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Liquid filaments, which are commonplace in daily life, nature, and technology, including
inkjet printing and crop spraying, contract due to surface tension: they either retract into a
single sphere or break up to produce a primary drop(s) and several smaller satellites. The
latter are undesirable because they reduce printing quality and cause pollution due to spray
drift. Surfactants and/or polymer additives can be used to control filament contraction and
breakup. It has recently been demonstrated experimentally that the velocity at which the
tips of contracting filaments retract can be increased in viscoelastic filaments that contain
polymer additives compared to purely Newtonian filaments. Here, simulations are used to
investigate the contraction of viscoelastic filaments whose rheology is described by the
Oldroyd-B model. Filaments produced from nozzles are expected to be prestressed when
they begin to contract. It is shown that the velocity with which the tips of prestressed
filaments retract is greatly increased compared to filaments in which the polymer molecules
are relaxed. This enhancement is explained by examining the value of σ : D (σ: Elastic
stress; D: Rate-of-strain tensor), which can be positive or negative. This quantity is positive
when the flow does work on the polymer molecules but negative when the molecules
do work on the flow, i.e., when elastic recoiling or unloading takes place. In prestressed
filaments, elastic unloading takes place because σ : D < 0: The elastic stresses work by
pulling the fluid in axially and pushing it out radially, thereby drastically increasing the tip
velocity.

DOI: 10.1103/PhysRevFluids.7.L121601

Introduction. Filaments consist of slender, cylindrical central sections that are capped by two
bulbous ends and are ubiquitous in applications including inkjet printing [1–7] and atomization,
e.g., spray coating and crop spraying [8–11]. Driven by the capillary pressure difference between
their bulbous caps and main cylindrical bodies, filaments contract. During contraction, they either
contract into spheres or disintegrate, as they retract, into one or more primary drops and multiple
smaller satellite droplets [1,12–17]. The satellites are undesirable in applications because they
reduce printing quality [1,2,18] and lead to spray drift [10,11,19]. The interplay between inertia
and capillary and viscous stresses determines the dynamics and different breakup modes that result
when the filaments are Newtonian fluids [16].

In applications, the working liquids often contain surfactant [6,20] and/or polymer addi-
tives [2,18]. These serve numerous purposes, including controlling breakup. Polymer addition to
the Newtonian solvent gives rise to viscoelastic stresses [21] which, along with inertia, capillary
pressure, and viscous stresses, control the dynamics of filament contraction. While there exist
extensive studies on the stability of viscoelastic jets [22–35], most of these works focus on capillary
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thinning of jets and bridges. Filaments, however, exhibit retraction of bulbous ends in addition
to thinning and breakup. Therefore, of great relevance to filament contraction are the pioneering
studies [36,37] that showed that a circular hole in an inviscid planar liquid sheet grows at a
constant value, viz., the Taylor-Culick velocity. Indeed, the retraction velocity of tips of Newtonian
filaments/sheets has attracted much theoretical attention (see, e.g., Ref. [38]) and has been a source
of experimental controversy [14,39]. Despite its importance in applications, the retraction velocity
of viscoelastic filaments has only received scant attention. Only quite recently, Sen et al. [18]
have shown through a combination of experiments and a control volume argument that highly
stretched dumbbell-shaped viscoelastic filaments retract at velocities that exceed the Newtonian
Taylor-Culick velocity. The goal of this work is to use simulation to advance the understanding
of the retraction velocity of viscoelastic filaments whose rheology is described by the Oldroyd-B
model [21]. In particular, we account here for the fact that when fluid is emitted from nozzles,
highly stretched filaments are produced within which polymer molecules are prestressed rather than
relaxed as they begin to contract, as discussed in Sen et al. [18].

The remainder of the paper is organized as follows. We first present the mathematical formulation
of the problem. Here, we take advantage of filament slenderness and analyze the contraction
dynamics by using the slender-jet equations. Next, we demonstrate that the contraction velocity of
viscoelastic filaments can be substantially increased if polymer molecules are prestressed initially
and that polymers with larger relaxation times lead to larger increases in contraction velocity. The
reason behind the drastic increase in contraction velocity of viscoelastic filaments is then probed by
analyzing the time evolution of the underlying forces. We then demonstrate that the enhancement of
contraction velocity can be rationalized by quantifying elastic recoil within contracting viscoelastic
filaments.

