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The distribution of capsules and rheological properties of suspensions in curved tubes
are investigated by using an immersed-boundary lattice Boltzmann method. We mainly
focus on the effective suspension viscosity and equilibrium positions of capsules as func-
tions of Reynolds number (Re), Capillary number (Ca) and volume fraction of capsules
(φ). We found that at limited inertia (Re O(10)), the effective viscosity decreases with
increasing Re, which is different from the variation trend in straight tubes. Dean’s vortices
play an important role. When the fluid inertia increases, the vortices are strengthened.
They greatly promote the capsules’ circumferential transportation by trapping the capsules
into their centers and making the location of maximum azimuthal velocity close to them.
The curvature effect of the torus vessel is also investigated. When the curvature κ is large
enough, e.g., κ > 0.2, a scaling law for the effective viscosity as a function of a redefined
Re is proposed. Furthermore, the distribution feature of multiple capsules in the torus
vessel is revealed. Generally, for the semidilute regime, the capsules concentrate on the
symmetrical plane at low Re but the center of Dean’s vortex at high Re. In addition, for
both the dilute and semidilute regime, the scaling law connecting the effective viscosity
and the average location of capsules is proposed. Our data support the scaling well. This
study may be useful in the design of tubes for capsule transportation.

DOI: 10.1103/PhysRevFluids.8.013604

I. INTRODUCTION

Transportation of capsule suspensions in curved tubes is an important problem in physiology
and microfluidics. In many situations, capsule suspensions flow through a complicated network
of tubes or curved channels, such as red blood cells transport in the human circulation and
artificial capsules flow through microfluidic devices. In physiology, many blood diseases are usually
accompanied by the curvature of blood vessels [1]. For example, atherosclerosis tends to occur in
areas where these vessels bend and branch [2–5]. In microfluidics, curved tubes are often used for
cell or capsule separation and aggregation. Several studies used unlabeled helical microfluidics to
isolate circulating tumor cells from other normal cells [6–8]. Moreover, many experiments about
the tube’s curvature effect on the separation of particles of different sizes have been carried out.
Kutaegowdanahalli et al. [9–11] first used spiral tubes for sorting microparticles with efficiency
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FIG. 1. Geometry for a torus vessel, (a) top view, (b) side view. The tube’s radius is Rt . Here Ri and Ro are
the radii of the inner and outer walls, respectively. Z = 0 denotes the symmetrical plane. Curvature radius Rc

is defined as the distance between the origin O and the vessel’s centerline.

over 80%. Russom et al. [12] used a similar device with a low channel aspect ratio to separate
microparticles and found that the focusing behavior was not affected by particle density. After these,
there are many other similar separation experiments [13–15]. Besides the spiral tubes, the serpentine
tubes (another type of curved tubes) are also used to separate microparticles by Di Carlo et al. [16].
It is necessary to further understand the flow properties in curved tubes.

In curved tubes, the flow undergoes outward centrifugal acceleration and forms secondary flow:
a pair of counter-rotating vortices, i.e., Dean’s vortices. Dean’s vortices are first analyzed with the
perturbation method in torus vessels by Dean [17]. The geometry of a torus vessel is shown in Fig 1.
It is a spiral tube with zero spiral pitch. Because this kind of curved tube is simple and the curvature
is uniform, numerous studies on the single-phase flow in the tube have been performed. Barua et al.
[18–21] discussed the secondary flows of the circular cross section in torus vessels under different
Dean numbers theoretically and numerically. Cheng et al. [22–24] obtained the velocity distribution
in the torus vessels with triangular and rectangular cross sections through numerical calculation.
Siggers and Waters [25] performed a comprehensive analysis and gave qualitative features of steady
curved-tube flows.

In our study, torus vessels are adapted. For suspension flow in torus vessel, the capsules can reach
an equilibrium state quickly. In reality, how to drive the flow inside the torus may be a technical
issue. On the other hand, the flow inside an infinite spiral tubes with small spiral pitch p should be
similar to that inside our torus vessels; this has been considered in previous work. [26]. In other
words, if the flow in extending direction (z direction in Fig. 1) can be ignored, the flow in one coil
of a spiral tube with periodic boundary on its inlet/outlet circular cross sections should be close to
that inside our torus vessel.

For suspension flows in straight tubes, there are a large number of studies on the dynamics of
either single-capsule suspensions [27–31] or multicapsule suspensions [32–36]. However, there are
few studies, especially numerical studies, on the capsule suspension in curved tubes. Ye et al. [37,38]
studied the movement and deformation of a single Red Blood Cell (RBC) in various curved tubes,
e.g., spiral tube or U-shaped tube, and found that Dean’s vortex can greatly affect the deformation of
the capsules. Balogh and Bagchi [34,39] analyzed the cell-free-layer (CFL) profiles in microvascular
networks within vivolike topologies. They showed that the vessel tortuosity causes the CFL to
become more asymmetric along with the flow. Ebrahimi et al. [40,41] did comprehensive studies on
the migration and deformation of a single capsule in torus vessels of circular and rectangular cross
sections. However, in blood flows or industrial flows, e.g., the flow of coal water slurry, usually
macroscopic viscosity of the suspension is more important and useful [33,42,43]. Here, we focus on
the influence of the Dean’s vortex on the apparent viscosity of the suspension. The ultimate goal is
to understand the rheology of capsule suspensions and the distribution of capsules in curved tubes.

