
PHYSICAL REVIEW FLUIDS 8, 013901 (2023)

Miscible viscous fingering in a packed cylindrical column:
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We investigate viscous fingering (VF) during the miscible displacement in a cylindrical
packed column using linear stability analysis and numerical solutions. Linear stability
theory is carried out in a self-similar domain, and the linearized equations are solved with
and without the quasi-steady-state approximation. We obtain the onset of instability and
the associated critical parameters as functions of the log-viscosity ratio and Péclet number
for the onset of instability using linear stability analysis. Further, we perform nonlinear
simulations based on the finite-element method, both in two- and three-dimensional do-
mains. It is shown that the critical Péclet numbers obtained from the linear and nonlinear
analyses are in good agreement. One of the main objectives of this study is to explore
the effects of lateral boundary conditions on VF. Through two-dimensional (2D) and
three-dimensional (3D) simulations, we have clearly shown that the onset and the growth of
VF are strongly dependent on the lateral boundary conditions. Finally, through our present
3D numerical simulations, we successfully produce the experimental results available in
the literature by suitably choosing the parameters that replicate the experimental conditions
under consideration.

DOI: 10.1103/PhysRevFluids.8.013901

I. INTRODUCTION

When a less viscous fluid displaces a more viscous defending fluid in a porous medium, the
fluid-fluid interface becomes hydrodynamically unstable and fingerlike patterns are formed at
the interface. This instability, which is known as viscous fingering (VF), is a fundamental fluid
mechanics problem that is relevant to secondary oil recovery, channeling in packed bed column,
fixed bed regeneration, etc. [1]. Using an x-ray technique, Slobod et al. [2] and Perkins et al. [3]
experimentally analyzed the onset and the evolution of the miscible fingering. They showed that
at high flow rates, fingers are present near the injection region, while no fingers are observed
near the injection region at low flow rates. These experimental results indicate that the stability
characteristics are influenced by the viscosity profile and the flow rate. Therefore, there is a stable
region even if the viscosity distribution is unfavorable.

Due to the richness in fundamental aspects as well as a wide range of applications, numerous
theoretical and numerical studies have been conducted on VF by researchers in a wide range of
settings ([4–15] and references therein). Nonlinear fingering dynamics such as tip splitting, merging,
and mixing of a finite sample were investigated numerically [16]. Pramanik et al. [6] extended
this idea for a circular sample and showed that along with the viscous fingering instability, two
more instability patterns were formed in this case, unlike a finite sample. Particle-induced viscous
fingering was investigated experimentally by modifying the effective viscosity of the displacing and
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the defending fluids [7]. Critical dependences of viscous fingering on the inlet boundary condition
were reported using linear stability analysis and nonlinear simulations [10]. Gao et al. [11] showed
that the electric field can be used to control viscous fingering in a Hele-Shaw cell. Incorporating
nonlinear adsorption of the Langmuir type in the model of De Wit et al. [16] and Rana et al. [12]
showed that adsorption parameters can be efficiently used to viscous fingering instability in a liquid
chromatographic condition. Nonmodal stability analysis of viscous fingering was used to capture
transient growth in a two-dimensional setting [17]. Reference [13] extended the finite sample
viscous fingering model in a radial geometry and showed that the fingering instability depends
both on the size of the sample and the location of the sample in the Hele-Shaw cell. Linear stability
analysis and nonlinear simulations showed that a chemical reaction can also be used as a control
parameter of VF in a radial geometry [18,19].

Pramanik and Mishra [20] investigated the effects of the Péclet number, Pe, in a two-dimensional
domain with no-flux conditions at the lateral boundaries using linear stability analysis and nonlinear
numerical simulations. Recently, Nijjer et al. [21] studied the full life cycle of miscible VF, from
the onset to shutdown, using periodic boundary conditions in a two-dimensional flow.

Experimental studies of miscible VF in liquid chromatographic conditions revealed that for
samples of low viscosity, fingering might not be observed in short chromatographic columns and
the velocity at which the sample is displaced influences the onset and evolution of fingering [22,23].
Recently, Suekane et al. [24] studied the onset and the three-dimensional growth of viscous fingering
in a cylindrical column using an x-ray computerized tomographic technique. Rousseaux et al. [25]
conducted a theoretical analysis based on the quasi-steady-state approximation (QSSA) to analyze
VF in liquid chromatography columns.

The above-mentioned theoretical and computational studies provide useful insights about mis-
cible VF in porous media. However, these studies considered two-dimensional flows without
including any physical lateral boundaries. Therefore, these results are not directly applicable to
liquid chromatographic conditions, which is a three-dimensional flow configuration confined by
a physical lateral boundary. The lateral boundary effects on VF in a capillary tube were ana-
lyzed by Chen and Meiburg [26,27]. However, these studies have their demerits in explaining a
three-dimensional liquid chromatography column as they restrict their analyses to axisymmetric
two-dimensional domains.