Mathematical formulation and numerical method. The system is isothermal and consists of an
axisymmetric liquid filament that contains dissolved polymer molecules, and is surrounded by a
dynamically passive gas that exerts a constant pressure on the filament. The surface tension γ of
the interface is also constant. The polymer solution is incompressible and has uniform composition
with constant density ρ, solvent viscosity μs, and polymer viscosity μp. The relaxation time of the
polymer is denoted by λ̃.

It proves convenient to use a cylindrical coordinate system (r̃, θ, z̃) with its origin at the
intersection of the line of axisymmetry and midplane of symmetry [Fig. 1(a)]. Thus, the z̃ coordinate
runs along the symmetry axis, the radial coordinate r̃ is the distance from that axis, and θ is the usual
angle measured around that axis. As a result of these inherent symmetries, the problem domain is a
single quadrant of the (r̃, z̃) plane [Fig. 1(b)].

We next nondimensionalize the problem using initial filament radius as characteristic length, lc ≡
R, and inertial-capillary time as characteristic time, tc ≡

√
ρR3/γ . Furthermore, we use the ratio of

these two scales as characteristic velocity vc ≡ lc/tc = √
γ /ρR, which is the Taylor-Culick velocity

ṽTC. The capillary pressure is adopted as characteristic pressure, pc ≡ γ /R, and the characteristic
stress scale is taken to be σc ≡ μs/tc. As a result, the problem is governed by four dimensionless
groups: Ohnesorge number Oh ≡ μs/

√
ρRγ , Deborah number De ≡ λ̃/tc, ratio of polymer to

Newtonian solvent viscosity β ≡ μp/μs, and dimensionless initial aspect ratio L0 = L̃0/R (L̃0:
initial filament half-length). Dimensionless groups other than those used here are also common. In
lieu of Oh and β, Fontelos and Li [40] have used two Ohnesorge numbers, one based on the solvent
viscosity and the other on the polymer viscosity. Alternatively, the total viscosity, μ0 = μs + μp,
can be used to define an Ohnesorge number as Ohalt ≡ μ0/

√
ρRγ and the ratio of solvent to total

viscosity can be used to define a viscosity ratio as βalt ≡ μs/μ0. The latter set and that used here
are related as Ohalt = Oh(1 + β ) and βalt = 1/(1 + β ). Hereafter, variables without tildes are the
dimensionless counterparts of those with tildes, e.g., t̃ is dimensional but t ≡ t̃/tc is dimensionless.

The dynamics of viscoelastic filament contraction is governed by the three-dimensional but
axisymmetric (3DA) continuity and Cauchy momentum equations and the traction and kinematic
boundary conditions at the free surface [31,41]. In lieu of solving a complex 3DA free surface
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(a) (b) (c)

FIG. 1. Viscoelastic filament: (a) Definition sketch and (b) problem domain. (c) Evolution in time of the
shape of a prestressed viscoelastic filament of Oh = 5, L0 = 10, De = 0.1, β = 0.25, and σzz,0 = 10.

flow [42], we take advantage of filament slenderness and adopt the slender-jet formalism that was
originally developed for Newtonian fluids in Refs. [43,44] and which was subsequently extended to
viscoelastic fluids [30,45]. Thus, we solve the following one-dimensional (1D) transient evolution
equations to determine the interface shape r = h(z, t ) (h: interface shape function) and axial velocity
v = v(z, t ):

∂v

∂t
+ v

∂v

∂z
= ∂

∂z
(−2H) + 3Oh

1

h2

∂

∂z

(
h2 ∂v

∂z

)
+ Oh

1

h2

∂

∂z
[h2(σzz − σrr )], (1)

∂h

∂t
+ v

∂h

∂z
+ 1

2

∂v

∂z
h = 0, (2)

where −2H is twice the mean curvature and σrr and σzz are the radial and axial components of the
elastic stress tensor σ. Following earlier works [43,44,46,47], we retain the complete expression for
the mean curvature such that 2H = (1/h)[1 + (∂h/∂z)2]−1/2 − (∂2h/∂z2)[1 + (∂h/∂z)2]−3/2. The
radial and axial components of the elastic stress tensor σrr and σzz for the Oldroyd-B fluid in Eq. (1)
are governed by the following evolution equations:

∂σrr

∂t
+ v

∂σrr

∂z
= −σrr

∂v

∂z
− β

De

∂v

∂z
− 1

De
σrr, (3)

∂σzz

∂t
+ v

∂σzz

∂z
= 2σzz

∂v

∂z
+ 2

β

De

∂v

∂z
− 1

De
σzz (4)

The set of equations are solved subject to the boundary conditions that at the plane of symmetry
(z = 0), ∂h/∂z = 0 and v = 0. At the filament tip, h = 0 and v = dL/dt , where L(t ) is the
instantaneous but unknown half-length of the filament or location of the filament tip [47]. The tip
location, z = L(t ), is determined by an integral constraint that filament volume is fixed [47].

Furthermore, we allow for the possibility that at t = 0, polymer molecules within the filament
may be prestressed such that the axial component of the elastic stress tensor σzz equals some positive
constant, viz., σzz(z, t = 0) = σzz,0, which is the simplest functional form that can be adopted
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(a) (b)

FIG. 2. Variation of tip velocity vtip with time t during contraction of viscoelastic and Newtonian filaments
of L0 = 10. For viscoelastic filaments, Oh = 5 and β = 0.25: (a) σzz,0 = 0 (polymer molecules are initially
relaxed) and (b) σzz,0 = 10 (polymer molecules are initially prestressed). The curves corresponding to the
different viscoelastic filaments are identified by both color and line type as: (red dash) De = 0.001, (blue dash
dot) De = 0.01, (purple dotted) De = 0.1, (green long dash) De = 1, and (orange dash dot dot) De = 10. The
olive thick solid curve and black thin solid curve correspond to Newtonian filaments of Oh = 5 and Oh = 6.25,
respectively. In (a), the curves depicting the time evolution of vtip corresponding to viscoelastic filaments of
De = 0.001, 0.01, and 0.1 are virtually indistinguishable from that of the Newtonian filament of Oh = 6.25.

to approximate and gain insights into the role of initially unrelaxed viscoelastic stresses on the
contraction dynamics. Based on the the work of Sen et al. [18], who have observed that σzz,0 is in the
range of O(10)–O(100) in their experiments, we report below simulation results when σzz,0 = 10.

Equations (1)–(4) are solved by the method of lines using the Galerkin/finite element
method [47].

Results and discussion: Contraction velocity. In the remainder of the article, we consider
the dynamics of highly viscous filaments (Oh > 1) of small initial aspect ratios (L0 = 10) that
eventually contract to spheres. We note that our filaments are both shorter and much more viscous
than those studied in Sen et al. [18], where Oh = O(0.01). We focus on (i) viscous filaments to
avoid more complex dynamics involving capillary waves that arise with low Oh filaments and (ii)
small aspect ratios to preclude breakup [13,16]. One characteristic feature of the dynamics when
Oh is large is the uniform thickening of the contracting filament in time, which is analogous to the
response of retracting films reported in Refs. [48,49]. Figure 1(c) shows the evolution in time of
the shape of a prestressed viscoelastic filament. As time increases, the filament length continuously
shortens but the two ends remain virtually hemispherical without the formation of bulbous tips that
arise during contraction of filaments of intermediate or low viscosity [16].

