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Traditional mathematical models of Hele-Shaw flow consider the injection (or with-
drawal) of an air bubble into (or from) an infinite body of viscous fluid. The most
commonly studied feature of such a model is how the Saffman-Taylor instability drives
viscous fingering patterns at the interface between the fluid and air. Here we consider a
more realistic model, which assumes the viscous fluid is finite, covering a doubly connected
two-dimensional region bounded by two such interfaces. For the case in which the flow is
driven by a prescribed pressure difference across the two interfaces, we explore this model
numerically, highlighting the development of viscous fingering patterns on the interface
with the higher pressure. Our numerical scheme is based on the level set method, where
each interface is represented as a separate level set function. We show that the scheme
is able to reproduce the characteristic finger patterns observed experimentally up to the
point at which one of the interfaces bursts through the other. The simulations are shown to
compare well with experimental results. Further, we consider a model for the problem in
which an annular body of fluid is evolving in a rotating Hele-Shaw cell. In this case, our
simulations explore how either one or both interfaces can be unstable and develop fingering
patterns, depending on the rotation rate and the volume of fluid present.

DOI: 10.1103/PhysRevFluids.8.014001

I. INTRODUCTION

Viscous fingering pattern formation that develops in a Hele–Shaw flow is one of the most well-
studied phenomena in interfacial fluid dynamics. These visually striking patterns, which are due to
the Saffman-Taylor instability that applies when a more viscous fluid is displaced by a less viscous
fluid [1], are characterized by their tip-splitting and branching morphology. More broadly, the Hele-
Shaw model has become a paradigm for studying interfacial instabilities occurring in other related
moving boundary problems ranging from porous media flow [2] to dendrite solidification [3].

The most common mathematical model used to study viscous fingering in Hele-Shaw flow,
illustrated in Fig. 1(a), involves a fluid of negligible viscosity, air, for example, being injected
into or withdrawn from an infinite body of viscous fluid. Under the injection scenario, linear and
weakly nonlinear stability analysis shows that as the bubble of inviscid fluid expands, successive
modes of perturbation become unstable [4,5], which in turn drives the viscous fingering patterns
that are observed experimentally [5–8]. Recently, very many theoretical and numerical studies
of variations of this type of injection problem with a single interface have been undertaken to
study the effects injection rate, fluid properties, miscibility, suspended particles, electric fields, and
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(a) (b)

FIG. 1. (a) An illustration of the classical model for an inviscid bubble (white) expanding or contracting in
a Hele-Shaw cell, where the two parallel plates are separated by a small gap, b, and the viscous fluid (blue) is
supposed to extend out forever. If the inviscid bubble is injected into the viscous fluid, the interface between
the two fluids develops viscous fingering patterns due to the Saffman-Taylor instability. (b) A more realistic
Hele-Shaw model involving a doubly connected geometry, where now the inviscid bubble is surrounded by
a finite amount of viscous fluid, which in turn results in two interfaces. In this case, the flow is driven by a
pressure differential between the inner and outer regions.

geometrical alterations have on the viscous fingering structures [9–20], some of which are supported
by experimental results. If, on the other hand, the inviscid fluid is withdrawn from the Hele–Shaw
cell, the shape of the bubble boundary can be shown to be stable and, for example, if it is initially
convex, the model predicts it will contract to a point [21,22]. For the complementary problem, where
a viscous blob of fluid is completely surrounded by an inviscid fluid, stability analysis and numerical
simulations predict the interface between the two fluids will be unstable when the blob is withdrawn
from a point [5,23–25]. Experimental and numerically studies of this problem indicate that fingers
develop inward and appear to race each other toward the point of withdrawal [8,17,23].

We are concerned here with the more realistic mathematical model for radial injection or
withdrawal in which, instead of there being an infinite amount of viscous fluid, there is a finite
amount of fluid in a doubly connected domain with two interfaces between the viscous fluid and
the surrounding inviscid fluid, as indicated in Fig. 1(b). In this configuration, when inviscid fluid is
injected, the trailing (inner) interface will develop the traditional viscous fingering patterns, while
the leading (outer) interface will be nominally stable. On the other hand, when the inviscid fluid is
being withdrawn, it is the outer interface that is unstable with inward fingering patterns developing.
While analytical studies of this doubly connected model are less prevalent in the literature than
the single interface problem, a number of analytical and numerical studies of doubly connected or
multiple-interface Hele-Shaw configurations have been undertaken, for example, by applying linear
or weakly nonlinear stability analysis [26–30] or using complex variable techniques for idealised
scenarios without surface tension [31,32]. However, the only fully nonlinear simulations for this
type of geometry have been conducted by Zhao et al. [33]. In Ref. [33], the authors concentrate on a
geometry with three different fluids in three layers, with the middle fluid more viscous than the inner
fluid, and the outer fluid more viscous than the middle fluid. Simulations show unusual patterns
on the outer interface. Our own study is different as the model we consider has an inviscid fluid
inside and outside the annular region of viscous fluid. Therefore, our fully nonlinear simulations
complement those of Ref. [33].

Experiments that closely align with the doubly connected geometry illustrated in Fig. 1(b) have
been conducted by Cardoso and Woods [34] and Ward and White [35], for example. A selection of
images from Ref. [35] are shown in Fig. 2. These experiments were conducted with a glycerol-water
mixture for the viscous fluid and air for the inviscid fluid, with a pressure differential of 3.5 kPa
between the inner and outer fluids (other pressure differentials were used but not shown here). Other
experiments in the radial Hele-Shaw configuration also appear to have effectively been performed
with a doubly connected geometry, even if they were designed to concentrate on the inner interface
only, simply due to the viscous fluid being necessarily finite in volume with a near circular outer
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FIG. 2. Experimental images from Ward and White [35], illustrating typical viscous fingering patterns in
a doubly connected geometry at the time at which the air bubble bursts through the outer interface, with the
viscous fluid (glycerol-water mixture) having, from left to right, kinematic viscosities of 4×10−6, 37×10−6,
and 280×10−6 m2s−1. These images are taken when the dimensional pressure differential was � p̄ = 3.5 kPa.
Reproduced from Ref. [35] with permission from the American Physical Society.

boundary [7]. We have conducted a small number of our own experiments in this doubly connected
configuration (see Fig. 8).

A variation on this doubly connected model that we are also concerned with here is where the
inviscid fluid is neither injected nor withdrawn, but instead the entire Hele-Shaw cell is rotated. In
this case, the rotation of the experimental device propels the dense viscous fluid outward. Math-
ematical models and experiments have previously been devoted to studying rotating Hele-Shaw
scenarios with a focus on one interface [16,17,36–48]. In the more complicated doubly connected
case, experiments indicate that either one or both interfaces can be unstable [49,50]. These studies
are supported by a comprehensive linear stability analysis in Carrillo et al. [50], who are able to track
modes of perturbation, including a focus on the cases of a thick and thin annulus of viscous fluid.
Our contribution here is to report on fully nonlinear simulations of the rotating doubly connected
geometry, thereby complementing previous experimental and analytical studies [49,50]. It is worth
noting that, very recently, both linear and weakly nonlinear studies of Hele-Shaw flows have been
studied in an annular geometry for ferrofluids [51,52], including quite complicated scenarios in
which the external field induces a rotational motion. Again, these interesting studies do not involve
fully nonlinear numerical simulations.

