ 0.015303∗

0.8 0.087475 0.092571 0.039897 0.039920 0.072688 0.027760 0.027781 0.027748 0.032946
0.086878∗ 0.091978∗ 0.071240∗ 0.012796∗

0.85 0.058084 0.058084 0.033036 0.033053 0.061124 0.022498 0.022513 0.022501 0.026813
0.057521∗ 0.061855∗ 0.059786∗ 0.010107∗

0.9 0.037367 0.040560 0.026456 0.026468 0.050024 0.017560 0.017571 0.017559 0.021010
0.036899∗ 0.040088∗ 0.048776∗ 0.007604∗

0.95 0.027620 0.030036 0.020676 0.020685 0.040385 0.013366 0.013373 0.013366 0.016090
0.027235∗ 0.029646∗ 0.039159∗ 0.005494∗

0.99 0.029409 0.031650 0.016775 0.016782 0.033967 0.010641 0.010646 0.010652 0.012936
0.029038∗ 0.031276∗ 0.032702∗ 0.004130∗

et al. [6] follow a similar trend to the results computed using the noncontinuum lubrication model
(green vs red line). The resemblance is mainly due to the noncontinuum lubrication effects, whereas
the differences are caused by two important factors. First, Rother et al. [6] developed a solution for
a pair of fluid drops (having internal circulations with mobile interfaces), while Dhanasekaran et al.
[23] considered rigid particles. Second, in each study noncontinuum lubrication has been quantified
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TABLE IV. Collision efficiency between pairs of a1 = 30 μm and a2 = λa1. Values on the first and second
lines of every row are computed considering a normalized collision gap of ξcol = 10−3 and 0 (marked with
asterisk), respectively.

λ ISM RP ISM FD Exact RP Exact RP Exact RP Exact RP Exact RP Exact FD Exact FD
μ̂r = 105 μ̂r = 102 CL (JO) CL (Bi) NCL (JO) +Rot. (JO) +Rot. (Bi) μ̂r = 105 μ̂r = 102

0.05 0.000849 0.001288 0.000616 0.000612 0.002141 0.000559 0.000555 0.000553 0.000803
0.000782∗ 0.001215∗ 0.002043∗ 0.000252∗

0.1 0.002862 0.003775 0.002557 0.002557 0.007195 0.002191 0.002192 0.002146 0.002767
0.002727∗ 0.003629∗ 0.006966∗ 0.000904∗

0.15 0.015507 0.018573 0.008129 0.008123 0.019484 0.006673 0.006670 0.006376 0.007876
0.015109∗ 0.018167∗ 0.019037∗ 0.002770∗

0.2 0.107644 0.112581 0.025201 0.025241 0.051756 0.020400 0.020440 0.019239 0.023015
0.107168∗ 0.112111∗ 0.050880∗ 0.008787∗

0.25 0.222144 0.227092 0.067370 0.067352 0.116251 0.056775 0.056761 0.052499 0.060435
0.221650∗ 0.226594∗ 0.114833∗ 0.026061∗

0.3 0.317356 0.322077 0.130523 0.130462 0.212516 0.117738 0.117680 0.107228 0.134055
0.316837∗ 0.321537∗ 0.206797∗ 0.059394∗

0.35 0.390764 0.395222 0.241510 0.241508 0.308401 0.240997 0.240994 0.239501 0.260117
0.390175∗ 0.394633∗ 0.304470∗ 0.129763∗

0.4 0.445446 0.449659 0.330729 0.330730 0.377593 0.330135 0.330135 0.328469 0.344289
0.444818∗ 0.449024∗ 0.374497∗ 0.257562∗

0.45 0.484926 0.488974 0.390757 0.390758 0.426780 0.390139 0.390140 0.388504 0.401614
0.484278∗ 0.488327∗ 0.424117∗ 0.337576∗

0.5 0.511876 0.515793 0.430388 0.430389 0.460269 0.429763 0.429763 0.428232 0.439784
0.511204∗ 0.515125∗ 0.457836∗ 0.389156∗

0.55 0.528051 0.531920 0.454236 0.454237 0.480699 0.453600 0.453600 0.452194 0.462905
0.527385∗ 0.531237∗ 0.478375∗ 0.420508∗