Figure 2(a) shows the variation in time of the tip velocity vtip of several highly viscous filaments
of identical initial aspect ratio. Five of these are viscoelastic filaments that are initially relaxed
(σzz,0 = 0) and all of Oh = 5 and β = 0.25 but various De, and two are Newtonian filaments of
Oh = 5 and Oh = 6.25. The two Newtonian filaments are such that OhNewtonian = Ohviscoelastic in
one case and OhNewtonian = (1 + β )Ohviscoelastic in the second case. According to Fig. 2(a), when
polymer molecules are initially at equilibrium, the contraction velocity of viscoelastic filaments is
invariant with respect to De when 0.001 � De � 0.1. Moreover, the dynamical response in all of
the just-stated three cases is virtually identical to that of the Newtonian filament of Oh = 6.25.
As De increases, the magnitude of the peak contraction velocity increases compared to these four
cases. According to Fig. 2(a), the Newtonian filament of Oh = 5 attains the contraction velocity
with the largest peak magnitude. Clearly, as shown in Fig. 2(a), the overall difference between
vtip of viscoelastic filaments and Newtonian ones is small when polymer molecules are initially at
equilibrium. It is worth noting that the magnitudes of the peak values of the contraction velocity of
Newtonian filaments are smaller than the Taylor-Culick velocity vTC in Fig. 2(a). This observation is
in accord with [50] where it was shown that highly viscous filaments contract in a transient regime
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of long duration before vtip ≈ vTC and the tips of such filaments do not attain vTC prior to full recoil
if their L0 are sufficiently small.

Figure 2(b) shows the variation in time of vtip of filaments that have identical values of the
dimensionless parameters as those in Fig. 2(a) except that the five viscoelastic filaments in Fig. 2(b)
are now initially prestressed (σzz,0 = 10). Figure 2(b) shows that the contraction velocities of
prestressed viscoelastic filaments of De � 0.1 are several times as large as those of filaments for
which σzz,0 = 0. For example, the peak contraction velocity of a prestressed viscoelastic filament
when De = 10 is ten times that of a viscoelastic filament that has not been prestressed or that of
either Newtonian filament. This finding agrees with experimental observations reported in Ref. [18]
that viscoelastic retraction is faster than Newtonian retraction. However, comparison of the results
reported in Figs. 2(a) and 2(b) makes clear that it is only when polymer molecules are prestressed
that a large increase in contraction velocity results. According to Fig. 2(b), prestressed viscoelastic
filaments exhibit much larger differences in dynamical response during the initial stages in which
the filament tips undergo acceleration compared to viscoelastic filaments in which the polymer
molecules are initially at equilibrium. Moreover, when σzz,0 �= 0, the larger De is, the larger the
peak magnitude of contraction velocity and the longer the duration over which the spike in vtip

can be observed [inset to Fig. 2(b)]. The difference in the magnitude of the peak velocity attained
when molecules are prestressed versus when they are initially relaxed is drastic: For example, when
De = 10, the peak magnitude of the contraction velocity is larger than 5 in the former case, whereas
it is about 0.4 in the latter. The reasons behind this stark difference are discussed next.

Force balance. One way to elucidate the interplay between inertia and capillary, viscous, and
elastic forces during filament contraction is by performing an integral force balance [18,39,50–52].
Here, we adopt the approach presented in Ref. [39] to carry out such an analysis. By rewriting the
momentum equation [Eq. (1)] as

∂v

∂t
+ v
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∂z
= 1

h2

∂

∂z
(h2K ) + 3Oh

1

h2

∂

∂z

(
h2 ∂v

∂z

)
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1

h2

∂

∂z
[h2(σzz − σrr )], (5)

where K = (1/h)[1 + (∂h/∂z)2]−1/2 + (∂2h/∂z2)[1 + (∂h/∂z)2]−3/2, the two equations governing
momentum and mass conservation [Eq. (2)] are combined by first multiplying Eq. (5) by h2 and
then adding the result to Eq. (2) multiplied by 2hv. The resulting expression is then integrated with
respect to z from 0 (filament’s midplane) to L(t ) (filament’s tip) and simplified by taking advantage
of the boundary conditions at the two locations to yield

dPtot

dt︸ ︷︷ ︸
inertia

=
[
−h2

(
∂2h

∂z2
+ 1

h

)]∣∣∣∣
z=0︸ ︷︷ ︸

capillary

+
(

−3Oh h2 ∂v

∂z

)∣∣∣∣
z=0︸ ︷︷ ︸

viscous

+ [−Oh h2(σzz − σrr )]|z=0︸ ︷︷ ︸
elastic

, (6)

where Ptot = ∫ L(t )
0 h2v dz. In Eq. (6), πPtot is the total momentum of the fluid occupying one-half of

the filament volume between 0 � z � L(t ), and the time rate of change of momentum (the inertia
term on the left side) equals the sum of the capillary, viscous, and elastic forces (the three terms on
the right side).