In summary, we report on a numerical study of Hele-Shaw flow in two doubly connected
geometries. Our scheme is based on the level set method, where we use separate level set functions
to describe the evolution of each interface, and employ a modified finite difference stencil to solve
for the pressure in the viscous fluid. We consider two models. In Sec. II, we focus on the scenario
in which inviscid fluid is injected or withdrawn subject to a prescribed pressure differential between
the inner and outer boundaries (which could be positive or negative). We are able to perform
simulations up to the point at which either one interface bursts through the other or the interior
bubble contracts to a point. For the case of an expanding bubble, our simulations appear to compare
well with experimental results (see Fig. 8). For the second model, which we treat in Sec. III,
the fluid motion is driven by a centrifugal force that acts to propel the dense fluid outward. This
scenario leads to a competition for stability on each interface between traditional Saffman-Taylor
effects (which destabilize the interface between an inviscid fluid displacing a viscous fluid) and
centrifugal effects (which have the opposite effect of destabilising the interface between a viscous
fluid invading an inviscid fluid) [50]. Our simulations illustrate how either one or both interfaces
can develop viscous fingering patterns, and the morphological features of these fingers are distinct
for each interface. Finally, we end the paper in Sec. IV with a brief summary and discussion of how
our results contribute to our understanding of how the Saffman-Taylor instability and its variants
in Hele-Shaw and porous media flows applies in geometries with multiple interfaces. Note that the
numerical results in Secs. II and III are based on preliminary results reported in the PhD thesis [53].
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II. FLOW DRIVEN BY PRESCRIBED PRESSURE DIFFERENTIAL

A. Summary of mathematical model

In what follows, we use overbars to denote dimensional variables. We consider an annular region
of viscous fluid that occupies the domain x̄ ∈ �̄(t̄ ) in a Hele-Shaw cell. The viscous fluid is doubly
connected with inner and outer boundaries denoted by ∂�̄i(t̄ ) and ∂�̄o(t̄ ), respectively, as indicated
by Fig. 1(b). The velocity of the viscous fluid is governed by Darcy’s law,

v̄(x̄, t̄ ) = − b2

12μ
∇̄ p̄, (1)

where v̄ is the velocity of the fluid, p̄ is its pressure, b is the gap between the plates, and μ is the
viscosity of the fluid. The kinematic boundary conditions are given by

v̄n = v̄ · n̄, x̄ ∈ ∂�̄i, ∂�̄o, (2)

which relate the motion of the fluid to the velocity of each interface. We assume the pressure of the
inviscid fluid is spatially independent, leading to the dynamic boundary conditions

p̄ =

⎧⎪⎪⎨
⎪⎪⎩

p̄i(t̄ ) − γ

(
κ̄ + 2 cos θc

b

)
x̄ = ∂�̄i

p̄o(t̄ ) − γ

(
κ̄ + 2 cos θc

b

)
x̄ = ∂�̄o,

(3)

where p̄i and p̄o are pressures within the inner and outer inviscid fluid regions, respectively, θc is
the contact angle, κ̄ denotes the signed curvature of each boundary (defined to be negative if the
interface is locally convex from the viscous fluid side), and γ is the surface tension parameter.

To nondimensionalize Eqs. (1)–(3), we scale space, time, pressure, and velocity according to

x̄ = R̄ix, t̄ = 12μR̄3
i

b2γ
t, p̄ = γ

R̄i
p, v̄ = b2γ

12μR̄2
i

v, (4)

where R̄i is a length scale associated with the inner inviscid region. For almost all our calculations,
we choose R̄i to be the (dimensional) average radius of the inner bubble ∂�̄i at t̄ = 0 so the
dimensionless average radius is unity. Under this scaling, Darcy’s law (1) becomes v = −∇p.
Assuming the viscous fluid is incompressible, then ∇ · v = 0; thus, our model becomes

∇2 p = 0, x ∈ �, (5a)

vn = −∇p · n, x ∈ ∂�I , ∂�O, (5b)

p = pI − κ, x ∈ ∂�I , (5c)

p = pO − κ, x ∈ ∂�O, (5d)

where pI and pO are the dimensionless quantities

pI = R̄i p̄i

γ
− 2 cos θc

b/R̄i
and pO = R̄i p̄o

γ
− 2 cos θc

b/R̄i
. (6)

There are two important parameters for this model. First, we prescribe the dimensionless pressure
differential between the two interfaces,

�p = pI − pO = R̄i( p̄i − p̄o)

γ
, (7)

and assume that �p is a constant. Note that different values of advancing and receding contact
angles simply lead to a change in �p. Further, since (almost) all our calculations are for initial
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FIG. 3. (a) An example level set function which represents two interfaces such that φ > 0 and φ < 0
correspond to the viscous and inviscid fluid regions, respectively. (b) and (c) show these two interfaces
represented by separate level set functions such that now the viscous fluid region occupies the region where
both φI > 0 and φO > 0.

conditions for which the interfaces are perturbations of circles, the second important parameter is
the average initial radius of the outer interface:

RO = R̄o

R̄i
. (8)

Under this scaling, we expect that �p̂ > 0 and �p̂ < 0 results in an expanding and contracting
interior bubble, respectively. Finally, the other parameters in the problem relate to the actual shape
of the inner and outer interfaces, for example, the details of the perturbations include the radius and
modes of perturbation (remembering that the inner bubble is scaled so initially its average radius is
unity).

B. Numerical scheme using level set method

In this section, we describe our numerical scheme for solving Eqs. (5a)–(5d). This scheme is
based on the numerical framework presented in Refs. [16,17], where we presented a numerical
scheme that employs the level set method for solving a generalized model of (simply connected)
Hele-Shaw flow. It uses the concept of representing the interface between the viscous and inviscid
fluids as the zero level set of a higher dimensional surface, φ(x, t ), that satisfies φ > 0 if x ∈ �(t )
and φ < 0 if x ∈ R2\�(t ). The level set function φ, and in turn the interface, is evolved by solving
the level set equation

∂φ

∂t
+ F |∇φ| = 0, (9)

on the two-dimensional computational domain D, where F = −∇p · ∇φ/|∇φ|. For all results,
simulations are performed on the square domain −L � x � L and −L � y � L which is discretized
into n×n equally spaced nodes. In this section, we summarize how the numerical scheme presented
in Refs. [16,17] can be adapted to solve Eqs. (5a)–(5d).

It is straightforward to choose a level set function that satisfies φ > 0, where x ∈ � and φ < 0
otherwise; an example of which is given in Fig. 3(a). As per usual, the location of the interfaces can
be found by determining where φ changes signs. A limitation of this approach is that by representing
multiple interfaces with a single level set function, it is not straightforward to determine which of
the two interfaces has been found when determining where φ changes signs. To overcome this issue,
we represent each of the interfaces between the inviscid and viscous fluids with a separate level set
function, φI and φO, as illustrated in Figs. 3(b) and 3(c). Thus, the viscous fluid will occupy the
region where both φI > 0 and φO > 0; otherwise, the region is filled with inviscid fluid. Both φI
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FIG. 4. An illustration of the velocity extension process used to extend Fi and Fo in a doubly connected
domain. (a) An example function that is defined in the region where x ∈ �(t ). (b) The region x �∈ �(t ) has
been filled in by solving the biharmonic equation (12), which gives a smooth, differentiable function over the
entire computational domain.

and φO are updated according to

∂φI

∂t
+ FI |∇φI | = 0 and

∂φO

∂t
+ FO|∇φO| = 0, (10)

where

FI = −∇p · ∇φI

|∇φI | and FO = −∇p · ∇φO

|∇φO| . (11)

The concept of representing multiple interfaces with separate level set functions has previously been
implemented to study multiphase moving boundary problems [54,55].