In the present study, the onset of viscous fingering during the miscible displacement in a three-
dimensional cylindrical packed column is analyzed theoretically and numerically. Under the linear
stability theory, the stability equations are derived and reformulated in the cylindrical coordinate
system to consider radial boundary effects. These stability equations are transformed in terms of
self-similar coordinates and are solved analytically and numerically. Further, for some extreme
cases, the stability characteristics are obtained without the aid of the QSSA. Thus, the present study
might be useful to understand the validity and limitation of the QSSA. To study the nonlinear growth
of the instability motion, we perform nonlinear numerical simulations. The present theoretical and
numerical results show good agreement and explain the previous experimental finding.

II. MATHEMATICAL MODEL AND BASE STATE

Governing equations and base fields

We consider uniform miscible displacement in a packed cylindrical column of radius b as
schematized in Fig. 1. The fluids are Newtonian and neutrally buoyant, and the porous media
is homogeneous with a constant permeability and isotropic dispersion. Using Darcy’s law, the
governing equation for the present system can be written as [4,21]

∇ · U = 0, (1a)
μ

κ
U = −∇P, (1b)

ε
∂C

∂t
+ U · ∇C = D∇2C, (1c)
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FIG. 1. Schematic diagram of the system considered here.

where U is the velocity vector, μ the viscosity, ε the porosity, κ the permeability, P the pressure,
C the concentration of solvent, and D the dispersion coefficient, which is assumed constant and
isotropic. By considering the displacing motion with the uniform velocity W0, a moving reference
frame Z∗ = Z − W0t is adopted and the above governing equation can be written in dimensionless
form as

∇ · u = 0, (2a)

μ̄(u + i) = −∇p, (2b)

∂c

∂τ
+ u · ∇c = 1

Pe
∇2c, (2c)

using b, b/W0, W0, μ−, μ−W0b/k, and �C = C− − C+ as the length, time, velocity, viscosity,
pressure, and concentration scales, respectively. Here, μ−, C−, and C+ are the viscosity of the
displaced fluid, and the solute concentration for the displacing and displaced fluid, respectively.
Further, μ̄ = μ/μ−, Pe = W0b/D is the Péclet number and i is the unit vector in the displacing
direction.

In the moving reference frame, we have u0 = 0, and hence the base state concentration is
described by the diffusion equation,

∂c0

∂τ
= 1

Pe

∂2c0

∂z2
, (3)

subject to the initial and boundary conditions,

c0(0, z) = 1 − H (z), (4a)

1 − c0(τ,−∞) = c0(τ,∞) = 0, (4b)

where H (z) is the Heaviside step function. From Eqs. (3) and (4), the base concentration field can
be expressed as

c0 = 1

2
erfc

(
ξ
√

Pe

2

)
, (5)

where ξ = z/
√

τ is the similarity variable.
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III. LINEAR STABILITY ANALYSIS

Stability analysis

Eliminating pressure and the spanwise velocity from Eqs. (2), and linearizing the resultant
equations in terms of the perturbation to the concentration and streamwise velocity, we obtain

∇2w1 + 1

μ̄

∂μ̄

∂z
= 1

μ̄

∂μ̄

∂c0
∇2

1 c1, (6a)

∂c1

∂τ
+ ∂c0

∂z
w1 = 1

Pe
∇2c1, (6b)

where ∇2 = ∂2

∂z2 + ∇2
1 and ∇2

1 = 1
r

∂
∂r (r ∂

∂r ) + 1
r2

∂2

∂θ2 . The associated boundary conditions are
given by

w1 → 0 and c1 → 0 as z → ±∞, (7a)

∂w1

∂r
= ∂c1

∂r
= 0 at r = 0 and 1. (7b)

In the present study, following Tan and Homsy [4], we arrive at the linear stability equation (6)
from the governing equation (2). Furthermore, the symmetry conditions at r = 0 are equivalent to
the finite condition, i.e., w1 = finite and c1 = finite at r = 0 [28].

Following Wooding [28], under the normal mode analysis, the disturbance quantities are decom-
posed as

[w1, c1] = [w̄1(τ, z), c̄1(τ, z)]X m
l (r, θ ). (8)

The cylindrical harmonics X m
l (r, θ ) can completely determine the horizontal dependency of the

disturbance quantities through the following relation:

∇2
1 X m

l = −α2
l,mX m

l , (9)

where

X m
l (r, θ ) = Jm(αl,mr) exp(imθ ), m = 0, 1, 2, . . . , (10)

and

J ′
m(αl,m) = 0, l = 1, 2, 3, . . . , (11)

where Jm is the Bessel’s function of the first kind, αl,m is the eigenvalue, and i = √−1. A few zeros
of Eq. (11) are summarized in Fig. 2. The nonaxisymmetric case of m > 0 satisfies the continuity
requirement through the factor exp(imθ ) and the axisymmetric one of m = 0 also does through the
integral over the cylinder cross section as∫ 1