0.6 0.534466 0.538306 0.464542 0.464543 0.489438 0.463884 0.463884 0.462602 0.473000
0.533782∗ 0.537620∗ 0.487138∗ 0.433297∗

0.65 0.531163 0.535047 0.461830 0.461831 0.486734 0.461132 0.461133 0.459969 0.470534
0.530478∗ 0.534358∗ 0.484366∗ 0.430496∗

0.7 0.517313 0.521313 0.444888 0.444889 0.471551 0.444129 0.444130 0.443083 0.454383
0.516629∗ 0.520625∗ 0.469017∗ 0.410492∗

0.75 0.490736 0.494925 0.409990 0.409991 0.441087 0.409144 0.409145 0.408231 0.421133
0.490065∗ 0.494252∗ 0.438201∗ 0.367350∗

0.8 0.447010 0.451491 0.348424 0.348426 0.389292 0.347484 0.347484 0.346751 0.362956
0.446360∗ 0.450837∗ 0.385660∗ 0.283840∗

0.85 0.377523 0.382419 0.238258 0.238261 0.303018 0.237326 0.237329 0.236880 0.260695
0.376893∗ 0.381788∗ 0.297531∗ 0.146255∗

0.9 0.265307 0.270729 0.105428 0.105457 0.157098 0.083491 0.083520 0.081787 0.094562
0.264701∗ 0.270124∗ 0.154204∗ 0.043987∗

0.95 0.092923 0.098103 0.042087 0.042105 0.068297 0.029331 0.029348 0.029390 0.034852
0.092322∗ 0.097506∗ 0.066244∗ 0.013722∗

0.99 0.026878 0.029222 0.019110 0.019117 0.033859 0.012263 0.012263 0.012272 0.014809
0.026502∗ 0.028829∗ 0.032322∗ 0.004941∗

in a different manner. To do so, Rother et al. [6] imposed slip boundary condition on drop surfaces
while assuming a continuous flow in the gap between droplets. This is accurate at low Kn as long as
the gap is much larger than the mean-free path of the flow. On the other hand, Dhanasekaran et al.
[23] used several solutions obtained within various noncontinuum regimes, which is valid at high
Kn and for gaps smaller than the mean-free path of air molecules. Furthermore, it is worth adding
that the less steep increase in the noncontinuum lubrication forces enables performing simulations
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without having to use the collision gap model. This leads to a small (≈2%) decrease in E12 (see
Tables II–IV in Appendix C).

The next set of results, shown in Figs. 7(a)–7(c) using the circle-marked black line, presents E12

computed in simulations that account for rotation of rigid particles. These values are in accord with
E12 for liquid particles with μ̂r = 105 (solid circle-marked blue line). This is an important finding
viewing the fact that two different sets of problems yield the same results. An unavoidable conse-
quence of considering particle rotation is the significant increase of the computational complexity.
Accounting for rotational motion requires the calculation of more quantities including torques,
angular velocities, additional resistance functions (defining the coupling between translational and
rotational motion), and modified drag forces. The ordinary differential equation governing the
angular velocity of rigid particles, Eq. (7), must be solved together with the equation for the
translational velocity. All these factors remarkably enhance the computational time compared to
the case in which rotation is neglected. As for the spherical drops, an equation for the angular
momentum does not need to be solved since a rigid-body rotation is not defined for the internal
flows circulating inside the droplets and the external torques acting on the droplets are zero. Thus,
the computational time is much shorter, while values of E12 are in a quantitative agreement with
those for the freely rotating rigid particles. The obtained results are consistent with the theory
developed by Zinchenko [27]. According to hypotheses formulated there, the forces acting on two
liquid particles with a very large μ̂r translating normal to their line of centers, are equal to those
due to the translation of freely rotating rigid particles (see Fig. 6). It is also worth adding that the
forces acting on two fluid drops of large μ̂r translating along their line of centers [26,38] are similar
to those of rigid particles [17,34,35]. For the problem considered here, the conditions guaranteeing
the free rotation are satisfied, because (1) the initial condition imposed is 	i = 0 and (2) there are
no external torques acting on the droplets.