1. Velocity extension

From Eqs. (11), we have continuous expressions for FI and FO in the viscous fluid region, x ∈ �

which satisfy the kinematic boundary conditions (5b). However, to solve the level set equations (10),
we require continuous expressions for FI and FO over the entire computational domain. As such, we
need to extend FI and FO into x ∈ R2\�. To achieve this, we solve the biharmonic equation

∇4FI = 0 and ∇4FO = 0 in x ∈ R\�(t ). (12)

subject to ∇FI = ∇FO = 0 and ∇2FI = ∇2FO = 0 on ∂D. By doing so, we obtain a smooth
continuous normal velocity over the entire domain. An advantage of this method, proposed by
Moroney et al. [56], is that it does not require the location of either interface to be explicitly
known. Instead, we form the biharmonic stencil which is modified such that the values where FI

and FO are already known are not overwritten. The resulting system of linear equations is solved
exactly using lower-upper (LU) decomposition. This gives a continuous expression for FI and FO

over the entire computational domain, and ensures that Eqs. (5b) is still satisfied. We illustrate the
velocity extension process in Fig. 4, where Fig. 4(a) shows an example F defined in the region where
x ∈ �(t ), while Fig. 4(b) shows F after solving the biharmonic equation (12) in the region x �∈ �(t ).
We see that this process gives a smooth differentiable expression for F over the entire computational
domain. We have used this biharmonic extension process to solve a variety of different moving
boundary problems [16,17,57,58], and note that multiply connected domains pose no additional
difficulty.
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2. Solving for the pressure

To solve for the governing equation for the pressure Eq. (5a), we use a modified finite difference
stencil to solve Laplace’s equation in the region where x ∈ �. For nodes not adjacent to either
interface, p is computed using a standard five-point stencil such that

pi−1, j − 2pi, j + pi+1, j

�x2
+ pi, j−1 − 2pi, j + pi, j+1

�y2
= 0. (13)

For nodes adjacent to one of the interfaces, where either φI or φO changes signs, we modify our
stencil Eq. (13) by imposing a ghost node on the interface. For example, suppose that the location
of the interior interface, xI , falls between the two nodes xi−1, j and xi, j . As xi−1, j is not in the domain
x ∈ �, we are unable to use pi−1, j in our finite difference stencil Eq. (13). Instead, following Chen
et al. [59], we impose a ghost node at x = xI whose value is pI such that

∂2 p

∂x2
→ 2

h(�x + h)
pI − 2

h + �x
pi, j + 2

�x(h + �x)
pi+1, j, (14)

where

h = �x

∣∣∣∣ φi, j

φi, j − φi−1, j

∣∣∣∣.
The value of pI is determined from the dynamic boundary condition Eqs. (5c) or (5d) for the exterior
interface. The curvature term in (5c) is computed, as is standard, via κ = ∇ · (∇φ/|∇φ|). Similar
adjustments are made if an interface falls between two nodes in the y-direction. The resulting linear
system of equations is solved exactly using LU decomposition.

The general algorithm for solving Eqs. (5a)–(5d), together with a discussion on numerical
verification, is provided in the Appendix.

C. Linear stability analysis

Some insight into how the Saffman-Taylor instability applies on both inner and outer interfaces
can be gleaned by applying a standard linear stability analysis. This approach has been undertaken
at length by Refs. [26–29] for a variation of the problem where there are three layers of viscous
fluids, the lowest viscosity on the inner fluid and the highest viscosity on the outer fluid. Here we
are concentrating on the case in which the innermost and outermost fluids are inviscid, as this is the
scenario that is commonplace in experimental work (typically with air injected into a finite region
of viscous fluid, also surrounded by air).

We start by denoting the inner and outer interfaces by r = sI (θ, t ) and r = sO(θ, t ), respectively.
Leaving out the details, using polar coordinates (r, θ ), by writing out

p = P0(r, t ) + ε P1(r, θ, t ) + O(ε2), (15)

sI (θ, t ) = sI0(t ) + ε sI1(θ, t ) + O(ε2), sO(θ, t ) = sO0(t ) + ε sO1(θ, t ) + O(ε2), (16)

then, to leading order, the location of the interfaces is governed by the nonlinear system of
differential equations

dsI0

dt
= 1

sI0 ln(sO0/sI0)

(
�p −

(
1

sI0
+ 1

sO0

))
, (17)

dsO0

dt
= 1

sO0 ln(sO0/sI0)

(
�p −

(
1

sI0
+ 1

sO0

))
, (18)

where sI0(0) = 1, sO0(0) = RO. Solving Eqs. (17) and (18) is a numerical task (although in the
zero-surface-tension case, the equations can be integrated exactly to write the solution in terms of
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dilogarithms [60]), but there are a couple of immediate observations that can be made. First, by
dividing one equation by another and integrating, we arrive at

s2
O0 − s2

I0 = R2
O − 1, (19)

which is nothing more than conservation of mass (or area). Second, we see that the sign of

�p −
(

1

sI0
+ 1

sO0

)

dictates whether the (unperturbed) interface speeds are positive or negative. Therefore, we find that
if �p < 1 + R−1

0 , then the system is contracting, while if �p > 1 + R−1
0 the system is expanding.

Note that it is actually possible for the system to contract even if �p is positive, albeit very small
(that is, positive but less than 1 + R−1

0 ). For example, looking ahead to our experimental results
in Fig. 8(a), where the interface expansion is driven by a dimensional pressure differential of 16.2
kPa, for that particular initial condition we would need to decrease the pressure differential to be
below 0.013 kPa for the system to contract instead of expand. Despite this technical clarification,
we continue to simply associate �p < 0 with a contracting system and �p > 0 with an expanding
one.

Further detailed calculations show that if we write

P1 = (Cn(t )rn + Dn(t )r−n) cos nθ, sI1 = δIn(t ) cos nθ, sO1 = δOn(t ) cos nθ (20)

for n � 2, then δIn and δOn must satisfy the nonautonomous linear system

dδIn

dt
=

[
1

sI0

(
n
(
s2n

I0 + s2n
O0

)
s2n

O0 − s2n
I0

− 1

)
dsI0

dt
− n(n2 − 1)

(
s2n

I0 + s2n
O0

)
s3

I0

(
s2n

O0 − s2n
I0

)
]
δIn

− 2nsn
I0sn

O0

s2n
O0 − s2n

I0

(
1

sO0

dsI0

dt
+ n2 − 1

sI0s2
O0

)
δOn, (21)

dδOn

dt
= 2nsn

I0sn
O0

s2n
O0 − s2n

I0

(
1

sI0

dsO0

dt
− n2 − 1

s2
I0sO0

)
δIn

+
[
− 1

sO0

(
n
(
s2n

I0 + s2n
O0

)
s2n

O0 − s2n
I0

+ 1

)
dsO0

dt
− n(n2 − 1)

(
s2n

I0 + s2n
O0

)
s3

O0

(
s2n

O0 − s2n
I0

)
]
δOn. (22)

Even though Eqs. (21) and (22) are linear, it is rather difficult to understand the qualitative behavior
of this system since the coefficients are time dependent and depend on the solution of the leading
order problem Eqs. (17) and (18). As such, we cannot simply compute eigenvalues of a constant
matrix, for example, to determine stability.

However, to start, we note two limits of Eqs. (21) and (22). In the limit sO0 → ∞, which
corresponds to a traditional model like that illustrated in Fig. 1(a), then

dδIn

dt
∼

(
n − 1

sI0

dsI0

dt
− n(n2 − 1)

s3
I0

)
δIn,

which is the usual equation for an inviscid bubble inside an infinite body of viscous fluid. Here
the stability is clearer with a contracting bubble being stable to perturbations, while an expanding
bubble is unstable to sufficiently small wave numbers [4,5,21]. Further, in the limit sI0 → 0, which
corresponds to the so-called blob problem, we have

dδOn

dt
∼

(
−n + 1

sO0

dsO0

dt
− n(n2 − 1)

s3
O0

)
δOn.
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Again, in this single interface limit, the stability is easier to interpret, with an expanding bubble
clearly stable and a contracting bubble unstable to perturbations with sufficiently small wave
numbers [5,23,25].

Returning to a qualitative description of the full system Eqs. (21) and (22), we see the terms
involving n2 − 1 are due to surface tension (which has been scaled to unity in our formulation).
Thus, as we expect, surface tension has the effect of stabilizing both interfaces (just as it does in the
two single-interface limits above), especially for higher modes with large n (and small wavelength).
On the other hand, the effect of the speeds dsI0/dt and dsO0/dt is more interesting. First, as we
expect, if both speeds are positive then that has the effect of destabilizing the inner interface via the
term (dsI0/dt )δIn in Eq. (21), which is what normally happens with the Saffman-Taylor instability.
That is, the inviscid fluid displacing the viscous fluid causes the interface to be unstable and leads
to viscous fingering patterns in the usual way. However, we see in this scenario that the term
(dsO0/dt )δIn in Eq. (22) also acts to destabilize the outer interface. This tendency for the outer
interface to be unstable applies even in the more extreme case for which it is initially perfectly
circular and so δOn(0) = 0 for n � 2. This result is not entirely expected since the outer interface
would otherwise be stable since, in isolation, we have a viscous fluid displacing an inviscid fluid.
Therefore, according to this model, the instability on the inner interface appears to infect the outer
interface by causing a (more mild) instability there too. Similar arguments hold when both speeds
dsI0/dt and dsO0/dt are negative, in which case the outer interface is unstable in the usual way, but
the inner interface is also subject to a (more mild) instability.