Inertia is an important factor that would affect the migration of rigid particles and deformable
capsules. When inertia is present, particles can undergo cross-stream migration, and finally settle at
an equilibrium radial position away from the tube center. For rigid particles, the equilibrium position
is 0.6 times the tube radius from the tube center which was reported by Segré and Silberberg [44]
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(Segré-Silberberg effect). Then Matas et al. [45–47] analyzed the shift of equilibrium position of
rigid particles theoretically and experimentally. They found that depending on Re (the character
length scale is the diameter of the tube, which is also applicable to the following Re in this
paragraph), rigid particles are mainly distributed at two positions: Segré-Silberberg annulus and
inner annulus. Different from rigid particles, the equilibrium position of soft capsules changes
continuously with Re. The equilibrium position is off centered at low to medium Re, but shifts
toward the centerline at high Re [32,33,35]. Inertia also plays an important role when curvatures
are considered. Majji and Morris [48] found three regimes of particle distribution in Taylor-Couette
flows at different Re. For curved tube flows, as the fluid inertia increases, the Dean’s vortex becomes

stronger. It can be quantified by a dimensionless number, i.e., Dean number De = Re
√

Dh
2R , where

Dh is the tube diameter, R is the radius of curvature [36]. When the size of curved tubes is fixed,
De can be represented by Re. According to Ref. [40], when Re is small, the capsule stays on the
symmetrical plane, while at high Re, it would move to the center of the vortex. This behavior can
significantly affect the rheology of suspensions. In this paper, we mainly focus on the fluid inertia
effect. Besides, the rheology properties and the distribution of multiple capsules under various κ

and φ in curved tubes are also explored.
To the best of our knowledge, there is so far no systematic and in-depth three-dimensional

numerical study on the rheology and distribution of deformable capsules in the curved tubes. The
change of effective viscosity with Re and κ , as well as the distribution of multiple capsules in curved
tubes remains unclear. In this paper, not only the dilute regime with one single capsule but also the
semidilute regime with multiple capsules are studied. The spatial distribution of capsules and the
apparent viscosity of suspension in both curved and straight tubes are compared and analyzed. The
role of Dean’s vortex is analyzed in detail.

The article is organized as follows. In Sec. II, the problem description, membrane model, and
numerical method are introduced and validated. The results of single-capsule and multiple-capsule
suspensions in torus vessels are presented in Sec. III. Conclusions are in Sec. IV.

II. PROBLEM STATEMENT

The equation of the torus vessel is Z2 = R2
t − (Rc −

√
(X 2 + Y 2))2. Both the Cartesian coordi-

nates (X,Y, Z ) and the cylindrical coodinates (R, θ, Z ) are shown in Fig 1. The curvature radius Rc

and tube radius Rt are defined in the caption of Fig 1. In our simulations, the fluid in the torus is
driven by a body force or an azimuthal pressure gradient 1

Rc

d p
dθ

= −4μ0U0/R2
t [40], where μ0 is the

viscosity of the fluid and U0 is the maximum velocity in a straight tube with radius Rt if pressure
gradient along the flow d p

dx = 1
Rc

d p
dθ

is applied.

A. Methodology

In numerical simulations, each capsule is modeled as a liquid drop covered by a two-dimensional
(zero-thickness) hyperelastic membrane. The membrane density is the same as the fluid. Also the
mechanical properties of the fluid inside and outside of the capsule are identical. To simulate the
migration and deformation of capsules, the capsule surface is discretized into thousands of triangular
elements [49]. The force of the Lagrangian nodes of the triangular elements is obtained by solving
the constitutive equation. Skalak’s (SK) law [50], which can model the shear deformation and area
dilation of membrane is used

W SK = 1
4 Gs

(
I2
1 + 2I1 − 2I2

) + 1
4CGsI

2
2 , (1)

where W is the strain energy density per unit membrane area. Gs is the surface shear modulus, C
is the volume modulus ratio. I1, I2 are the first and second strain invariants with I1 = λ2

1 + λ2
2 − 2

and I2 = (λ1λ2)2 − 1. λ1 and λ2 are the principal extension ratios in the plane of the membrane.
For biological membranes, C must be large enough to ensure negligible area dilation. However
for artificial capsules, taking a large value of C would cause numerical instability and lead to no
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deformation. Therefore in the present study, C is set to be 10, which is identical to that in Ref. [40].
This value would not lead to numerical instability and can provide a large deformation.