In Figs. 7(a) and 7(b), comparison between rotating (circle-marked black line) and purely
translating (regular black line) rigid pairs demonstrates that when the particles are allowed to rotate
E12 declines roughly by 10% to 30% as λ increases from the smallest to largest values. Rotation, via
the coupling terms in the resistance matrix, modifies the net drag acting on the pair normal to the
line of centers, thereby reducing the chance of collision. For a pair of water droplets in still air, the
viscosity ratio is of the order of μ̂r = 102. Under such conditions, the collision efficiency of water
droplets (blue dashed line) is larger than that for freely rotating rigid particles of the same density or
liquid particles at μ̂r = 105. This enhancement is from ≈20% for almost equal-sized (λ → 1) pairs
to ≈45% for the smallest radii ratio considered here (λ = 0.05). Again, the reason for the increase
in E12 is the lower drag force acting on the approaching particles. We should be aware, however, that
the comparison with purely translating rigid pairs (regular black line) is somehow biased because
the interfaces (between drops’ internal and external flows) of droplets are mobile.

Another comparison concerns the results obtained by employing exact and approximate (eval-
uated through the ISM) representations of aerodynamic interactions. One would expect that since
the ISM yields a much smaller drag (at short separation distances) than noncontinuum lubrication
(see Fig. 3), E12 under the ISM has to be always larger. It turns out, however, that in many cases the
trend is opposite [see Figs. 7(a) and 7(b)]. The reason can be explained by considering a simplified
example. For a pair of cloud droplets of radii ratio λ = 0.7, the terminal velocity of the smaller
droplet is approximately half (since τi ∝ a2

i ) of the larger one. If aerodynamic interactions were
neglected, the pair would maintain the same terminal velocities while settling under gravity. In
Fig. 8 these terminal velocities are decomposed (see Fig. 1 in Rosa et al. [21]) into two elementary
cases of the pair approaching and following at the same velocity. The first case on the r.h.s., based on
exact solutions, is subjected to the singular resistances which prevent collision unless the collision
gap model is utilized. For this case, a stronger drag reduces E12. The second case on the r.h.s. is also
important for this problem since a major contribution to total velocity is due to the pair following
each other along gravity. (The least effective cases would be related to the horizontal components of
velocities, being zero here, since they would be much smaller than settling velocities if aerodynamic
interaction were considered.) For the second case, slight variations in the drag forces significantly
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FIG. 8. Decomposition of velocity of an arbitrary two-body system with λ = 0.7 into two elementary and
symmetrical cases.

change E12 in such a way that, contrary to the first case, a stronger drag leads to a larger E12. The
force from the ISM for the second case (following droplets) is compared with the noncontinuum
representation in Fig. 5, exhibiting a weaker drag that tends to diminish E12. This was neglected
by the argument above which considers only the first case (approaching droplets). As such, the
counterbalancing effect of approaching and following drags on collision efficiency leads not only to
a larger E12 but sometimes also to a smaller one.

Finally, we examine the effect of the collision gap size on E12 under different representations of
aerodynamic interactions. The aim is to check the possibility of collision using solely the models
examined in this study, that is, without additional treatments such as collision gap model or van
der Waals forces even though they strongly dominate the interaction between droplets at such small
gaps. Therefore, the collision gap has to approach zero, and such simulations are a numerically
challenging, especially for small λ. In all simulations discussed above the collision gap size was
fixed and equal to ξcol = 10−3. This set of simulations is performed for 10−8 � ξcol � 10−3. Note
that to obtain numerical convergence for smaller ξcol, it is necessary to reduce the integration
time step. Since we use an adaptive Runge-Kutta scheme, the size of �t is not fixed but assessed
dynamically by local error estimation.