In an attempt to better understand the system Eqs. (21) and (22), we assume quasi-steady-state
conditions, whereby modes of perturbation grow or decay on timescales that are much faster
than the base state evolves. We can then interpret Eqs. (21) and (22) at each time as being a
constant-coefficient system characterized by a 2×2 matrix. The largest eigenvalue of this matrix
λn is then a tentative measure of the growth rate of the nth mode at that time (assuming also
that the perturbations remain small). As we sweep across all n, we can compute what we may
speculate is the most unstable mode nmax and corresponding growth rate λnmax . Provided λnmax > 0,
the interpretation is that nmax is an estimate for the number of fingers that emerge at that particular
time. For example, in Fig. 5, we have plotted both nmax and λnmax as a function of sI0 for a variety
of combinations of �p and RO. We see in Figs. 5(a) and 5(c) that the most unstable mode λnmax

increases with sI0, which is consistent with observations of tip splitting and increasing number of
fingers on the inner interface as it expands. Further, these plots show that, for a fixed inner radius
sI0, we expect more fingers for higher values of �p or lower values of RO, which is consistent
with the observation that a higher pressure difference or smaller distance between interfaces leads
to higher speeds near finger tips compared to fjords, which leads to the classical Saffman-Taylor
instability. Interestingly, we see in Figs. 5(b) and 5(d) that the growth rate of the most unstable
mode decreases and then increases as the inner interface expands, although, again, these ideas
extend beyond the limitations of linear stability analysis as perturbations themselves are no longer
small.

D. Results for expanding bubble

1. Numerical simulations

In this section, we focus on the case in which �p > 1 + R−1
0 , resulting in an expanding inner

inviscid bubble with an unstable boundary. While typical models for inviscid bubbles expanding
into an infinite body of viscous fluid are set up to have a constant injection rate of inviscid fluid and
therefore a constant rate of increase in bubble area [5], our choice of constant pressure differential
�p leads to a variable injection rate and nonconstant rate of area increase that must be determined as
part of the solution process. We believe our choice of constant pressure difference �p > 0 reflects
natural experimental conditions for the doubly connected geometry in question, which requires
a finite pressure on the outer interface (as opposed to models with an infinite body of viscous
fluid, which have pressure increasing logarithmically in the far field). Further, both our experiments
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(a) (b)

(d)(c)

FIG. 5. (a) The most unstable mode of perturbation, nmax, computed from Eqs. (21) and (22) with RO = 10
and (bottom to top) �p = 50, 100, 150, and 200. (b) Corresponding maximum eigenvalue at n = nmax. (c) nmax

and (d ) λnmax with �p = 100 and (top to bottom) RO = 10, 12.5, and 15.

and those of Ward and White [35] involve a constant pressure differential, which provides further
motivation for the boundary conditions in our model.

In this section, we consider the initial conditions for the inner and outer boundaries:

sI (θ, 0) = 1 + ε

N∑
m=2

cos(m(θ − θm)), sO(θ, 0) = RO + ε

N∑
n=2

cos(n(θ − θn)). (23)

Here θm and θn are randomly chosen values between 0 and 2π , included to ensure the various
sinusoidal modes are out of phase (as would be expected in a physical system). Figure 6 shows
a selection of numerical solutions of Eqs. (5a)–(5d) with (rows one to three) RO = 10, 12.5,
and 15, and (columns one to three) �p = 50, 100, and 300. Solutions are shown at the time
when simulations are stopped. For each parameter combination considered, the trailing interface
destabilizes while the leading interface remains near circular over the duration of a simulation. We
find that both the number and length of fingers increases with �p (left to right), and tip-splitting
behavior is more pronounced. For a fixed value of �p, we find that a larger number of fingers
develop as RO is increased (top to bottom), however, the length of these fingers relative to the size
of the bubble does not appear to significantly vary with RO. Note that the area enclosed by the
inner bubble at the time simulations are halted increases noticeably with RO. These observations
are consistent with previous experimental results (see Fig. 2 in Ward and White [35], for example)
and the linear stability analysis in the previous subsection. For the latter, we can use the results in
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FIG. 6. Numerical solutions of Eqs. (5a)–(5d) for different values of �p and RO. Simulations are performed
with the initial conditions Eqs. (23), where N = 12 and ε = 5×10−3. The dotted (grey) curves represent the
initial condition for the inner and outer boundaries. Simulations are performed on the domain −30 � x � 30
and −30 � y � 30 using 900×900 equally spaced grid points.

Figs. 5(a) and 5(c) to tentatively predict the number of fingers in the simulation. While counting
fingers is difficult to nail down, as tip splitting continues throughout the simulations and so some
smaller protrusions may or may not be considered fingers, we see these predictions from linear
theory appear to slightly overestimate the number of fingers in the simulations..

In practice, even if both the inner and outer interfaces are initially near circular as with the
simulations in Fig. 6, the centers of the circles are not likely to perfectly align with each other.
In that case, this asymmetry will cause a preferential fingering pattern in the direction in which
the two interfaces are closest. For example, Fig. 7(a) shows a simulation from an initial condition
based on perturbed circular interfaces with a common center, while the other four simulations in
Figs. 7(b)–7(e) are for the same parameter values except that the center of the inner base circle is
shifted to the right. It is clear that the prominent fingering in Figs. 7(c)–7(e) is toward the right
and not at all evenly spaced in the radial direction. This simple example shows how nonlinear
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(a) (b) (c) (d) (e)

FIG. 7. Numerical solutions of Eqs. (5a)–(5d) for the value �p = 50 and RO = 12.5. Simulations are
performed with the initial conditions Eqs. (23), where N = 12 and ε = 5×10−3, except the center of the inner
boundary is shifted in the positive x direction by (a) 0, (b) 0.6, (c) 1.2, (d) 1.8, and (e) 2.4. The corresponding
bursting times are tburst = 1.352, 1.283, 1.18, 1.079, and 0.983.

competition between fingers favors those fingers with a very slight advantage in pressure gradient
and, furthermore, demonstrates how sensitive the system is to this type of realistic symmetry
breaking that is likely to occur in real experiments.

2. Experimental results

To support our numerical simulations, we conducted a small number of laboratory experiments
with a Hele-Shaw cell whose two plates were made of plexiglass [see Figs. 8(a)–8(f)]. The viscous
fluid used was water with surface tension 0.072 Nm−1, while the inviscid fluid was air. A pressure
differential �p̄ was applied between the inner and outer interfaces. Initial shapes of fluid interface
were recorded using image analysis with MATLAB and average radius of inner and outer interfaces,
R̄i and R̄o, were estimated. Subsequently, the dimensionless values �p and RO were calculated using
Eqs. (7) and (8), respectively. Finally, to compare with the dimensionless timescales via Eqs. (4),
we note the two plates in the Hele-Shaw cell were separated by a distance of b = 56 µm.

For each of the experimental images in Figs. 8(a)–8(f), we have provided an analogous simulation
in Figs. 8(g)–8(l), so (a) matches (g), (b) matches (h), and so on. From the experiments, using
the MATLAB image processing toolbox, the initial positions of the inner and outer interfaces were
extracted and used as the initial conditions for the simulations. For all cases, both experimental and
numerical, we have shown images for times just before the inner interface bursts through the outer

(g) (h) (i) (j) (k) (l)

FIG. 8. (a)–(f) Images from experiments with pressure differential p̄I − p̄O (kPa) (a) 16.2, (b) 16.2,
(c) 16.2, (d) 1.72, (e) 1.72, and ( f ) 16.2. The average initial radius of the inner and outer interfaces are (mm)
(a) 6.3 and 43.6, (b) 2.2 and 33.7, (c) 1.6 and 30.5, (d) 2.6 and 26, (e) 1.7 and 21.94, and ( f ) 2.71 and 24.02.
The black bars denote a length of 25 mm. (g)–(l) Numerical simulations using initial conditions from (a)–(f).
The nondimensional pressure differential here [computed from Eq. (7)] is �p = (a), 1424 (b), 497 (c), 351
(d), 62 (e), (f) 610, and initial radius ratio RO = (a) 6.9, (b) 15.2, (c) 19.6, (d) 10, (e) 13.4, and (f) 8.9. The
corresponding (nondimensional) bursting times, at which the simulations are shown, are tburst = 0.008, 0.125,
0.253, 0.541, and 1.682, 0.0317. Dashed lines denote the initial condition.