The tensile forces acting on the Lagragian nodes are obtained from the strain energy function W
using the principal virtual work as

f t (s) = −∂W

∂v
, (2)

where v is the displacement of the Lagragian node s on the capsule membrane.
The bending resistance of the membrane is modeled as a force density [51]:

f b = kb
[
(2km + c0)

(
2k2

m − 2kg − c0km
) + 2�LBkm

]
n, (3)

where km, kg, c0 are the mean, Gaussian, and spontaneous curvatures, respectively. �LB is the
Laplace-Beltrami operator and n is the unit normal vector. Finally, the total force of the Lagragian
node on the membrane is the sum of the tensile force f t parallel to the membrane surface and the
bending force f b perpendicular to the membrane surface, f m = f t + f b.

The fluid flow is simulated using the lattice Boltzmann method (LBM) [52]. The LBM originates
from lattice gas automata. Macroscopically, it is able to recover the incompressible Navier-Stokes
equations. The discretized lattice Boltzmann equation is

fi(x + ci�t, t + �t ) − fi(x, t ) = 1

τ
( fi(x, t ) − f eq

i (x, t )) + �tSi, (4)

where fi(x, t ) is the distribution function at time t and position x. Here D3Q19 velocity model is
adopted [53] and ci is the ith discrete velocity, where i = 0..., 18. Here �t is time step and τ is the
relaxation time, which is related to the dynamic viscosity in the NS equation μ = ρc2

s (τ − 0.5)�t .
The equilibrium distribution function f eq

i (x, t ) adopts the form

fi
eq(x, t ) = ωiρ

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− (u)2

2c2
s

]
, (5)

where the weighting coefficients are ω0 = 1/3, ωi = 1/18 (i = 1 − 6) and ωi = 1/36 (i = 7 − 18).
The lattice sound speed cs = �x/(

√
3�t ). The source term in the lattice Boltzmann equation is

Si =
(

1 − 1

2τ

)
ωi

[
ei − u

c2
s

+ ei · u
c4

s

ei

]
F. (6)

The macroscopic quantities of the fluid, such as density, velocity, and pressure can be calculated
from the distribution function as

ρ =
∑

i

fi, u = 1

ρ

∑
i

fiei + 1

2ρ
F�t, p = c2

s ρ. (7)

The coupling between the solid and fluid is achieved by the immersed boundary method (IBM)
[54] to ensure the nonslip boundary condition. In the implementation of the IBM, first the fluid
velocity at the Lagrangian node s on the capsule surface is interpolated from the velocities of
surrounding fluid nodes, i.e.,

u(s) =
∫

V
δ(x − s)u(x)dV, (8)

where s and x are the locations of Lagrangian points and fluid nodes, respectively. V represents the
fluid domain. δ is the delta function

δ(x − s) = δ(x − x(s))δ(y − y(s))δ(z − z(s)), (9)
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where

δ(r) =

⎧⎪⎨
⎪⎩

1

4

(
1 + cos

(
π |r|

2

))
, |r| � 2

0, |r| > 2.

(10)

Then, according to Newton’s second law, Lagrangian points may move u(s)�t . Due to the dis-
placement or deformation, the force f m acting on the Lagrangian point can be calculated through
constitutive law and bending equation. Finally, f m has to be spread to the surrounding fluid nodes
through

F(x) =
∫

V
δ(x − s) f m(s)dV. (11)

It is noted that this force should be added to the lattice Boltzmann equation as an external force.
The problem depends on several dimensionless parameters. The tube Reynolds number Re =

(ρU0Rt )/μ0. The capillary number Ca = (μ0U0)/Gs where Gs is the surface shear modulus. Ca
measures the ratio between the viscous and elastic forces. The dimensionless bending stiffness
Eb = kb/(Gsa2) where kb is the bending modulus, a is the radius of capsule. Eb measures the
relative importance of the membrane bending to shear elastic effects. Unless otherwise specified,
Eb is kept at a constant 0.01, mainly to prevent the formation of membrane wrinkles [55]. The

volume fraction of capsules φ = 4
3 πa3

2πRc·πRt
2 . The curvature of the torus vessel is defined as κ = Rt/Rc.

The smaller the curvature is, the less bending the tube is. When the curvature approaches 0, the
tube is straight. Unless otherwise specified, in the following descriptions, lengths, velocities, and
time are normalized by a, U0, a/U0, respectively. For the polymeric capsules in linear flows,
many studies focus on the deformation and inclination of capsules with a size of 0.03 ∼ 2 mm.
Usually, the viscosity of the fluid is 0.1 ∼ 1 Pa s and channel width is 5 ∼ 80 times the radius
of capsules [56–59]. For the experimental feasibility of our typical cases, according to the above
common choices, suppose a ∼ 0.03 mm, μ0 ∼ 0.1 Pa · s, through calculations of nondimensional
parameters, the properties of capsules should be Gs = 1×10−3 ∼ 10 N/m, Eb ∼ 10−11 N m.