0
rJ0(αl,0, r)dr = J1(αl,0)

αl,0
= 0, (12)

by using the zeros of Eq. (11) [28]. Therefore, the stability equations become(
∂2

∂z2
+ 1

μ̄

∂μ̄

∂z

∂

∂z
− α2

l,m

)
w̄1 = − 1

μ̄

∂μ̄

∂c0
α2

l,mc̄1, (13a)

∂ c̄1

∂τ
+ w̄1

∂c0

∂z
= 1

Pe

(
∂2

∂z2
− α2

l,m

)
c̄1, (13b)

associated with the boundary conditions,

w̄1 → 0 c̄1 → 0 as z → ±∞. (14)
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FIG. 2. First four single modes of the cylindrical harmonics, given in Eq. (10), and two mixed modes.
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Our goal is to find the critical time τc for the given Pe and R = (1/μ̄)(∂μ̄/∂c0), and the minimum
Pe to mark the onset of fingering by solving Eqs. (13) and (14).

For the infinite layer, it is natural that c̄1(τ, x) = c∗
1(τ, ζ ) and w̄1(τ, x) = w∗

1 (τ, ζ ), where ζ =
ξ
√

Pe and ξ is the similarity variable introduced in Sec. II. Following a coordinate transformation
to the similarity variable of ζ , stability equations can be expressed as(

∂2

∂ζ 2
+ 1

μ̄

∂μ̄

∂ζ

∂

∂ζ
− a∗2

)
w∗

1 = −a∗2 1

μ̄

∂μ̄

∂c0
c∗

1, (15a)

τ
∂c∗

1

∂τ
=

(
∂2

∂ζ 2
+ ζ

2

∂

∂ζ
− a∗2

)
c∗

1 −
√

Pe τw∗
1

dc0

dζ
, (15b)

associated with the boundary conditions

w∗
1 → 0, c∗

1 → 0 as ζ → ±∞. (16)

Here, a∗ = αl,m
√

τ/Pe and dc0
dζ

= − 1
2
√

π
exp(− ζ 2

4 ).

IV. SOLUTION PROCEDURE

A. Initial growth rate

The initial growth rate analysis is important in order to understand the dynamics of the distur-
bances at the early stages. For laterally unbounded systems, the initial growth rate (i.e., at τ = 0)
is calculated under QSSA [4,25], where Eq. (4a) is employed as the base concentration field. Here,
we present an analytic approach without QSSA. At an initial state of τ → 0, since a∗ → 0 for finite
αl,m, Eqs. (15) can be simplified as(

∂2

∂ζ 2
+ 1

μ̄

∂μ̄

∂ζ

∂

∂ζ

)
w∗

1 = 0, (17a)

τ
∂c∗

1

∂τ
=

(
∂2

∂ζ 2
+ ζ

2

∂

∂ζ

)
c∗

1 −
√

Pe τw∗
1

dc0

dζ
. (17b)

In Eq. (17b),
√

Pe τw∗
1

dc0
dζ

is kept since ( ∂c0
∂z )τ=0 = −δ(z) has a nonanalytic feature—here, δ(z)

denote the Dirac delta function. Simple mathematical operations yield that the solution of the
velocity disturbance can be expressed as

w∗
1 = d1

∫ ζ

−∞
f (χ )dχ + d2, (18)

where

f (χ ) = exp

(
−

∫ χ

−∞

1

μ̄

dμ̄

dη
dη

)
= exp

(
−

∫ μ̄

1

1

μ̄
dμ̄

)
= 1

μ̄(χ )
. (19)

The constants d1 and d2 should be zero to meet the boundary conditions w∗
1 (τ,±∞) → 0. There-

fore, w∗
1 → 0 as τ → 0. This means that initially, there is no velocity disturbance and the instability

motion is driven by the concentration disturbances.
Then, the concentration disturbances are governed by the following linear, homogeneous partial

differential equation:

τ
∂c∗

1

∂τ
=

(
∂2

∂ζ 2
+ ζ

2

∂

∂ζ

)
c∗

1. (20)
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Solving this equation using the variable separation technique and applying the superposition princi-
ple, we obtain

c∗
1 =

∞∑
n=0

An(τ )φn(ζ ) (21)

for

φn(ζ ) = (n! 2n+1√π )−1/2Hn

(
ζ

2

)
exp

(
−ζ 2

4

)
, (22)

where Hn represents the nth Hermite polynomials, and {φn}∞n=1 are orthonormal functions with
respect to the weight exp(ζ 2/4), i.e.,∫ ∞

−∞
φm(ζ )φn(ζ ) exp

(
ζ 2

4

)
dζ = δmn. (23)

The coefficients An(τ ) can be obtained solving the following ordinary differential equation:

τ
dAn

dτ
= −λnAn for n = 0, 1, 2, . . . , (24)

which yields An(τ ) = anτ
−λn , where an’s are arbitrary constants and λn = (n + 1)/2 denotes the

growth rate of the nth mode, An(τ )φn(ζ ), defined as

1

An

dAn

dτ
= −λn

τ
as τ → 0 for n = 0, 1, 2, . . . (25)

Clearly, the largest growth rate is associated with the first mode (n = 0), a0τ
−1/2 exp(−ζ 2/4). Since

the growth rate of the most dangerous mode

1

A0

dA0

dτ
= −λ0

τ
= − 1

2τ
as τ → 0 (26)

is negative, the system is initially unconditionally stable.