014001-12



VISCOUS FINGERING PATTERNS FOR HELE-SHAW FLOW …

interface. One observation is that it is clear that the fingering pattern is much more severe for the
high-pressure difference 16.2 kPa when compared to the low-pressure difference 1.72 kPa. Further,
while the system is highly unstable and sensitive to the choice of initial conditions, our simulations
appear to compare well with the experimental results.

3. Comparison with Ward and White [35]

We compare numerical solutions of Eqs. (5a)–(5d) with the some of the experimental results of
Ward and White [35], who reported on a more thorough investigation on how both the pressure
differential between interfaces and the amount of viscous fluid influences the behavior of the inner
bubble. As mentioned in Sec. II D 1, when �p is constant there is no simple relationship between the
model’s parameters and the rate of expansion of the inner bubble. Ward and White [35] postulated
that the area of the inner bubble increases exponentially in time according to

A(t ) = A(0) + C(eβt − 1), (24)

where C is a constant and β is the gas expansion parameter. The results of these experiments
suggested a power-law relationship between �p and β

β ∝ �pm, (25)

where m ≈ 1.06. We explore whether the expansion rate of ∂�i is consistent with Eqs. (24) and (25)
by performing a series of numerical experiments for different values of �p and RO. We approximate
the area enclosed by the inner bubble using the level set function φi, each time step via the volume
integral

A =
∫

H (φi ) dx, (26)

where H is the Heaviside function. Following Osher and Fedkiw [61], we use a first-order approxi-
mation of H with the smeared-out Heaviside function

Ĥ (φ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if φ < −δ

1

2
+ φ

2δ
+ 1

2π
sin

πφ

δ
if − δ � φ � δ

1 if φ > δ,

(27)

with the smoothing parameter δ = 1.5�x. Finally, we determine β by fitting a curve of the form
Eq. (24) to the area of the bubble. To test whether our model predicts Eq. (24) is a reasonable
approximation of the area of the inner bubble, we compute numerical solutions of Eqs. (5a)–(5d)
with different values of �p and fit a curve to this data of the form of Eq. (24), shown in Fig. 9. We
find that for each parameter combination considered, we find an R2 value of approximately 0.995,
suggesting that Eq. (24) is a good approximation for how the area of the bubble evolves in time.

Figure 10(a) shows our estimate of β as a function of �p for values of RO (top to bottom) 10,
12.5, and 15, and Fig. 10(b) shows this data on a log-log scale. For each data point, five simulations
are performed, and β is averaged over each of the simulations. We find that either increasing �p
or decreasing RO corresponds in an increase in β, resulting in the bubble expanding at a faster rate.
This is to be expected, as Eq. (5b) indicates that either increasing �p or decreasing RO increases the
normal speed of the interface. By taking a line of best fit [denoted by the black lines in Fig. 10(b)],
we find m = 1.08 to two decimal places for each value of RO considered, which is in reasonable
agreement with the experimental results of Ward and White [35].

As discussed above, it was observed experimentally by Ward and White [35] that as the bubble
is injected into the viscous blob, it becomes unstable and the fingers that develop burst through the
outer interface, at which point the experiment is concluded. These authors found that this bursting
time follows the power-law relationship

tburst ∝ �pα, (28)
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FIG. 9. The area of the inner bubble computed from the numerical solution to Eqs. (5a)–(5d) (blue) with
RO = 15 and (left to right) �p = 50, 100, and 300. Simulations are performed with the initial conditions
Eqs. (23) where N = 12 and ε = 5×10−3. A curve of the form of Eq. (24) is fitted to this data (red curves). For
each choice of parameters, we find that the R2 value is approximately 0.995.

where it was determined experimentally that α ≈ −1.21. We wish to determine whether numerical
solutions of Eqs. (5a)–(5d) are able to reproduce this power-law relationship. As our numerical
scheme is stopped when the distance between the two interfaces is sufficiently small, we approxi-
mate tburst by computing the minimum distance between the two interfaces via Eq. (A3) and linearly
extrapolating to determine when this distance is zero. Figure 11(a) compares tburst as a function of
�p with (bottom to top) RO = 10, 12.5, and 15, while Fig. 11(b) shows this data on a log - log
scale. For each data point, five simulations are performed and tburst is averaged over each of the
simulations. By taking a line of best fit for each value of RO considered, we find α = −1.20 to two
decimal places, which is in agreement with the experimental results of Ward and White [35].

E. Results for contracting bubble

We now briefly turn our attention to the case where �p < 0 such that the inner bubble contracts.
We perform a series of simulations for different values of RO and �p to demonstrate how a fingering
pattern develops on the outer interface. In this scenario, the geometry remains doubly connected
until either one of two outcomes occurs, depending on the parameters and choice of initial condition.
First, the outer interface can burst through the inner interface in a similar way to that described in

FIG. 10. (a) The gas expansion parameter β as a function of �p for RO (top to bottom) 10, 12.5, and 15.
We compute β by fitting a curve of the form of Eq. (24), where A is determined from the numerical solution to
Eqs. (5a)–(5d). (b) The corresponding log-log plot, where black line is line of best fit.

014001-14



VISCOUS FINGERING PATTERNS FOR HELE-SHAW FLOW …

FIG. 11. (a) The time at which bursting occurs, tburst , as a function of �p for (bottom to top) RO = 10, 12.5,
and 15. (b) The corresponding log-log plot, where black lines are a line of best fit.

Sec. II D. Or, second, the leading interface may contract to a point before bursting occurs. In the
latter case, simulations are halted if the minimum radius of the inner bubble is less than 0.05.

Figure 12 shows numerical solutions of Eqs. (5a)–(5d) for values of RO = 1.25, 1.375, and 1.5
(rows one to three), and �p = −500, −1000, and −2000 (columns one to three) at the time each
simulation is concluded (in the top row, this is the largest computational time before bursting, while
for the remaining simulations this is the computational time immediately after the bubble radius
contracts below 0.05). For each of the parameter combinations considered, we find that the trailing
interface is unstable, and fingers develop inward toward the leading interface. The morphology of
these fingers appears similarly to the simply connected case in which a viscous blob is withdrawn
from a point at some rate (see experiments by Thomé et al. [8], for example). In particular, fingers
do not appear to tip split as they do for the expanding bubble case (see Fig. 6). Instead, the pressure
differential between the boundaries pulls the fingers inward until either one of the fingers bursts
through the leading bubble or the leading bubble contracts to a point. The number of fingers that
the trailing interface develops appears to increase with either an increase in �p or a decrease in RO.
This can be explained by noting that according to Eq. (1), either increasing the pressure differential
or decreasing the distance between the interfaces results in a larger velocity, which in turn has a
destabilizing effect.

Comparing rows one and three of Fig. 12, we see that whether or not the leading interface
contracts to a point, as opposed to bursting occurring, is dependent upon the choice of RO. If RO is
sufficiently small (row one), for the range of �p considered, we find that the trailing interface will
always burst through the leading interface before it contracts to a point. However, for larger values
of RO (rows two and three), we find that the leading interface will always contract to a point. In this
case, we expect that the bubble will contract to a circle in the limit [21].