B. Validation

We first simulate the motion and deformation of a large spherical capsule in a long straight tube
with square cross section. In the simulations, tube length is 18, mesh resolution �x = 0.04. The
radius ratio between the capsule and the tube is a/Rt = 0.85. The three-dimensional capsule is
discretized into 8192 triangular elements and 4098 Lagrangian nodes. The equilibrium deformed
profiles are plotted in Fig 2. It can be seen that our equilibrium profiles agree well with that in the
literature [60]. Second, the flow without capsules in a torus is simulated. For the fully developed
flow without inertia in the tours vessel, the analytical solution of azimuthal velocity U is given by
the well-known Dean’s solution [17]:

U/U0 = (1 − r2) − 3κ

4
r(1 − r2) cos θ + κ2

32
(1 − r2)(−3 + 11r2 + 10r2 cos 2θ ) + O(κ3), (12)

where r = R/Rt represents the radial position, (R, θ ) are the polar coordinates defined in Fig 1. The
first term on the right-hand side of the equation represents the velocity profile of Poiseuille flow
in a straight tube, while the remaining terms represent the curvature effect. Figure 3(a) shows the
contours of U . The contours are symmetric about the dashed line (the symmetrical plane Z = 0) but
they are not left-right symmetric. The location of the maximum velocity Um, i.e., R′

Um
occurs in the

symmetrical line but is closer to the inner wall, see Fig. 3(b). The location is a function of κ [40]:

R′
Um

= −3κ

8
+ O(κ3), (13)
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FIG. 2. Equilibrium profiles of an initially spherical capsule with SK membrane (Re = 0.125, Eb =
0, Ca = 0.1,C = 1) in a square section channel. (a) Profile in the XZ plane, (b) Cross profile in the YZ plane.
The solid lines represent our results. The diamond symbols denote the results obtained by Hu et al. [60] using
boundary element method.

where R′ is the normalized radial location along the symmetrical plane, which is defined as R′ =
R−Rc

Rt
. It is noted that R′ = −1, 0, 1 represent the innermost edge of the vessel on the plane of Z = 0,

vessel centerline, and the outermost edge on the plane, respectively. The negative sign in the above
equation indicates that R′

Um
is closer to the inner wall. As the curvature increases, R′

Um
further moves

towards the inner wall. Figure 3(c) shows R′
Um

as a function of κ . In the cases, Rt = 2a and Re =
0.05 are fixed but the curvature radius Rc varies. Here R′

Um
s that we obtained in our simulations are

consistent with the analytic solution.
Then we conduct a grid independence study. In this case, a capsule moves in a torus flow.

First, we fix the Lagrangian grids to 4098, which is fine enough, and change the Eulerian mesh

0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

Present
Ebrahimi et.al 2021

κ

FIG. 3. (a) Azimuthal velocity (scaled by Um) contours in the case of Re = 0.05, Rc = 3, Rt = 2. The
dashed line represents the symmetrical line Z = 0. I and O represent the innermost wall (Ri) and outermost
wall (Ro) of the vessel, respectively. (b) Distribution of azimuthal velocity along the symmetrical line. The solid
line represents the location of Um. (c) Location of the maximum azimuthal velocity (R′

Umax
) on the symmetrical

line in cases of κ : 0.2, 0.357, 0.417, 0.5, 0.625, 0.714, 0.833, 0.9091 at Re = 0.05.
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FIG. 4. (a) Radial location of the capsule as a function of time (grid independence study). The key
parameters are Re = 10, Ca = 1.0, Rc = 5, and Rt = 3. (b) Results of the cases of Re = 4, 20. The other
parameters are Ca = 1.0, Rc = 5, and Rt = 4. Lines represent our results and symbols represent the results of
Ref. [40].

size �x = 1
16 , 1

20 , 1
25 , and track the radial location of the mass center of the capsule. Figure 4(a)

shows that the results with three different Eulerian meshes collapse into a single curve. Then
we used more Lagrangian grids to check the grid independence. It is seen from Fig. 4(a) that
even more Lagrangian grids (N = 16386) are used, the result almost collapses into the identical
curve. Therefore Lagrangian grids N = 4098 is enough. In our following simulations, the resolution
(�x = 1

25 , N = 4098) is adopted.
In addition, using the resolution, we simulated another two cases of Re = 4 and 20. Here a direct

comparison [Fig. 4(b)] shows that our results of Re = 4, 20 are consistent with those in Ref. [40].

FIG. 5. (a) Typical configuration of capsules (φ = 20.11%,Ca = 0.2) in the computational domain
where three lengths are 10a × 10a × 10a. (b) μa as a function of φeff defined in Eq. (3.9) in Aouane
et al. [61] at Re = 0.01. The mechanical properties of the capsules are C = 1, 5, 10, Ca = 0.2, φ =
0.42%, 3.77%, 7.54%, 11.31%, 15.08%, 20.11%, where the cases of φ = 0.42% contain one capsule. The
symbols are our results and the black line is the scaling law [Eq. (3.10)] of Aouane et al. [61].
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FIG. 6. (a) Evolution of instantaneous μa for thecases with different φ in torus vessel and straight tube
(Re = 5). (b) μa as a function of Re for the cases of Ca = 0.02, 0.3, 1.0 at φ = 0.47%. Rec ≈ 3.0.