B. Eigenanalysis

We use the following viscosity-concentration relation [4]:

μ̄ = eR(1−c), (27)

where

R = ln
μ+
μ−

(28)

is the log-viscosity (or log-mobility) ratio, and μ+ and μ− denote the viscosity of the displaced
and displacing fluids, respectively. For the limiting case of R � 1, the stability equations can be
rewritten as

τ
∂c∗

1

∂τ
=

(
∂2

∂ζ 2
+ ζ

2

∂

∂ζ
− a∗2

)
c∗

1 − R∗w̃∗
1
∂c0

∂ζ
, (29a)

(
∂2

∂ζ 2
− a∗2

)
w̃∗

1 = −a∗2c∗
1, (29b)
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where R∗ = R
√

Pe τ , w̃∗
1 = w∗

1/R, and dc0
dζ

= − 1
2
√

π
exp(− ζ 2

4 ). Using Sturm-Liouville the-
ory [19,29], c∗

1, and w̃∗
1 can be expressed as

c∗
1 =

∞∑
n=0

Bn(τ )φn(ζ ), (30a)

w̃∗
1 =

∞∑
n=0

Bn(τ )ψn(a∗, ζ ), (30b)

where φn(ζ ) are given in Eq. (22), and ψn(a∗, ζ ) satisfies(
∂2

∂ζ 2
− a∗2

)
ψn = −a∗2φn. (31)

The solution to Eq. (31) corresponding to the boundary conditions, ψn(a∗,±∞) → 0, can be
expressed as

ψn(a∗, ζ ) = a∗

2

[
exp(a∗ζ )

∫ ∞

ζ

exp(−a∗χ )φn(χ )dχ + exp(−a∗ζ )
∫ ζ

−∞
exp(a∗χ )φn(χ )dχ

]
.

(32)
Using Eqs. (30) in Eq. (29a) and utilizing the orthogonality property of φn (i.e., by integrating with
respect to ζ from −∞ to ∞), we obtain

τ
dBn

dτ
= −(λn + a∗2)Bn + R∗

∞∑
k=0

Bk

∫ ∞

−∞
φn(ζ )ψk (a∗, ζ )dζ . (33)

Equation (33) can be written in the following matrix differential equation form:

τ
dB
dτ

= EB, (34a)

B = [B0, B1, B2, . . .], (34b)

Emn = −(λm−1 + a∗2)δmn − 1

2
√

π
R∗

∫ ∞

−∞
φnψmdζ , (34c)

where the matrix E is symmetric since
∫ ∞
−∞ φ jψidζ = ∫ ∞

−∞ φiψ jdζ . System (34) is nonautonomous
since a∗ and R∗ are time dependent, and hence E is time dependent. The growth rate of the
perturbations is defined as

σ ∗
τ = 1

2

1

B	B

(
dB	

dτ
B + B	 dB

dτ

)
. (35)

Using Eq. (34a) and through basic matrix operations, Eq. (35) can be rewritten as

σ ∗
τ τ = 1

B	B
B	

(
E	 + E

2

)
B. (36)

For a symmetric matrix E, i.e., E	 = E, Eq. (36) further reduces to

σ ∗
τ τ = 1

B	B
B	EB. (37)

It is to recall that symmetric matrices are normal and the eigenvalues of normal matrices are real.
Through eigenanalysis, it can be shown that

σ ∗
τ τ = max{eig(E )}, (38)
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where max{eig(E )} corresponds to the maximum eigenvalue of E. For the limiting case of τ → 0,
E becomes a diagonal matrix and the entries are given by Ei j = (−i/2)δi j . The eigenvalues of E
are the diagonal entries of this matrix. Therefore, the largest eigenvalue is −1/2, i.e., σ ∗

τ τ = −1/2,
and the corresponding eigenvector is [1, 0, 0, . . .]	. This reconfirms our initial growth rate results
discussed in Sec. IV A.