III. FLOW DRIVEN BY ANGULAR VELOCITY

In this section, we turn our attention to the configuration for which the velocity of the viscous
fluid is not driven by a prescribed pressure differential but instead by a centrifugal force due to the
Hele-Shaw cell being rotated. For the simply connected case, this configuration is primarily studied
with a viscous blob surrounded by inviscid fluid. The centrifugal force acts to propel the dense
fluid outward, resulting in the interface becoming unstable. Experimental results [40] and numerical
simulations [17,36,39,45,46] indicate that these fingers are distinct from traditional Saffman-Taylor
fingers, in that they appear more stretched out, and the number of fingers that develops appears to
remain constant in time. Further, this number increases with the angular velocity of the plates. The
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FIG. 12. A selection of numerical solution to Eqs. (5a)–(5d) for different values of �p and RO. Simulations
are performed with the initial conditions Eqs. (23), where N = 30 and ε = 5×10−4. The dotted (grey) curves
represent the initial condition for the inner and outer boundaries. Simulations are performed on the domain
−2 � x � 2 and −2 � y � 2 using 600×600 equally spaced grid points.

configuration in which the inviscid fluid is injected into the viscous fluid while the plates are rotating
was recently considered by Morrow et al. [16], who studied how the rotation rate acts to stabilize
the interface.

The doubly connected configuration we are interested in here was considered by Carrillo et al.
[49,50], who performed a series of experiments which showed that either one or both of the
interfaces can be unstable depending on the angular velocity of the Hele-Shaw plates and the volume
of viscous fluid present. A family of exact solutions were derived by Crowdy [41] using conformal
mapping techniques, and these solutions were shown to quantitatively reproduce experimental
results. However, these solutions are valid under the zero-surface-tension assumption and, as such,
the interfaces between the fluids generally form unphysical cusps in this model. For the remainder
of this section, we extend the work of Carrillo et al. [49,50] and Crowdy [41] by performing a
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numerical investigation into the nonlinear behavior of an annular blob in a rotating Hele-Shaw cell
when the effects of surface tension are included.

A. Summary of mathematical model

Following Carrillo et al. [40,49], we can modify Darcy’s law Eq. (1) to include rotational effects,

v̄ = − b2

12μ
(∇̄ p̄ − ρω̄2r̄ēr ), (29)

where ρ is the density of the viscous fluid and ω̄ is the angular velocity of the plates. We take ω̄ to
be constant, although we note that previous studies for the simply connected case have considered
the angular velocity to be time dependent [38]. We redefine pressure as

P̄ =
(

p̄ − ρω̄2r̄2

2

)
, (30)

and, recalling ∇̄ · v̄ = 0, our model becomes

∇2P̄ = 0, x̄ ∈ �̄, (31a)

v̄n = − b2

12μ
∇̄P̄ · n̄, x̄ ∈ ∂�̄i, ∂�̄o, (31b)

P̄ = −ρω̄2r̄2

2
− γ κ̄, x̄ ∈ ∂�̄i, (31c)

P̄ = −ρω̄2r̄2

2
− γ κ̄, x̄ ∈ ∂�̄o, (31d)

where γ is the surface tension.
We nondimensionalize Eqs. (31a)–(31d) via Eqs. (4) (noting that p̄ is now P̄) giving

∇2P = 0, x ∈ �, (32a)

vn = −∇P · n̂, x ∈ ∂�I , ∂�O, (32b)

P = −ω2r2 − κ, x ∈ ∂�I , (32c)

P = −ω2r2 − κ, x ∈ ∂�O. (32d)

Our dimensionless model Eqs. (32a)–(32d) has two free parameters, the initial radius of the outer
interface, R0, defined by Eq. (8), and

ω2 = ω̄2ρR̄3
i

2γ
, (33)

whereby the dimensionless angular velocity ω is the key centrifugal parameter. We can see that
the velocity of the fluid is driven by a pressure differential resulting from the rotational terms
in the dynamic boundary conditions (32c) and (32d). However, this differential is not prescribed
but instead depends on the location of each interface. As ω2 � 0, the viscous fluid will always
be propelled outward and thus there is no analogous contracting case that was considered in
Sec. II E. Numerically speaking, it is straightforward to include the centrifugal terms in the dynamic
boundary conditions into our scheme, presented in Sec. II B. However, for this rotating flow, when
incorporating Eqs. (31b) and (31c) into our finite difference stencil, separate level set functions are
not required for each interface and the problem can be solved using a single level set function as
illustrated in Fig. 3(a).
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B. Linear stability analysis

Before presenting our numerical results, it is worth briefly summarizing the results from linear
stability analysis [50], as this theory allows us to compare and contrast with the results from Sec. II.
By applying the standard expansion Eqs. (15) and (16), we find that, to leading order

dsI0

dt
= 1

sI0 ln(sO0/sI0)

(
ω2

(
R2

O − 1
) −

(
1

sI0
+ 1

sO0

))
, (34)

dsO0

dt
= 1

sO0 ln(sO0/sI0)

(
ω2(R2

O − 1
) −

(
1

sI0
+ 1

sO0

))
, (35)

where sI0(0) = 1 and sO0(0) = RO. These nonlinear differential equations can be solved numerically
if necessary [50], but even without those calculations we can make some elementary observations.
First, dividing Eq. (34) by (35) leads to conservation of mass Eq. (19). Further, the sign of

ω2
(
R2

O − 1
) −

(
1

sI0
+ 1

sO0

)

determines whether the interface speeds are positive or negative. Indeed, if ω2 > 1/(RO(RO − 1)),
the system is expanding, while if ω2 < 1/(RO(RO − 1)) the system is contracting. In this way, we
see that the term ω2(R2

O − 1) in Eqs. (34) and (35) plays the same role as �p does in Eqs. (17) and
(18).

Moving to the next order, by writing out P1 and sI1 as in Eqs. (20), we arrive at the linear system

dδIn

dt
=

[
1

sI0

(
n
(
s2n

I0 + s2n
O0

)
s2n

O0 − s2n
I0

− 1

)
dsI0

dt
− n

(
s2n

I0 + s2n
O0

)
s2n

O0 − s2n
I0

(
n2 − 1

s3
I0

+ 2ω2

)]
δIn

− 2nsn
I0sn

O0

s2n
O0 − s2n

I0

(
1

sO0

dsI0

dt
+ n2 − 1

sI0s2
O0

− 2ω2sO0

sI0

)
δOn, (36)

dδOn

dt
= 2nsn

I0sn
O0

s2n
O0 − s2n

I0

(
1

sI0

dsO0

dt
− n2 − 1

s2
I0sO0

− 2ω2sI0

sO0

)
δIn

+
[
− 1

sO0

(
n
(
s2n

I0 + s2n
O0

)
s2n

O0 − s2n
I0

+ 1

)
dsO0

dt
+ n

(
s2n

I0 + s2n
O0

)
s2n

O0 − s2n
I0

(
−n2 − 1

s3
O0

+ 2ω2

)]
δOn. (37)

Writing the equations this way (without substituting in the expressions for dsI0/dt and dsO0/dt),
we can draw some broad conclusions and relate directly with Eqs. (21) and (22). For a start, terms
involving n2 − 1 are due to surface tension and help stabilise higher order modes. More crucially,
the key point is that the rotation rate ω appears to have two opposing effects. First, provided
ω2 > 1/[RO(RO − 1)], from Eqs. (34) and (35) we see that increasing ω increases the interface
speed which from Eqs. (36) and (37) has the effect of making the inner interface more unstable and
the outer interface less unstable [via the appearance of (dsI0/dt )γn in Eq. (36) and −(dsO0/dt )δn in
Eq. (37)]. This is essentially the traditional Saffman-Taylor instability, which appears in the same
way in Eqs. (21) and (22). On the other hand, increasing ω has the effect of stabilizing the inner
interface and destabilizing the outer interface [via the terms −ω2γn in Eq. (36) and ω2δn in Eq. (37)].
This effect is due to the centrifugal force pushing out viscous fluid as it rotates. In summary,
while these equations from linear stability analysis appear complicated, we are able to extract a
sense of the most important ingredients in determining whether fingering patterns tend to occur. In
particular, these opposing forces provide the opportunity for both interfaces to be highly unstable at
the same time, giving rise to distinct fingering patterns that do not appear in annular configurations
that are driven by pressure differences only.