At last, we validate the multiple capsule suspensions in a straight channel. Figure 5(a) shows
the snapshot of a typical configuration of capsules in shear flow. The apparent viscosity of capsule
suspension is compared with that of Aouane et al. [61]. From Fig. 5(b), it can be seen that our results
are consistent with their scaling law. The code is accurate enough to simulate the flow of suspension
in curved tubes.

III. RESULTS AND DISCUSSION

In the following subsections, we simulate the migration of single and multiple capsules in torus
vessels and straight tubes. Flow properties of capsule suspensions as functions of Re, κ , and φ are
presented. Corresponding capsule distributions are also analyzed.

A. Single capsule flow in torus vessels

In this subsection, Rc = 5 and Rt = 3 are fixed. Since κ is a constant, the intensity of Dean’s
vortex only depends on fluid inertia Re. We mainly discuss the rheology of the most dilute
suspension (φ = 0.47%), which contains only one single capsule. For the pure fluid flow in the
torus vessel without capsules, the volume flux Q0 under the driven of pressure gradient g is

Q0 =
∫ Rt

0

∫ 2π

0
U (R, θ )RdRdθ =

[
1

2
+ 1

96
k2 + O(k3)

]
gπR4

t

4μ0
= λ

μ0
, (14)

where U (R, θ ) is the theoretical azimuthal velocity in the limit of small Re [17]. λ is a constant,
which is only a function of g. If the capsule suspension flows in the same torus with pressure
gradient g, we have volume flux of the capsule suspension Q = λ

μ
, where μ is the effective viscosity

of the suspension. Then the apparent viscosity is μa = μ

μ0
= Q0

Q . Similarly, the apparent viscosity
depending on Re is introduced as [33,62]

μa = μ

μ0
= Ql

Q
, (15)

where Ql and Q are the volume flux of the suspension with and without capsules at the same
Reynolds number.

Figure 6(a) shows the instantaneous μa in torus vessels and straight tubes under different volume
fractions. For the most dilute regime (the red lines), μa is almost a constant at the equilibrium state.
For the semi dilute regime, the variations of the curves are quite small, which indicates that the
equilibrium states are achieved. Here μa as a function of Re for different Ca is shown in Fig. 6(b).
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FIG. 7. (a) Contours of secondary velocity Us = √
(u2

R + u2
Z ) inside a cross section, where uR, uZ are R

and Z-component velocities. Streamlines are also shown. (b) Contours of the azimuthal velocity U . It is
perpendicular to the paper inward. (c) Contours of the dissipation D which is proportional to the product
of the local shear rate γ̇ and fluid shear stress σ f , D∝γ̇ · σ f [33]. Here Us, U are scaled by Um, D is scaled by
Dm (maximum of D). Squares represent the locations of Um in (b) and the locations of the lowest D in (c). The
solid dots represent the central locations of the Dean’s vortices. I and O represent the inner and outer walls of
the vessel.

We can see that μa as a function of Re can be divided into two regimes by a critical Reynolds
number Rec [it is defined as the location of the maximum of the curves μa = f (Re)], i.e., Rec ≈ 3.
For Re � Rec (Regime I), μa increases with Re and is strongly affected by Ca, which is similar
to that in a straight tube. However, for Re > Rec (Regime II), μa decreases with Re and is not
sensitive to Ca. This trend differs from that in a straight tube, where μa increases with Re within
the parameters we studied [32,33].

We would like to explain the significant difference at Regime II by showing the role of the
secondary flow (Dean’s vortex). Regime I would also be discussed. The Dean’s vortex is shown in
Fig. 7(a). There are two counter-rotating vortices on the cross section. The upper and lower vortices
rotate counterclockwise and clockwise, respectively. A higher Re leads to a stronger Dean’s vortex
[19]. Due to Dean’s vortices, the location of the maximum azimuthal velocity Um is shifted. From
Figs. 7(b) and 7(c), we can see that in tube flow, the region with larger azimuthal velocity has lower
dissipation, which means that if capsules are in the region close to Um, μa would be small. The
contours of the azimuthal velocity U are shown in Fig. 7(b), the locations of Um are labeled by
the black squares. It is seen that when Re changes from 5 to 30, the location becomes closer to the
centerline of the vessel. On the other hand, the locations of the centers of the Dean’s vortex are
almost unaffected by Re (see the solid dots). In other words, when Re is larger, the region around
the center of the Dean’s vortex would be closer to the location of Um, thus the dissipation of the
region becomes lower.