Figure 3 shows the variation in time of the terms in Eq. (6) in four situations. In Fig. 3(a),
the time evolution of the three terms—inertia and capillary and viscous forces—is shown for a
Newtonian filament of Oh = 6.25. In Figs. 3(b)–3(d), the time evolution of the four terms—inertia
and capillary, viscous, and elastic forces—is shown for three viscoelastic filaments: a large De
filament in which the molecules are initially at equilibrium (σzz,0 = 0), and two filaments, one of
De = 0.1 and the other of De = 10, that are initially prestressed (σzz,0 = 10). Figures 3(a) and 3(b)
show that for the Newtonian filament and the filament in which polymer molecules are initially
at equilibrium, inertia is small compared to the capillary and viscous forces during most of the
contraction process. While the forces vary temporally, capillary and viscous forces are comparable
and typically are about 10 to 100 times as large as inertia. The order of magnitude difference between
viscous/capillary forces and inertia is expected because Oh is high (Oh = 6.25 and 5). In Fig. 3(b),
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(a) (b)

(c) (d)

FIG. 3. Variation with time t of the various forces obtained from Eq. (6) during contraction of filaments of
L0 = 10. (a) Newtonian filament of Oh = 6.25. (b) Viscoelastic filament of Oh = 5, De = 10, β = 0.25, and
σzz,0 = 0 (polymer molecules are initially relaxed). (c) Prestressed viscoelastic filament of Oh = 5, De = 0.1,
β = 0.25, and σzz,0 = 10. (d) Prestressed viscoelastic filament of Oh = 5, De = 10, β = 0.25, and σzz,0 = 10.
The curves corresponding to the different terms in Eq. (6) are identified by both color and line type as: (green
dash dot dot) inertia, (blue dash dot) capillary force, (red dashed) viscous force, and (dark gray solid) elastic
force.

elastic stresses are also negligible compared to viscous and capillary stresses, leading to similar
contraction dynamics as shown by the black and orange curves in Fig. 2(a).

However, if polymer molecules are prestressed, the dynamical response of highly viscous vis-
coelastic filaments resembles the trend observed in the responses of low-Oh filaments since inertia
comes into play. When De = 0.1, inertia and elastic force are comparable and capillary and viscous
forces are negligible, as shown in Fig. 3(c) when t � 0.2. In the case of higher De = 10, elastic
force takes longer to decrease and reach a plateau compared to the case of lower De = 0.1. In
the former case, significant viscous stresses also develop to balance the larger inertia as shown at
t ≈ 1.3 in Fig. 3(d). Comparing Figs. 3(c) and 3(d) reveals that elastic stresses take more time to
decay with increasing Deborah number, in agreement with the strong dependence of the evolution
of vtip with De shown in Fig. 2(b). In summary, while for Newtonian and nonprestressed viscoelastic
filaments the retraction is driven by capillarity and resisted by viscosity, for sufficiently prestressed
viscoelastic filaments, the driving retraction force is viscoelasticity, which is now resisted by inertia
and viscosity, with negligible capillary effects.

Elastic recoil. The increase in contraction velocity of prestressed viscoelastic filaments may be
rationalized by the fact that polymer molecules pull fluid as they recoil from a prestressed state to the
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FIG. 4. Elastic recoil in a prestressed viscoelastic filament of small De: Evolution in time of σ : D when
Oh = 5, L0 = 10, De = 0.1, β = 0.25, and σzz,0 = 10.

equilibrium state. This action can be probed by evaluating the amount of elastic unloading or recoil
that takes place near the filament’s tip(s). Following the explanation provided in Ref. [31], we first
note that the expression for the conversion of mechanical energy into internal energy is T : ∇v =
T : D = (τ + σ) : D, where T, τ, and D denote the total stress, viscous stress, and rate-of-strain
tensors. Whereas viscous dissipation τ : D is always positive, σ : D can be positive or negative.
This quantity is positive when the flow does work on the polymer molecules but negative when the
molecules do work on the flow. Thus, elastic unloading takes place in the filament wherever σ : D
is negative. Physically, when σ : D < 0, elastic stresses work by pulling the fluid in axially and
pushing it out radially as molecules recoil from a stretched state. In slender-jet analysis, σ : D =
(σzz − σrr ) ∂v