Before moving on to our numerical simulations of the fully nonlinear version of this problem, we
provide some quantitative insight into Eqs. (36) and (37) by assuming quasi-steady-state conditions
and thereby interpreting the two differential equations at each time as a constant-coefficient system
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FIG. 13. (a) The most unstable mode of perturbation, nmax, computed from Eqs. (36) and (37) with RO = 5
and (bottom to top) ω2 = 3.2, 12.8, and 22.4. (b) Corresponding maximum eigenvalue at n = nmax. (c) nmax

and (d) λnmax with ω2 = 12.8 and (bottom to top) RO = 3.75, 5, and 6.25.

[as we did for the system (21) and (22)]. We compute eigenvalues of the corresponding 2×2 matrix
and denote the maximum eigenvalue by λn associated with the nth mode of perturbation. In Fig. 13,
we plot the most unstable mode nmax and corresponding growth rate λnmax versus the unperturbed
inner radius sI0. In Figs. 13(a) and 13(b), we fix RO = 5 and show results for three different rotation
rates ω2, while in Figs. 13(c) and 13(d) we fix ω2 = 12.8 and vary RO. In all cases, we see the
most unstable mode nmax first increases with sI0 and then decreases, while the growth rate λnmax

is monotonically decreasing with sI0. These results tentatively predict that this rotating Hele-Shaw
configuration does not lead to ever-increasing tip splitting, which suggests the fingering patterns
will be different from those that arise from the classical Saffman-Taylor instability. It is interesting
to note the overall trend of the system to stabilize for sufficiently large sI0, although of course all of
this theory is only relevant provided the perturbations are sufficiently small.

C. Numerical simulations

In Sec. II, we demonstrated that when the pressure differential between the inner and outer
interfaces is prescribed, increasing the magnitude of �p increases the velocity of the viscous
fluid, which in turn increases the complexity or severity of the viscous fingering patterns that
develop on the trailing interface. On the other hand, for the problem considered in this section,
the influence of ω on the stability on each interface is not as straightforward. For example, we
expect to find that increasing ω increases the pressure differential between the two interfaces, which
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FIG. 14. Numerical solutions of Eqs. (31a)–(31d) for different values of RO and ω. Simulations are per-
formed with the initial conditions (23), where N = 30 and ε = 5×10−4. The dotted (grey) curves represent the
initial condition for the inner and outer boundaries. Simulations are performed on the domain −15 � x � 15
and −15 � y � 15 using 900×900 equally spaced grid points.

in turn would destabilize and stabilize the interior and exterior interfaces, respectively. However, the
angular velocity of the plates also acts to propel the dense fluid outward, which acts to stabilize and
destabilize the interior and exterior interfaces, respectively [16]. In this section, we perform a series
of numerical experiments to gain insight into how the rotation of the Hele–Shaw plates influences
the evolution of both the leading and trailing boundaries.

We perform a series of simulations over a range of values of RO and ω, shown in Fig. 14. For the
smallest parameter combination of ω and RO considered (row one, column one), both the leading
and trailing interfaces remain near circular over the entire simulation and form a continually thinning
annulus. As RO is increased (top to bottom), the leading interface destabilizes, with the number of
fingers developing increasing with RO. For larger values of the centrifugal parameter (rows two and
three), both the leading and trailing interfaces develop fingers, where both the number and length
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of these fingers increases with either ω or RO. The simulations indicate that increasing RO or ω

appears to have a destabilizing effect on both interfaces (as suggested by the results in Fig. 13). It is
interesting to note the different morphological features of the fingers that each interface develops.
For the leading interface, fingers are short and thin, projecting outward. On the other hand, for the
trailing interface, fingers appear wider and flatter with minimal tip splitting, and the gap between
neighboring fingers is narrow, particularly compared to traditional Saffman-Taylor fingers (see
Fig. 6, for example). With this geometry of fingering, we speculate that the inner interface does not
eventually burst through the outer interface. We note that the patterns observed from the numerical
simulations are consistent with experimental results (see Figs. 7 and 8 in Carrillo et al. [50], for
example). Finally, while it is difficult to precisely determine the number of fingers in each image
in Fig. 14, a rough count suggests that the predictions from linear stability theory (via the most
unstable mode nmax plotted in Fig. 13) are slightly higher than the number of fingers present on the
outer interface in Fig. 14, while the inner interface has roughly half as many fingers. It is clear that
the nonlinear shape of these fingers is far from sinusoidal and that nonlinearity is overwhelming any
linear effects that dominate for very small amplitude perturbations.

These are only visual observations. To better quantify the influence of RO and ω on each interface,
we introduce two metrics for measuring the complexity or severity of the viscous finger patterns.
The first is the isoperimetric ratio defined by

I = L2

4πA
, (38)

where L is the arc length of the closed curve that describes the interface and A is the area enclosed
by the interface. The area is computed from Eqs. (26) and (27), while the arc length is determined
via an analogous formula

L =
∫

δ(φ)|∇φ| dx, (39)

where δ = dH/dφ [61]. The second metric is a measure of the length of the fingers that develop,
which we refer to as the circularity ratio

C = Router

Rinner
, (40)

where Router and Rinner are the maximum and minimum radii of the interface (sweeping across all
angles), respectively. Note that for a circular interface, I = 1 and C = 1; otherwise, both of these
metrics increase from unity as the shape of the interface becomes less circular.

Figure 15 shows the isoperimetric and circularity ratios for both the trailing and leading interfaces
as a function of ω with RO = 2.5, 3, 5, and 6.25 (bottom to top). For each pair of RO and ω, five
simulations are performed [each with θm and θn in Eqs. (23) chosen randomly] and the isoperimetric
and circularity ratios are averaged over each simulation. Across the range of parameters considered,
we find a general trend that both I and C increase with RO and ω for both the leading and trailing
interfaces. This trend suggests that increasing either the amount of viscous fluid or the angular
velocity results in both interfaces becoming less circular. Comparing Figs. 15(a) and 15(b), the
isoperimetric ratio of the leading interface is larger than that for the trailing interface across all
parameter combinations considered. This behavior is slightly different from that for the circularity
ratio. For small values of RO and ω, the circularity ratio of the leading interface [Fig. 15(d)] is larger
than that for the trailing interface [Fig. 15(c)]. However, for larger values of RO and ω, C becomes
smaller for the leading interface. This behavior can be explained by noting that for large values of
RO and ω, while the leading interface produces a larger number of fingers, the length of the fingers
of the trailing interface are larger relative to the average radius of the inner bubble (see row three,
column three in Fig. 14, for example).
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FIG. 15. (a)-(b) The isoperimetric Eq. (38) and (c)-(d) circularity Eq. (40) ratios of the trailing (inner) and
leading (outer) interfaces as a function of the angular velocity ω. Simulations are performed with the initial
conditions (23), where N = 30, ε = 5×10−4 and (bottom to top) RO = 2.5, 3.75, 5, and 6.25. For each pair of
ω and RO, five simulations are performed, and I and C are averaged over each simulation.

IV. SUMMARY

We have conducted a numerical investigation into two different but related models of doubly
connected Hele-Shaw flow. By using a scheme based on the level set method, we have been able
to compute solutions when the velocity of the viscous annular blob is driven by either a prescribed
pressure differential between the interfaces or a centrifugal force due to the Hele-Shaw plates being
rotated. While exact solutions of both of these models have previously been derived in the zero-
surface-tension case [32,41], we extend this work by including the regularizing effects of surface
tension which prevents solutions developing unphysical cusps. Our numerical scheme is able to
capture the complex interfacial patterns on a uniform computational grid, and simulations have
been shown to compare well with existing experimental results.

In Sec. II, we considered a model for doubly connected Hele-Shaw flow in which the pressure
differential between the air on the inside and outside of the viscous fluid is prescribed, leading to
cases in which the inner bubble either expands or contracts. Linear stability analysis (Sec. II C)
together with these simulations reveal that the trailing interface develops the expected viscous
fingering patterns due to the Saffman-Taylor instability, while the leading interface is also (mildly)
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unstable, even though it involves a viscous fluid displacing an inviscid fluid (in isolation, the leading
interface would be stable). The fingers that develop on the trailing interface are morphologically
distinct depending on whether the interior bubble is expanding or contracting.