Meanwhile, we would like to discuss the equilibrium lateral locations of the capsules. In typical
cases, such as the cases of Re = 5 and 30, capsules all laterally migrate towards the center of Dean’s
vortex, and at equilibrium states, they stay close to the center [See upper semicircle in Fig. 8(a)].
Hence, as Re increases, at the equilibrium state, the capsule is closer to the low-dissipation region,
which is favorable to decrease μa. To further illustrate this point, we plot the normalized azimuthal
velocities at the equilibrium location of the capsules (U/Um) [Fig. 8(b)]. For the cases of Re > Rec,
indeed, U/Um increases with Re. This is expected because Um becomes closer to the equilibrium
position of the capsule. In addition, the effect of Ca on μa is minor since all capsules with different
rigidity are trapped by the center of the Dean’s vortex.
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FIG. 8. (a) Trajectories and equilibrium locations of different cases in the cross-section. Upper semicircle:
the trajectories of the capsule in the cases of Re � 1 (Re = 1, 5 and 30, Ca = 0.3). The capsules are all
released from the initial position a. Point b denotes the center of Dean’s vortex at Re = 30. Lower semicircle:
equilibrium locations of the capsule in the cases with Re � 1. At the same Re, from left to right, Ca = 1.0,
0.3, 0.02, respectively (the case Re = 1 and Ca = 0.1 is also presented). The intersection of the two dotted
lines denotes the location of Um when Re � 1. Ebrahimi et al. [40] also got similar results. (b) The normalized
azimuthal velocity U/Um at the equilibrium position of capsules as a function of Re. In this figure, all cases are
calculated with one capsule.

For Re � Rec, the intensity of Dean’s vortex is weak. R′
Um

is closer to the inner wall and is
not affected by Dean’s vortex [see the intersection of the two dotted lines in Fig. 8(a)]. At a low
Re, e.g., Re = 0.1, the capsules laterally stay almost at the location of Um and U/Um ≈ 1 [see
Fig. 8(b)], therefore μa is small. As Re increases, they gradually move away from the location of
Um and migrate to a higher-dissipation region [see the equilibrium locations in the lower semicircle
of Fig. 8(a)], thus μa increases. In addition, at Re ≈ Rec, when the capsule is rigid (smaller
Ca), the capsule may further move away from the location of Um [e.g., see the red triangles in
Fig. 8(a)]. The behavior would greatly influence μa. Then, we performed a quantitative analysis
of the relationship between the equilibrium position and Ca at Re ≈ Rec, see Fig. 9. Through
data fitting, the equilibrium position of capsules as a function of Ca is described quantitatively.

FIG. 9. Equilibrium position in z direction (|Z|) as a function of Ca at κ = 0.6, Rec = 3.0. Red squares are
our data, blue line is the exponential fitting formula |Z| = 0.35e−Ca/0.2. The y axis is in log scale.
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FIG. 10. (a) Configurations of the curved tubes with curvature κ = 0.6, 0.3, 0.2 and straight tube (from
left to right). (b) Intrinsic viscosity as a function of Re in torus vessels with various curvatures and the straight
tubes. Each case contains one capsule.

When Ca is small, the equilibrium position is near the Dean’s vortices. With the increase of Ca, the
capsule would approach the position of maximum azimuthal velocity in an exponential trend. It is
noticed that when κ → 0 (straight tube), Rec → ∞, there is no Dean’s vortices and subsequently
no |Z| − Ca curve. However, the exponential relationship between equilibrium radius and Ca is still
valid [63].

B. Curvature κ effect

We now turn to the effect of curvature κ = Rt/Rc on the viscosity of capsule suspension with
limited inertia. We mainly focus on the cases of Re > Rec, because in such a regime, μa decreases
with Re, which differs from common perception. The above subsection shows that in the regime, μa

does not depend too much on the Ca at κ = 0.6. This is also the case for all the other configurations
but is not shown here, so we keep Ca = 0.3. The fluid properties (ρ and μ0) and the radius a of
capsules are also fixed. Different curvature cases with κ ranging from 0.15 to 0.8 are achieved by
changing the curvature radius and tube radius. Segments of the vessels are shown in Fig. 10(a). For
comparison, the cases in a straight tube (κ = 0) are also simulated. To eliminate the effect of φ, we
define the intrinsic viscosity [μ] as

[μ] = μ − μ0

μ0φ
= μa − 1

φ
. (16)

The intrinsic viscosity [μ] as a function of Re for different κ is shown in Fig. 10(b). For the
cases κ = 0.42, 0.3, 0.2, overall [μ] decreases with Re. The variation trend looks similar to that of
cases κ = 0.6, which we discussed above. On the other hand, we also find that the critical Reynolds
number Rec seems associated with κ . For example, Rec ≈ 3 for cases of κ = 0.6, while Rec ≈ 10
for κ = 0.2. Then Rec as a function of κ is plotted in Fig 11(a). Through fitting the data points, we
found that Rec decreases exponentially with κ . When κ approaches 0 (the cases of straight tubes),
Rec approaches infinity. The possible reason is that in a straight tube, there is laminar flow and
the viscosity always increases with Re and the transition occurs at Re → ∞. When κ is large, the
Dean’s vortices become dominant and μa begins to decrease with inertia at a small Re. Therefore
Rec would decrease with κ .

In addition, we can see that the variation trends of torus vessels are opposite to that in a straight
tube (κ = 0). The increasing trend of [μ] in straight tubes can be explained in the following way.
As Re increases, the capsules may migrate away from the centerline of the tube (low dissipation
region) to the wall (high dissipation region), which enhances [μ] [33]. The mechanism is similar to
that in the torus vessel at small Re, which is also mentioned in the next subsection.
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FIG. 11. (a) Transition Reynolds number Rec as a function of κ . All cases contains one capsule with
Ca = 0.3. The orange squares are our results, blue line is the fitting line Rec = 3.30 + 227.45e−17.48κ .
(b) Intrisic viscosity [μ] as a function of Re′ at various Ca and φ. The line represents a data fitting curve
[μ] = −0.013Re′ + 1.3.