Figure 9 shows the collision efficiency computed using the collision gap model at different ξcol.
To reduce the computational cost, all simulations have been performed for the same setting of a
larger droplet radius a1 = 20 μm and λ = 0.7. Each curve represents a different model of aerody-
namic interactions. As expected, the simulations employing the approximate ISM representations
are almost insensitive to ξcol. Similarly, a rigid pair under noncontinuum lubrication description
yields a nonzero E12 due to a slow logarithmically increasing resistance. For the other four cases E12

decreases with ξcol, which is the effect of the singularity in the resistance coefficients of approaching
pairs under a continuum description. Consequently, for rigid particles with and without rotation
(black lines) as well as fluid drops with a high viscosity ratio (solid blue line), E12 → 0 as we
shrink ξcol. The exception here is a fluid pair with μ̂r = 102, showing that the decrease in E12 levels
out as ξcol is reduced. This is a result of resistance being proportional to ξ−1/2 at a moderate μ̂r ,
as opposed to ξ−1 for the other three cases. Accordingly, for this force representation E12 can be
quantified without making use of the collision gap model or van der Waals forces. Such values are
computed and presented in Tables II–IV in Appendix C.

C. Numerical aspects

This section focuses on numerical aspects of conducted simulations, including techniques,
developments, tools, observations, issues, and challenges. The motivation for this analysis is to
check the applicability of different representations of aerodynamic interactions to perform complex
simulations of the dynamics of many particles in turbulent flows.
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FIG. 9. Collision efficiency evaluated using different collision gaps.

1. Computation time

In terms of computational costs, the ISM features of relatively low complexity. Therefore,
the results from the ISM are the fastest (seconds, in terms of wall-clock time) to obtain. At
each time step the forces acting on the pair of droplets are computed by solving a small system
of six equations that include three components of disturbance velocities at the location of each
droplet. Computation time is much longer when employing exact representations of aerodynamic
interactions [34] and the solutions in bispherical coordinates for rigid [35,36] or liquid [26,27]
particles (minutes to hours). Rotation increases the computational cost (potentially by orders of
magnitude depending on the problem) owing to the need for a much greater number of operations
to calculate the forces, torques, coupling terms, and integrating two additional equations for the
conservation of angular momentum, Eq. (7).

The convergence rate of computing the interaction forces using the solutions in bispherical
coordinates or the multipole expansion of Jeffrey and Onishi [34] slows down as the gap between
droplets decreases. It should be noted, however, that the second approach is easier to implement in
computer codes and offers better computational performance. This desired feature (a faster conver-
gence) was obtained by combining analytical solutions for nearly touching spheres with infinite
series that define resistance coefficients for large separations. In all the simulations considered
here, we found that the multipole expansion provides satisfactory accuracy even when summing
the first 100 terms. To achieve similar precision by using the solutions in bispherical coordinates
we need to sum up about 103 terms. Another factor influencing computational time is the particle
radii ratio. For smaller λ, the calculation of aerodynamic interactions takes a longer time as more
terms must be added up, so that the summations reach their limits. This applies in particular to the
resistances given by O’Neill and Majumdar [36] for the motion of unequal particles in a direction
perpendicular to their line of centers. Therefore, the smaller the radii ratio or spacing between the
particles, the larger the system of equations to be solved. Moreover, for pairs with substantially
different sizes the systems can be ill-conditioned. Another impact of the radii ratio on computation
time comes from the differences in the settling speed. As λ → 1, the pair approaches at a much
slower relative velocity since �W → 0, so the first r.h.s. component in Fig. 8 diminishes. In this
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FIG. 10. Change in simulation time and number of generations with the number of processes in log10 scale.

limit, the equations of motion must be integrated for longer periods of time to allow the particles to
collide.

Apart from the aspects discussed above, the computation time is significantly influenced by
the integration scheme. To solve the equations of motion, Eqs. (5)–(7), three different schemes
were employed: (1) fourth-order Adams-Bashforth, (2) classical fourth-order Runge-Kutta, and (3)
adaptive Runge-Kutta that dynamically adjusts �t based on error estimations. All these schemes led
to the same results. As expected, the best performance was achieved with the adaptive Runge-Kutta.

2. Algorithm parallelization

In the former study by Rosa et al. [21], the initial condition y0, i.e., the off-center horizontal
separation, was successively modified (in subsequent generations) by making use of the standard
bisection method. The entire range of collision efficiency E12 ∈ [0, 1] was scanned until further
divisions of the subrange did not show any significant change in E12. Regrettably, such an approach
features of a fairly low convergence rate.