C. Quasi-steady-state approximation

The eigenanalysis presented in Sec. IV B is valid only in the limiting case of R � 1. Therefore,
we seek an alternative approach applicable for all admissible values of R. We use QSSA [4], which
is widely used in the stability analysis of time-dependent base flow. Employing QSSA, the spatial
and temporal dependencies of the perturbations are expressed in terms of the normal modes [20,21],

c∗
1(τ, ζ ) = A(τ )�(ζ ), w∗

1 (τ, ζ ) = A(τ )�(a∗, ζ ), (39)

where A is the amplitude of the perturbations and the growth rate is defined as

σ ∗
τ = 1

A
dA
dτ

. (40)

To avoid the notational complexity, we have used σ ∗
τ to denote the growth rate obtained from both

eigenanalysis and QSSA. However, in the analysis and discussion of the results (Secs. VI and VII),
we will explicitly mention the method used to calculate the growth rate.

Using Eqs. (39) and (40) in (15) and (16), we obtain(
∂2

∂ζ 2
+ ζ

2

∂

∂ζ
− a∗2 − σ ∗

τ τ

)
� = −Pe

√
τ

1

2
√

π
exp

(
−ζ 2

4

)
�, (41a)

(
∂2

∂ζ 2
+ 1

μ̄

∂μ̄

∂ζ

∂

∂ζ
− a∗2

)
� = −a∗2 1

μ̄

∂μ̄

∂c0
�, (41b)

and

� → 0 and � → 0 as ζ → ±∞. (42)

Using the viscosity-concentration relation (27), Eq. (41b) can be further simplified to[
∂2

∂ζ 2
+ R

1

2
√

π
exp

(
−ζ 2

4

)
∂

∂ζ
− a∗2

]
� = a∗2R�. (43)

We solve Eqs. (41a) and (43) subjected to the boundary conditions (42) for τ > 0.
For the limiting case of R � 1, the growth rate calculated from the eigenanalysis is compared

with that obtained from QSSA in Fig. 3, in which the order of the approximation is the number
of terms used in the expression for c∗

1 and w̃∗
1 in Eqs. (30). As shown in this figure, the present

analytical and numerical solutions show good agreement.

V. NONLINEAR NUMERICAL SIMULATIONS

We solved the nonlinear governing Eqs. (2) and (27) numerically by using the finite-element
method (FEM)-based commercial code COMSOL MULTIPHYSICS. The velocity field is modeled using
Darcy’s law (dl) for fluid flow in Darcian porous media. In addition, the solute transport equation is
modeled using the diluted species in porous media (tds) of COMSOL MULTIPHYSICS. Because these
velocity and concentration fields are tied up by Eq. (27), we should solve Eqs. (2) iteratively. The
above equations correspond to ε = 1, D = 1/Pe, ρ = 1, and K = 1 in the COMSOL MULTIPHYSICS.
In the present study, we chose the calculation domain as x2 + y2 � 1 and −L � z � L, and imposed
the no-flux boundary conditions at x2 + y2 = 1, c = 1 and w = 1 at z = −L, and c = 0 and p = 0
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FIG. 3. Comparison of the growth rates obtained from the various methods for the case of RPe = 20 and
al,m = a1,1.

at z = L, respectively. We used the following initial condition:

c = 1 − G(z) and p = 0 at τ = 0, (44)

where G(z) is the smoothed Heaviside step function. We solved the time-dependent problem using
the implicit backward differentiation formula (BDF) scheme with relative error of 10−4.

For the example case of Pe = 50, the concentration fields for the stable (R = −1), neutral (R =
0), and unstable (R = 1) cases are compared in Fig. 4. As shown in this figure, we cannot observe
fingering instabilities for the stable and neutral cases. Comparing Figs. 2 and 4(c), it is evident that
several modes that interact at the initial time (τ = 0) lead to the dominance of the X 1

1 (r, θ ) and
X 1

2 (r, θ ) modes at τ ≈ 20, and that if X 1
1 (r, θ ) at τ > 30.

VI. RESULTS AND DISCUSSIONS

For laterally unbounded systems, the initial growth rate is positive for a certain range of wave
number [4,25]. The present initial growth rate analysis shows that the system is unconditionally
stable with respect to any disturbance. Thus, the present study explains the stable displacement of
low viscosity samples observed near the injection region in a low-flow rate run [3,22,23].

Figure 5(a) shows the neutral stability curves—the region above these curves denotes the unstable
state, i.e., σ ∗

τ > 0, whereas the region below these curves corresponds to the region of stability.
As shown in these figures, for the limiting case of R � 1, the eigenanalysis and QSSA solutions
produce almost identical stability conditions. The stability curve redrawn in the RPeτ 1/2 − αl,m/RPe
plane exhibits a possibility for the restabilization of temporarily unstable modes [see Fig. 5(b)].
This curve shows that for a given RPe, all disturbances decay when RPe

√
τ < 5.646; however,

as time increases, some disturbances will grow only if αl,m/RPe < 0.1172. We define the critical
time τc as the time at which a disturbance starts growing. This phenomenon is also observed in
buoyancy-driven fingering instability [30].