For the expanding case (Sec. II D), we observe tip-splitting and branching behavior typical of
classic Saffman-Taylor fingers, becoming more pronounced when the pressure differential, �p, is
increased. We also demonstrate how sensitive this highly unstable system is to initial conditions with
perturbed circular interfaces whose centers are slightly offset. Here, nonlinear competition favors
fingers with a slight advantage in pressure gradients, leading to a break in radial symmetry. These
simulations compare well with a small number of experiments we performed, together with more
detailed experiments reported by Ward and White [35]. Regarding the latter, we were able to show
that both the expansion rate of the interior bubble and the time at which bursting occurs computed
from our numerical solutions compares well with these experimental results [35]. On the other hand
(Sec. II E), for �p < 0, the interior bubble contracts and the outer interface is shown to develop
fingers whose tips tend to not split (as they do in the expanding case) but instead appear to be pulled
inward. These inward pointing fingers can either burst through the inner boundary or, for a large
enough value of RO, the interior bubble can contract to a point before bursting can take place.

In Sec. III, we study the evolution of a fluid annulus in a rotating Hele-Shaw cell. The linear
stability analysis summarized in Sec. III B is complicated and difficult to interpret; however, this
theory demonstrates that while surface tension tends to stabilize both interfaces, the angular velocity
promotes a traditional Saffman-Taylor instability on the inner interface (due to a tendency for
the inviscid fluid to displace the viscous fluid) and a centrifugal instability on the outer interface
(due to viscous fluid being pushed outward). Our numerical simulations (Sec. III C) revealed that
either one or both interfaces can develop fingering patterns depending on the angular velocity of
the plates or the amount of viscous fluid present. It was found that increasing either the angular
velocity or the amount of viscous fluid leads to more pronounced finger growth for both the
leading and trailing interfaces, either visually or via the isoperimetric ratio or circularity ratio.
Morphologically speaking, the fingering patterns each interface develops are distinct from each
other, whereby the outer boundary typically develops a larger number of short outward point-
ing fingers, while the inner boundary grows fewer fingers that are longer, flatter, and wider in
appearance.

Looking ahead, the study of Hele-Shaw flows is currently an active research area, especially
for various nonstandard scenarios that involve different configurations of the Hele-Shaw apparatus
(tapered plates, lifting plates, and elastic plates, for example), non-Newtonian fluids (or fluids
with suspended particles), ferrofluids and flows with applied electric fields. There is scope for
developing schemes for computing fully nonlinear numerical simulations in these scenarios for
doubly connected or multiply connected domains, either by adapting the level set scheme outlined
here or via a boundary integral formulation. In terms of mathematical modeling, there are interesting
questions about how the model presented in Sec. II behaves when the annular viscous domain is very
thin and also in the limit that the trailing interface bursts through, or ruptures, the leading interface.
Progress on this problem will be reported elsewhere.
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APPENDIX: FURTHER DETAILS OF NUMERICAL SCHEME

1. General algorithm

A summary of our numerical algorithm for solving Eqs. (5a)–(5d) is as follows:
Step 1. Given initial conditions for the inner and outer interfaces, ∂�i(0) and ∂�o(0), construct

two level set functions, φi and φo, such that φi < 0 in the inner bubble region and φi > 0 otherwise,
while φo < 0 in the outer bubble region and φo > 0 otherwise. Each level set function is initialized
as a signed distance function.

Step 2. Solve Eqs. (5a), (5c), and (5d) for the pressure in the region x ∈ � using a modified finite
difference stencil as described in Sec. II B 2.

Step 3. Compute Fi and Fo according to Eqs. (11), where the spatial derivatives are approximated
using central differences. Both Fi and Fo are extended into the region x ∈ R2\� by solving the
biharmonic equation as described in Sec. II B 1.

Step 4. Update φi and φo by solving the level set equations (10). The spatial derivatives are
approximated using a second order essentially nonoscillatory scheme, and we integrate in time using
second-order total variation diminishing Runge-Kutta, where �t = 0.25×�x/ max(|Fi|, |Fo|).

Step 5. Both φi and φo are reinitialized by solving

∂φ

∂τ
+ S(φ)(|∇φ| − 1) = 0, (A1)

where τ is a pseudotime variable and

S = φ√
φ2 + (|∇φ�x|)2)

. (A2)

We perform five iterations of Eq. (A1) using �τ = �x/5 every four time steps.
Step 6. Determine the minimum distance between the inner and outer interfaces. We approximate

this distance with

D(t ) ≈ min(|φi| + |φo|), (A3)

and simulations are stopped if D < 4�x.

2. Verification

We perform a test of our scheme by comparing the numerical solution to Eqs. (5a)–(5d) with
exact solutions derived in Ref. [32] when the effects of surface tension are ignored (γ = 0).
We consider two different initial conditions. Introducing the time-dependent mapping function
z = f (ζ , t ) where z ∈ C with four poles and zeros at ±p1, ±ip2 and ±q1, ±iq2, where ρ(t ) is
the conformal modulus and R(t ) as a scaling factor, the first initial condition is given by

fζ (ζ , 0) = R
P
(
ζ 2/q2

1, ρ
2
)
P
(−ζ 2/q2

2, ρ
2
)

P
(
ζ 2/p2

1, ρ
2
)
P
(−ζ 2/p2

2, ρ
2
) , (A4)

where

P(ζ , ρ) = (1 − ζ )
∞∏
j=1

(1 − ρ2 jζ )(1 − ρ2 j/ζ ), (A5)

Ṙ

R
= ζRI (ζR)

fζ
f

− ζ̇R

ζR
, f (ζR) = RζR, ζR = ρ1−1/N p, (A6)

ρ̇

ρ
= 1

2π ln ρ

∫ 2π

0

1

| f (eis)| − 1

ρ2| f (ρeis)|2 ds, (A7)

ṗk

pk
= −I (pk ),

q̇k

qk
= −I (qk ) − 2

ln ρ f̄ζ (1/qk )
, I (ζ ) = ft

ζ fζ
. (A8)
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FIG. 16. A comparison of an exact solution derived by Ref. [32] (solid blue) with numerical solution to
Eqs. (5a)–(5d) (dashed red) where �p = −1 and γ = 0. For (a), the initial condition is given by Eqs. (A4)
and (A8) where p1(0) = 1.2, q1(0) = 1.7, p2(0) = 1.1, q2(0) = 1.4, and R(0) = 1 while for (b), the initial
condition is given by Eqs. (A9) and (A8) where N = 6, p(0) = 1.4, p(0) = 1.06, ρ(0) = 0.44, and R(0) = 1.
Both simulations are performed on the computational domain −1.25 � x � 1.25 and −1.25 � x � 1.25 using
300×300 equally spaced nodes. The direction of increasing time is denoted by the arrows.

We refer to Ref. [32] for further details. The outer and inner boundaries are parametrized by setting
ζ = eiθ and ζ = ρeiθ , respectively, where 0 � θ < 2π . We compare the exact (solid blue) and
numerical (dashed red) solutions in Fig. 16(a), and find the two are indistinguishable (at this scale)
when using 300×300 equally spaced nodes. Furthermore, the interior boundary appears to contract
to an ellipse, which is what should happen in this zero-surface-tension case [32].

For the second initial condition, Fig. 16(b), the initial mapping function is

f (ζ , 0) = Rζ
P(ρNζ N/pN , ρN )

P(ζ N/pN , ρN )
, (A9)

along with Eqs. (A5)–(A8). In this case, as the interior bubble contracts, the exact solution develops
a sharp cusp on the exterior interface due to Eqs. (5a)–(5d) being ill-posed when surface tension is
absent. The level set method acts to provide a form of regularization and, as such, the sharp cusp in
not observed in the numerical solution. However, we still see agreement between the numerical and
exact solutions for the interior interface, as well as the exterior interface in the times before the cusp
develops.

Finally, we make a brief comment on mass conservation. Our numerical scheme is based on the
level set method, which can suffer from mass loss (or gain). Across the simulations presented in
this paper, we monitor the mass of the viscous fluid via Eqs. (26) and (27). By using a sufficiently
refined grid and performing reinitialization (discussed in Sec. A 1) frequently enough, we find that
mass loss (compared to the initial amount of fluid in the system) is around 0.1%.
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