A relatively simple remedy to speed up the computation is to parallelize the algorithm via the
message passing interface (MPI) library. For this purpose, we adopt the idea that is based on the
multithreaded bisection search. In the serial approach, the considered range that defines the collision
efficiency is halved in subsequent generations, while in the parallel code the range of interest is
divided by np + 1 where np is the number of processes (subgenerations performed with different
initial aims) each given to a computational core. Computations in subsequent generations are carried
out with the same number of processors but for a much narrower starting range than in the serial
method. This significantly reduces the number of generations needed to obtain accurate results.

In Fig. 10 the left vertical axis refers to the change in the total simulation time (the wall clock
time) for a set of 20 simulations carried with different number of processors, shown in log10
scale, assuming a1 = 10 μm and λ = 0.05 to 0.99. The right vertical axis shows the number of
generations (ng) required to narrow the initial range [0,1] to the desired accuracy of 10−7 in E12.
These measured quantities are plotted as a function of the number of processes. To achieve the
accuracy, in subsequent ng generations, the considered (narrowing) range was divided into np + 1
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subranges in such a way that

1

(np + 1)ng
� 10−7. (18)

Figure 10 demonstrates that both lines follow a similar monotonic trend up to np = 128. The
reason for the decline in performance for np > 128 is that all subgenerations (processes) start
simultaneously but do not finish at the same time. Note that each subsequent generation begins when
all the processes of the previous generation are completed. Consequently, there is a certain idle time
as the completed processes must wait for those that are still in progress. For a large np, there is a
significant difference in simulation time between the fastest and slowest processes. This difference
negatively impacts computing performance, especially in the early generations. On the other hand,
the favorable performance obtained for np � 128 is a consequence of the higher scanning resolution.
Since the machine we were using has 24-core processors, most of the simulations in this paper were
performed at np = 24.

IV. CONCLUSIONS

This study quantifies the collision efficiency of two nondeformably spherical particles settling un-
der gravity in quiescent air. The investigations were carried out by means of numerical simulations
employing our in-house code. Most of the simulations were performed using settings characteristic
for typical cloud droplets. An accurate description of this process finds an important application
in numerical weather prediction systems. To test sensitivity of the numerical model, additional
simulations at different relative viscosities were also performed. A number of cases were considered
assuming different sizes and radii ratios of the particle pairs. The main focus, however, was on small
droplets with radii in the range 0.5 to 30 μm.

The governing equation for particle motion includes various representations of the aerodynamic
interaction. This is the main element that extends previous studies on this topic. The interacting
forces and torques were evaluated using both an approximate method and exact solutions to the
Stokes equation for two spheres. Other important effects analyzed here are related to the noncon-
tinuum lubrication and internal circulation of the water inside droplets. The obtained results are
compared with reference data available in the literature. The comparison shows that the collision
efficiency computed using the approximate model (ISM) or the noncontinuum lubrication is usually
larger than that of rigid particles moving in a continuous medium. In the considered range of
parameters, the increase in E12 for the noncontinuum lubrication varies from 25% to 125%. As
for the liquid particles, the collision efficiency is also enhanced compared to the rigid pair. This
enhancement may reach even 45%. The reason for this increase resides in a somewhat lower drag
acting on the settling spheres. In the case of liquid particles, the drag force is partially mitigated
by the mobile interface. In general, noncontinuum lubrication has a larger impact on the collision
efficiency compared to the internal circulation of drops, which loses its influence as their inertia
(size) increases. In numerical simulations, therefore, treating medium-sized cloud droplets as rigid
particles is a reasonable assumption, but considering noncontinuum effects in their aerodynamic
interaction is expected to change the results. It also has been demonstrated that the collision
efficiency of liquid particles with a very large viscosity ratio is the same as that of freely rotating
rigid spheres of the same density.

The second part of this study deals with the numerical aspects. Computing the aerodynamic
interactions comes with a huge computational cost. The numerical complexity is particularly prob-
lematic when using solutions in bispherical coordinates. It should be noted that these interactions
have to be calculated at every time step for different separation distances and radii ratios. To speed
up the computation, the code was parallelized using the MPI libraries. In this way, we were able to
obtain results in a much shorter time and with greater accuracy.