Unlike the horizontally unbounded domain, the presence of cylinder boundaries imposes a
restriction on the feasible wave number given by Eq. (11) and these take discrete values. For the
nine smallest wave numbers, the rescaled critical times are plotted as a function of RPe in Fig. 6. It
is observed that the nonaxisymmetric mode of J1(α1,1r) exp(iθ ) is the most unstable mode, which
yields the minimum RPe to induce the convective motion. We obtain the critical values of (RPe)c

013901-10
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FIG. 4. Temporal evolution of the x − z sliced at y = 0 (left) and x − y sliced at z = 0 (right) concentration
fields for Pe = 50: (a) stable (R = −1), (b) neutral (R = 0), and (c) unstable (R = 1) systems. From top to
bottom: τ = 10, 20, and 30.

FIG. 5. Comparison of neutral stability curves from the various methods: (a) R∗ − a∗ plane and
(b) RPeτ 1/2 − αl,m/(RPe) plane.
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FIG. 6. Critical-time curves for (a) cylindrical three-dimensional case and (b) two-dimensional one. In (a),
the lowest nine modes, which are summarized in Table I, are given from left to right. It is observed that the α4,1

and α1,2 modes are almost indistinguishable.

for the most dangerous disturbance as

(RPe)c = α1,1

0.1172
= 15.708 for R � 1. (45)

Recently, Nijjer et al. [21] reported a similar observation for two-dimensional infinite stripes with
lateral periodicity, for which the allowable dimensionless wave numbers are α = nπ , n = 1, 2, 3, . . .

Considering the periodic lateral boundary conditions, Eq. (45) reduces to

(RPe)c = π

0.1172
= 26.805 for R � 1, (46)

which explains Fig. 6(d) by Nijjer et al. [21] quite well. If the stability curve is redrawn in the
RPe τ 1/2 − αl,m/RPe domain, a possibility for restabilization of the temporarily unstable modes
appears, as shown in Fig. 5(b). The occurrence of restabilization of the transient unstable modes
is also observed in the studies of Nijjer et al. [21] [see their Fig. 5(c)]. Extending our analysis to
the system investigated by Pramanik and Mishra [20], for which the allowed dimensionless wave
numbers are α = nπ/2, where n = 1, 2, 3, . . ., Eq. (45) becomes

(RPe)c = π/2

0.1172
= 13.403 for R � 1. (47)

Here, it should be kept in mind that the Péclet number defined in this paper is half of those defined
in [20,21] because in those studies the Péclet number is based on the full width [20,21] of the stripe,
rather than the radius of the cylinder.

For the case of high Péclet number (e.g., RPe > 50), the radial boundary effects are unimportant
and D/(RW0)2 or D/W 2

0 seems to be the proper timescale. The critical time decreases with increas-
ing RPe and, if all the possible wave numbers are superimposed, the following asymptotic relation

TABLE I. A few smallest zeros of αl,m given in Eq. (9). These correspond to the least stable modes.

(l, m) (1,1) (2, 1) (0, 1) (3, 1) (4, 1) (1, 2) (5, 1) (2, 2) (0, 2)

αl,m 1.841 3.054 3.832 4.201 5.318 5.331 6.416 6.706 7.016
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FIG. 7. Neutral stability curves obtained from the QSSA for the several finite values of R: (a) R∗ − a∗ plane
and (b) RPeτ 1/2 − αl,m/(RPe) plane.

results,

tc = 31.877D/(RW0)2 for R � 1 and RPe > 50, (48)

which can be drawn from Fig. 5(b), i.e., R∗
c [= R(τcPe)1/2] = 5.646. For the rectilinear system,

where the lateral boundary effects are unimportant, D/W 2
0 has been used for the timescale and

Eq. (47) can be applied. In addition, Eq. (48) can be applied to the infinite strip systems [20,21] for
the case of RPe > 50, where the lateral boundary effects play little roles on the critical time.

The eigenanalysis is not applicable for all values of τ , R, and Pe. Therefore, the QSSA discussed
in Sec. IV C is employed in general. For several value of R, neutral stability curves obtained
from QSSA are compared in Fig. 7. Based on these neutral curves, the critical times for the
finite-R cases are summarized in Fig. 8. As shown in Figs. 6 and 8, there exists a critical Péclet
number and the corresponding critical wave number. It is observed that the nonaxisymmetric mode,
J1(α1,1r) exp(iθ ), is the most unstable mode near the critical Péclet number.

FIG. 8. Critical-time curves for the smallest nine wave numbers. The modes summarized in Table I are
given from left to right and the (4,1) and (1,2) modes are indistinguishable in this figure. (a) R = 1 and
(b) R = 3.
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FIG. 9. Critical conditions for finite R: (a) critical Péclet number and (b) critical time for the high RPe case.