Now we focus on the effect of κ on the cases of torus vessels when Re is at the shaded region. It
is seen from Fig. 10(b) that [μ] increases continuously with κ , e.g., Re = 5, the suspension in the
vessel with a larger κ appears more viscous. It can be understood as follows. As κ increases, the
location of maximum azimuthal velocity R′

Um
becomes closer to the inner wall [see Fig. 3(c) and

Eq. (13)], but due to the inertia of the capsules, the lateral locations of the capsules change little. In
this way, the capsule becomes closer to the high-dissipation region, and [μ] increases with κ . Here a
scaling law for [μ] in the shaded region of Fig. 10(b) is proposed. If Reynolds number in the region
is redefined as Re′ = Re/κ , then all the data in the shaded region can almost collapse into a single
line [μ] = −0.013Re′ + 1.3 [see Fig. 11(b)]. It is noted that the length that matters for the apparent
viscosity is the radius of curvature of the torus Rc instead of Rt .

On the other hand, from Fig. 10(b) we also see that at large Re, when κ > 0.2, [μ] is a decreasing
function of Re, which is not sensitive to κ . The possible reason is that when Re is large, the strength
of Dean’s vortices is so strong that the migration of capsules is dominated by them. When κ < 0.2,
as the κ decreases, the strength of Dean’s vortices become weak, so the curves decrease slower and
slower, see the region outside the shaded one in Fig. 10(b). Here, the cases with very small κ were
not performed for the following reasons. First, the cases of smaller κ (large radius of torus), require
a large amount of computing resources due to the large computational domain size. Second, our
focus is the flow inside significantly curved tubes, where Dean’s vortices play an important role.
The flow with a small κ (Dean’s vortices are very weak) should be close to that of the straight tube
(κ = 0, no Dean’s vortices).

C. Flow of semidilute suspensions in torus vessels

In the following, the semidilute regime with multiple capsules are investigated. In this subsection,
the size of the torus is fixed, Rc = 5, Rt = 3. For the semidilute regime, in addition to the above
mechanism, the interaction between capsules may further affect the spatial distribution of capsules
as well as the apparent viscosity [64]. The evolution of the instantaneous apparent viscosity μa for
the case of φ = 7.55% is shown in Fig. 6(a). μa oscillates around an average value μ̄a with a small
amplitude ε. When ε < 1%μ̄a, we suppose the flow reaches an equilibrium state.

Typical snapshots of capsule distributions inside the vessel at equilibrium state for small [left
column, (a) and (c)] and large Re [right column, (b) and (d)] are shown in Fig. 12. At small Re,

013604-12



CAPSULE DISTRIBUTIONS AND FLOW PROPERTIES IN …

FIG. 12. Typical snapshots of configurations of capsules at equilibrium states (φ = 7.55%, Ca = 0.3). Top
view (a), (b) and front view (c), (d) for the cases of Re = 1.0(a, c) and Re = 30(b, d ). Dashed lines represent
the symmetrical plane.

e.g., Re = 1, because the Dean’s vortices are weak, overall, capsules are close to the inner wall [see
Fig. 12(a)] and concentrated close to the symmetric plane [see Fig. 12(c)]. While at large Reynolds
number (Re = 30), the Dean’s vortex is strong and the capsules tend to migrate laterally to the
vortices’ centers. The capsules approximately form a two-file structure. The two files seem close to
the centers of the upper and lower semicircles [see Figs. 12(b) and 12(d)].

To quantify the distribution of capsules in the torus, we give the temporal and spatial-averaged
probability density of capsules, which is defined as

P(R, Z ) = 1

2πR

〈∫ 2π

0
I (R, θ, Z, t )dθ

〉
, (17)

where I (R, θ, Z, t ) is a scalar function and if the lattice node (R, θ, Z ) is occupied by the cap-
sules, I = 1, otherwise I = 0. The symbol 〈· · · 〉 denotes an averaging over time after reaching
an equilibrium state. The time that used to compute the temporal average of the pdf is 400
(dimensionless time) which is long enough. The contours of P(R, Z ) at different representative
Re are shown in Fig. 13. From Fig. 13(a), we can see that at Re = 1, capsules concentrate on the
symmetry plane and are close to the inner wall. At Re = 30, capsules stay close to the centers
of vortices [see Fig. 13(b)], which is similar to the behavior in the single-capsule case. The
distribution of capsules is consistent with what we have seen in Fig. 12. Moreover, quantitatively,
the temporal and spatial-averaged centroid location of all capsules can be calculated through
(R̄, Z̄ ) = (

∫∫
P(R, Z )R dRdZ,

∫∫
P(R, Z )Z dRdZ ). The temporal and spatial-averaged centroid is

labeled as a cross symbol in Fig. 13(a). We can see that the centroid is close to the equilibrium
location in the corresponding case of single capsule (solid dots). In addition, a similar phenomenon
is also observed in the cases of other volume fractions (not shown). Therefore, it is reasonable to
conjecture that the variation of μa for semidilute regime is similar to that for the most dilute regime.
Figure 14(a) confirms this point. From Fig. 14(a), we can see that at a specific φ, μa as a function
of Re is similar to that of the single-capsule cases in the torus vessels (increasing at small Re,
decreasing at large Re).