This study is a step forward to model multi-particle systems in turbulent flows. Therefore,
one potentially significant direction of future research is to implement different representations of
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aerodynamic interactions in a code for hybrid direct numerical simulations. This paves the way for
a more realistic modeling of cloud processes.

The code for computing hydrodynamic interaction is available online [43]. It was developed both
to plot the figures in this study and to calculate forces and torques in the equations of motion. The
resistance functions were taken from the research web page of David Jeffrey [44].
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APPENDIX A: EXACT SOLUTIONS IN BISPHERICAL COORDINATES

The bispherical coordinate system has been used to solve various physical problems such as
interaction of a sphere with infinite rigid or free flat surfaces [45], interaction between two internal
eccentric spheres as in a spherical journal bearing [46], or elastic media having two spherical cavities
[47]. Here we review relevant studies on analytical solutions for two spherical particles, both rigid
and liquid, interacting through an unbounded, quiescent, viscous fluid.

The interaction of two spheres rotating around their line of centers has been investigated by
Jeffery [46]. Stimson and Jeffery [35] considered a system with the pair of particles translating in the
same direction along their line of centers, i.e., following each other. In turn, Maude [17] developed a
solution of the Stokes equation, for two rigid spheres either approaching or retreating along the line
of centers. Brenner [45] derived the same force representation for a sphere approaching a free plane
surface. He also showed that omission of inertial terms from N-S equations, i.e., Stokes regime,
counterintuitively leads to having the same magnitude in force whether the sphere moves towards
or away from the plane.

Goldman et al. [39] solved the symmetrical (flow around two equal-sized spheres) coupled
problem of a pair of particles moving in the same direction and rotating with opposite angular
velocities around central axes perpendicular to their line of centers. O’Neill [40] found solutions to
two problems with boundary conditions complementary to that of Goldman et al. [39], namely, a
pair of spheres translating in opposite directions and rotating with the same angular velocities about
axes perpendicular to the line connecting their centers. These solutions require solving a system of
equations for a series of decaying recurrent coefficients. O’Neill and Majumdar [36] generalized
this solution to the case of the asymmetric configuration with unequal-sized particles. These studies
provide an exact representation of interaction between two rigid spheres in a viscous fluid.

By solving the Stokes flow inside the spherical particles, Wacholder and Weihs [38] developed
exact solutions for two identical liquid spheres following each other. They also showed that their
solution in the limit of very large viscosity ratios approaches the solution by Stimson and Jeffery
[35]. This is the case of an extremely viscous internal circulation compared to the external flow.
Haber et al. [26] generalized the solution to two fluid drops with different sizes and viscosities
moving with any orientation along their line of centers. Zinchenko [27] derived the solution for two
fluid drops translating normal to that line. These studies provide a complete description of the drag
forces acting on a pair of fluid spheres.
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It has to be added that the studies mentioned above were carried out under the continuum
assumption of the fluid, that is, in the limit of zero Knudsen number. In the range of small Knudsen
numbers, Reed and Morrison [37] developed a solution for two rigid spheres translating along
their line of centers by considering free slip boundary conditions on their surfaces. Their solution
approaches those of Wacholder and Weihs [38] or Haber et al. [26] in the limit of low viscosity
ratio. Grashchenkov [48] and recently Rother et al. [6] developed solutions for a pair of fluid drops
having free-slip boundary conditions and moving along their line of centers. Their solutions in
the limit approach those derived by Reed and Morrison [37] as well as Haber et al. [26]. These
continuum-slip force representations are valid only for small Knudsen numbers, Kn < 0.1.

APPENDIX B: LIST OF MISPRINTS

Rigorous numerical tests were conducted to compare the force and torque representation from
the twin multipole expansion method by Jeffrey and Onishi [34] with the solutions developed in
bispherical coordinates. The comparison showed us some of the potential misprints in all these
studies, some of which were already reported by others. Table I lists these misprints.

APPENDIX C: TABLES OF COLLISION EFFICIENCY

In this Appendix Tables II, III, and IV provide the results of simulations performed in this study.
The same values are plotted in Fig. 7.
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