Another important finding of the present linear analysis is that there exists the onset time τc,
from which the system becomes unstable, and the decay times τd , from which the stability can be
restored. Nijjer et al. [21] also discussed this restabilization in the linearly unstable regime. Based on
these findings, the critical Péclet number and the critical time for the high-RPe case are summarized
in Fig. 9. From these figures, it can be known that the larger R is, the more important the viscous
fingering effect. For the case of moderate viscosity contrast, R � 1, Eqs. (45) and (48) give a good
approximation for the critical conditions.

Using nonlinear numerical simulations of viscous fingering in a miscible slice, De Wit et al. [16]
reported t∗(= τcPe) ∝ R−2, which is in accordance with Eq. (48). Note that for very small values
of R, the onset time and the critical Péclet number become very large. This explains the absence
of fingering instability to low viscosity samples [Fig. 9(a)] in small chromatographic columns, for
which τ < τc, and for small displacing speed [Fig. 9(b)], for which Pe < Pec.

To understand the effects of the lateral boundaries on the nonlinear fingering instability in the
cylindrical system, we perform nonlinear numerical simulations using COMSOL MULTIPHYSICS in
the present study. Figure 10 compared the temporal evolution of the concentration field for Pe = 15
and 25. When Pe = 15, no visual difference between neutral (R = 0) and the unfavorable (R = 1)
viscosity contrasts was identified [compare Figs. 10(a) and 10(b)]. However, for Pe = 25, significant
differences were observed between the neutral and the unfavorable viscosity contrasts [compare
Figs. 10(c) and 10(d)]. From the above findings, we estimated 15 < Pec < 25 for R = 1—in
accordance with the theoretical prediction based on the linear stability analysis, i.e.,

Pec = α1,1

0.1171
= 15.716. (49)

In addition, for R = 1 and Pe = 25, the restabilization phenomenon is found and the most un-
stable mode is the X 1

1 (r, θ ) mode [see Fig. 2(a)], as predicted through linear stability analysis
[see Fig. 8(a)]. The linear stability analysis yields that the system corresponding to R = 1 and
Pe = 25 is temporally unstable, as shown in Fig. 8(a). The corresponding numerical simulations
are summarized in Fig. 10(d). During the initial period, the instability motion is developed as
time goes on. At a later time, the instability level reaches its maximum value and decays owing
to the stabilization induced by diffusion. For time larger than τ � 80, we clearly observed that
the stabilization effect of diffusion weakens the concentration nonuniformity caused by instability
motion. This indicates that the present linear stability analysis and numerical simulation are in good
agreement.
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FIG. 10. Temporal evolution of x − y sliced concentration fields for (a) R = 0 and Pe = 15, (b) R =
1 and Pe = 15, (c) R = 0 and Pe = 25, and (d) R = 1 and Pe = 25. From left to right, τ =
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Concentration fields are taken at z = 0.

Linear stability analysis approximates the critical Péclet numbers as

Pec = π

0.1171
= 26.828 for R = 1 and periodic system, (50)

and

Pec = π/2

0.1171
= 13.414 for R = 1 and symmetric or no-flux system. (51)

Figure 11 shows the concentration fields for R = 1 and periodic as well as symmetric (or no-flux)
boundary conditions for different values of Pe such that Pe � Pec. Equations (46)–(48) reveal that
the present three-dimensional cylindrical system is more unstable than the two-dimensional periodic
one [21]. The same conclusion can be drawn from Figs. 10 and 11, which show that the cylindrical
system with R = 1 and Pe = 25 is unstable [see Fig. 10(d)], whereas the two-dimensional periodic
system with R = 1 and Pe = 35 is stable [see Fig 11(c)]. Furthermore, from Eqs. (47) and (48),
and Fig. 11, it can be concluded that in a two-dimensional domain, the no-flux condition is more
unstable than the periodic one. For R = 1 and Pe = 300, the concentration fields in two- and three-
dimensional systems are shown in Fig. 12 for the no-flux boundary conditions. This figure clearly
shows that the fingering dynamics in two-dimensional systems is significantly different from that in
three-dimensional systems. Since the lateral boundaries do not play a significant role on the onset
and the growth of fingers for large Pe and small τ , we restrict out discussion in three-dimensional
(3D) cylindrical geometries for (a) small and intermediate Pe and (b) intermediate and large τ .
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FIG. 11. Effect of the boundary conditions on the onset of VF for R = 1. Top to bottom: Pe = 15, 25, 35,
and 50. The two top panels are for the no-flux condition, while the bottom two panels are for the periodic
condition.

Figure 13 shows the temporal evolution of the concentration field for R = 1 and Pe = 50, 100,
150, and 200. This figure clearly shows that the concentration fields are strongly dependent on Pe.
With an increasing Pe, the number of initial fingers and the length of the fingers increase.