As a comparison, P(R, Z ) in the straight tube is also investigated. The parameters Ca, Rt are the
same as those in Sec. III B. Because there is no secondary flow in the straight tube, the distribution
of capsules is different from that in the torus vessel. It can be seen that at Re = 1, the capsules
are concentrated in the center of the tube, see Fig. 13(c). Then at Re = 30, the capsules are
mainly located inside an annulus between the center and wall [Fig. 13(d)], i.e., inertial focusing
phenomenon [65]. The annulus region has a larger shear rate with higher dissipation, which results
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0.3
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0.18
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FIG. 13. The temporal and spatial-averaged probability density of capsules P in a cross-section. In all cases
φ = 11.325%. The dashed line in (a) and (b) is the symmetrical line. The dashed circle in (c) and annulus in
(d) denote the regions where the capsules are concentrated. The solid dot and cross represent the equilibrium
position in the case of a single capsule and the average position of multiple capsules, respectively.

FIG. 14. (a) μa as a function of φ(0.47%, 1.89%, 3.77%, 5.66%, 7.55%) in torus vessel (solid lines) and
straight tube (dotted lines) at Re = 1, 5, 30 and Ca = 0.3. (b) Intrinsic viscosity [μ] as a function of d . The
directions of the arrows represent an increase of Re. The dashed line represents a transitional regime Re ≈ Rec.
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in a larger μa [see the dashed lines of Re = 1, 30 in Fig. 14(a)]. Therefore in the straight tube, μa

generally increases with Re.
In both dilute and semi dilute results, effective viscosity seems directly relevant to the average

location of capsules. In the following, we would like to quantify the relationship. The temporal and
spatial-averaged distance d between the location of capsules and Um, is defined as d = 〈 1

N

∑N
i=1Ri −

RUm〉, where Ri and RUm are the positions of the ith capsule and Um on the cross section, separately.
We found that the intrinsic viscosity [μ] is a piece linear function of d [see Fig. 14(b)]. We can see
that [μ] increases with d slowly when Re < Rec, but decreases dramatically with d when Re > Rec.
Because when Re < Rec, roughly capsules stay close to the location of Um (d < 0.25). In the region,
the variation of the gradient of U (or viscous dissipation) is small. In other words, although d
changes a lot, [μ] increases gently with d . When Re > Rec, capsules stay significantly far away
from the location of Um (d ≈ 0.45), where the variation of the gradient of U is high. Hence, [μ]
changes dramatically with d .

IV. CONCLUSION

In the present study, the rheology of capsule suspensions in torus vessels is studied by using
an immersed-boundary lattice Boltzmann method. We first studied the apparent viscosity μa as a
function of Re and Ca.When the inertia is small (Re < Rec), the capsules tend to stay close to the
Z = 0 plane. μa would increase with Re, because as Re increases, the capsule moves away from
the location of Um and migrates to the high-dissipation region. In addition, μa decreases with Ca
because the softer capsules (larger Ca) are closer to the location of Um where the viscous dissipation
is low. When the inertia is large (Re > Rec), μa decreases with Re, which is different from the trend
in the straight tube. The Dean’s vortices play an important role in the variation trend of μa. On one
hand, the stronger Dean’s vortices at higher Re trap the capsules into their centers. On the other
hand, they make the location of Um closer to their centers. In this way, at higher Re, the capsules
become closer to the low-dissipation region, which results in a smaller μa. At this regime, μa weakly
depends on Ca.

Then the effect of curvature κ on the effective viscosity is investigated. When κ is large enough,
e.g., κ > 0.2, the variation trends of torus vessels are opposite to that in a straight tube (κ = 0).
When Re is small, e.g., Re = 5, the suspension in the vessel with a larger κ appears more viscous
because the inertia of the capsules makes them stay in the higher-dissipation region as κ increases.
A scaling law for the effective viscosity at the small-Re regime is proposed. All data of different
κ , Ca, and φ in our study support the scaling law. On the other hand, at higher Re, Dean’s vortices
are dominant, which promotes the capsules’ circumferential transportation. Therefore the effective
viscosity is a decreasing function of Re, which is not sensitive to κ .

Furthermore, the distributions of multiple capsules in torus vessels and straight tubes are inves-
tigated. In torus vessels, at higher φ, the capsules tend to concentrate in the symmetrical plane at
low Re and tend to be trapped by the Dean’s vortices at high Re. Besides, for both the dilute and
semidilute regime, the scaling law connecting the effective viscosity and the average location of
capsules is proposed. Our data well support the scaling. Our findings may be useful to guide tube
design for capsule transportation.
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