∂z + O(r2).
Figure 4 shows the evolution in time of σ : D of a prestressed viscoelastic filament of small

De (= 0.1). At early times, σ : D < 0 in the tip region, but its magnitude gradually decreases as
the filament contracts. Therefore, even though the contraction process is accelerated as polymer
molecules do work on the flow by pulling fluid in axially, this effect fades quickly as polymer
molecules recover from their stretched state and tend to equilibrium. At t = 0.247, σ : D ≈ 0 in
the entire domain, which implies that polymer molecules are no longer acting in an appreciable
way on the flow by pulling the fluid in axially. Thereafter, the contraction is driven solely by the
capillary pressure difference between the the filament’s tips and its cylindrical body, as is the case
with Newtonian filaments.

Figure 5 shows the evolution in time of σ : D of a prestressed viscoelastic filament of the same
set of parameters as the one shown in Fig. 4 but with a higher Deborah number (De = 10). While
the overall evolution in time of σ : D is similar in both cases, i.e., σ : D < 0, and its magnitude
decreases in time, σ : D remains nonzero and negative for a longer time for the filament of higher
De (longer relaxation time). For instance, around t = 0.56, σ : D = 0 when De = 0.1 in Fig. 4
but σ : D < 0 when De = 10 in Fig. 5. This longer duration over which σ : D < 0 when De = 10
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FIG. 5. Elastic recoil in a prestressed viscoelastic filament of large De: Evolution in time of σ : D when
Oh = 5, L0 = 10, De = 10, β = 0.25, and σzz,0 = 10.

compared to when De = 0.1 accounts for the larger and wider spike in contraction velocity in the
former case compared to the latter one, as shown by the orange and the purple curves in Fig. 2(b).

It is instructive to examine the results of Figs. 4 and 5 in terms of time made dimensionless with
the relaxation time of the polymer: t∗ ≡ t̃/λ̃ = (t̃/tc)(tc/λ̃) ≡ t/De. It is shown in Fig. 4 that for
De = 0.1, the prestressed polymer molecules in the contracting viscoelastic filament are relaxed
when t ≈ 0.24, but it is shown in Fig. 5 that for De = 10, the time for the molecules to relax is t ≈
2.4. If these dimensionless times for relaxation of polymer molecules were recast into times made
dimensionless by λ̃, t∗ ≈ 0.24/0.1 = 2.4 when De = 0.1 and t∗ ≈ 2.4/10 = 0.24 when De = 10.
Therefore, the prestresses have not relaxed at roughly the same value of t∗ = t̃/λ̃ in the two cases.

Conclusions. According to the foregoing results, contraction velocity vtip of prestressed vis-
coelastic filaments (σzz,0 �= 0) in which polymer molecules are highly extended at the onset of
retraction can be many times larger than ones in which polymer molecules are initially in a relaxed
state or Newtonian filaments of the same Oh. This finding, which has important ramifications in
applications with respect to formation of satellite droplets [1,2,4,6] and accords with recent exper-
iments [18], has been rationalized by examination of σ : D, which is a quantity that is analogous
to viscous dissipation τ : D, within the filaments. However, whereas the latter quantity is always
positive, the former can be positive or negative. In prestressed viscoelastic filaments, σ : D can be
highly negative for a substantial portion of time following the onset of contraction, during which
time polymer molecules pull fluid in axially and push it out radially, thereby greatly enhancing vtip.
It has also been demonstrated that the duration of this elastic unloading (recoil) can be made longer
if a polymer with a higher De (relaxation time) is used.

As Oh and L0 in this work have been fixed at five and ten, future work should address a wider
range of these parameters. The analyses of this article can also be generalized to account for more
complex initial conditions (ICs), including nonuniform initial stress profiles as well as asymmetry
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in filament shapes [53,54], and consider ICs where the filament fluid is already moving rather than
quiescent [39] to better mimic conditions in some experiments [14].

Acknowledgment. We gratefully acknowledge financial support from the Purdue Process Safety
and Assurance Center (P2SAC).

[1] O. A. Basaran, Small-scale free surface flows with breakup: Drop formation and emerging applications,
AIChE J. 48, 1842 (2002).