The effect of R on the concentration fields for the case of RPe = 300 and τ/Pe = 0.1 such that
R2Pe τ = 9 × 103, and RPe = 200 and τ/Pe = 0.25 such that R2Pe τ = 104, are summarized in
Figs. 14 and 15, respectively. From the present linear stability analysis summarized in Fig. 9, the
stability characteristics are governed by R2Peτ if RPe > 50 and R � 2. Numerical simulations for
RPe = 300 and 200 are summarized in Figs. 13 and 14. The simulation results for RPe = 200 and
R � 2 given in Fig. 14 show the instability motions nearly independent of the value of R, which is in
good agreement with the linear analysis. However, as shown in Fig. 13, for the case of RPe = 300,
the value of R plays roles in the instability patterns if R > 2. Furthermore, it seems that the strength
of instability grows with R2Peτ .

Suekane et al. [24] studied experimentally fingering instability in three-dimensional cylindrical
geometry. We perform nonlinear simulations corresponding to their experimental conditions and the

FIG. 12. Concentration fields for R = 1, Pe = 300 and τ = 50. (a) Three-dimension and no-flux
condition—concentration field is taken at y = 0 (upper panel) and z = −5, 0, and 5 (lower panel). Calculation
domain is 0 � r � 1 and −15 � z � 15. (b) Two-dimension and no-flux condition.
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FIG. 13. Effect of Pe on the growth of VF for R = 1: (a) Pe = 50, (b) Pe = 100, (c) Pe = 150, and (d) Pe =
200. From top to bottom: τ = 10, 30, and 50. Concentration field is taken at y = 0 (upper panel) and z = −5,
0, and 5 (lower panel). Calculation domain is 0 � r � 1 and −15 � z � 15.

corresponding physical properties: κ = 1.3 × 10−10 m2, b = 16 mm, and D = 1.0 × 10−10 m2 s−1.
Figure 16 shows temporal evolution of the fingering instability in three-dimensional cylindrical
geometry for R = ln 10 and Pe = 1.3 × 105. Our simulation results corresponds to the L2-M2 fluid
pair of Suekane et al. [24] and it is observed that the current numerical results are in accordance
with the experimental study.

VII. CONCLUSION

The onset of miscible viscous fingering in a packed column has been analyzed theoretically and
numerically. Using linear stability theory, we predicted that the onset time of fingering motion is
a function of R and Pe; the latter is defined based on the radius of a cylinder. The initial growth
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FIG. 14. Effect of R on the concentration fields for RPe = 300 and τ/Pe = 0.1, i.e., R2Pe τ = 9 × 103.
(a) R = 1, Pe = 300, and τ = 30, (b) R = 1.5, Pe = 200, and τ = 20, (c) R = 2, Pe = 150, and τ = 15, and
(d) R = 3, Pe = 100, and τ = 10. Concentration fields are taken at y = 0 (upper panel) and z = −2.5, 0, and
2.5 (lower panel). Calculation domain is 0 � r � 1 and −20 � z � 20.

FIG. 15. Effect of R on the concentration fields for RPe = 200 and τ/Pe = 0.25, i.e., R2Pe τ = ×104.
(a) R = 0.5, Pe = 400, and τ = 100, (b) R = 1, Pe = 200, and τ = 50, (c) R = 2, Pe = 100, and τ = 25.
Concentration fields are taken at y = 0 (upper panel) and z = −2.5, 0, and 2.5 (lower panel). Calculation
domain is 0 � r � 1 and −20 � z � 20.

013901-18



MISCIBLE VISCOUS FINGERING IN A PACKED …

FIG. 16. Temporal evolution of the isoconcentration surface for R = ln 10 and PeS (= 2Pe) = 1.3 × 105.
From left to right and top to bottom: t = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 from the left to the right.
Here, PeS denotes the Péclet number defined in Suekane et al. [24]. The dimensionless time can be calculated
as τ = PeDt/b2.

rate analysis shows that the system studied here is unconditionally stable. We determine the critical
Péclet number and the critical time for the onset of fingering motion using a quasi-steady-state
approximation.

In the nonlinear regime, numerical simulations in two-dimensional (2D) and the three-
dimensional (3D) domains were performed and the critical parameters for the onset of instability
were identified. In 2D, the onset and the growth of VF are strongly dependent on the lateral boundary
conditions, and the critical Péclet number obtained from the present linear stability analysis and the
nonlinear numerical simulation are in good qualitative agreement. Further, comparison between
the present 2D and 3D simulations yields that 2D approximations fail to identify many important
properties of VF in the cylindrical geometry due to its 3D nature. We successfully reproduced
various growth mechanisms of VF that were reported in the experimental studies of VF.

Due to the computational complexities, we did not perform further numerical simulation for the
high Pe and large τ to study the ultimate flow regimes as shown in the studies of Nijjer et al. [21].
However, we propose that similar investigation in the 3D cylindrical system should be of interest
for future studies.

The data that support the findings of this study are available within the article.
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