[2] O. A. Basaran, H. Gao, and P. P. Bhat, Nonstandard inkjets, Annu. Rev. Fluid Mech. 45, 85 (2013).
[3] H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Phys. Rep. 491, 77 (2010).
[4] J. R. Castrejon-Pita, W. R. S. Baxter, J. Morgan, S. Temple, G. D. Martin, and I. M. Hutchings, Future,

opportunities and challenges of inkjet technologies, Atomiz. Spr. 23, 541 (2013).
[5] S. D. Hoath, S. Jung, and I. M. Hutchings, A simple criterion for filament break-up in drop-on-demand

inkjet printing, Phys. Fluids 25, 021701 (2013).
[6] D. Lohse, Fundamental fluid dynamics challenges in inkjet printing, Annu. Rev. Fluid Mech. 54, 349

(2022).
[7] A. A. Castrejón-Pita, E. S. Betton, N. Campbell, N. Jackson, J. Morgan, T. R. Tuladhar, D. C. Vadillo,

and J. R. Castrejon-Pita, Formulation, quality, cleaning, and other advances in inkjet printing, Atomiz.
Spr. 31, 57 (2021).

[8] J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys. 71, 036601 (2008).
[9] M. Majumder, C. Rendall, M. Li, N. Behabtu, J. A. Eukel, R. H. Hauge, H. K. Schmidt, and M. Pasquali,

Insights into the physics of spray coating of SWNT films, Chem. Eng. Sci. 65, 2000 (2010).
[10] S. Kooij, R. Sijs, M. M. Denn, E. Villermaux, and D. Bonn, What Determines the Drop Size in Sprays?

Phys. Rev. X 8, 031019 (2018).
[11] A. Gaillard, R. Sijs, and D. Bonn, What determines the drop size in sprays of polymer solutions?

J. Non-Newtonian Fluid Mech. 305, 104813 (2022).
[12] H. Stone, B. J. Bentley, and L. G. Leal, An experimental study of transient effects in the breakup of

viscous drops, J. Fluid Mech. 173, 131 (1986).
[13] P. K. Notz and O. A. Basaran, Dynamics and breakup of a contracting liquid filament, J. Fluid Mech. 512,

223 (2004).
[14] A. A. Castrejón-Pita, J. R. Castrejón-Pita, and I. M. Hutchings, Breakup of Liquid Filaments, Phys. Rev.

Lett. 108, 074506 (2012).
[15] T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, Stability of viscous long liquid filaments,

Phys. Fluids 25, 062109 (2013).
[16] C. R. Anthony, P. M. Kamat, M. T. Harris, and O. A. Basaran, Dynamics of contracting filaments, Phys.

Rev. Fluids 4, 093601 (2019).
[17] F. Wang, F. P. Contò, N. Naz, J. R. Castrejón-Pita, A. A. Castrejón-Pita, C. G. Bailey, W. Wang, J. J. Feng,

and Y. Sui, A fate-alternating transitional regime in contracting liquid filaments, J. Fluid Mech. 860, 640
(2019).

[18] U. Sen, C. Datt, T. Segers, H. Wijshoff, J. H. Snoeijer, M. Versluis, and D. Lohse, The retraction of jetted
slender viscoelastic liquid filaments, J. Fluid Mech. 929, A25 (2021).

[19] E. Hilz and A. W. Vermeer, Spray drift review: The extent to which a formulation can contribute to spray
drift reduction, Crop Protection 44, 75 (2013).

[20] P. M. Kamat, B. W. Wagoner, A. A. Castrejón-Pita, J. R. Castrejón-Pita, C. R. Anthony, and O. A. Basaran,
Surfactant-driven escape from endpinching during contraction of nearly inviscid filaments, J. Fluid Mech.
899, A28 (2020).

[21] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids: Fluid Mechanics (John
Wiley and Sons Inc., New York, 1987), Vol. 1.

[22] M. Goldin, J. Yerushalmi, R. Pfeffer, and R. Shinnar, Breakup of a laminar capillary jet of a viscoelastic
fluid, J. Fluid Mech. 38, 689 (1969).

L121601-9

https://doi.org/10.1002/aic.690480902
https://doi.org/10.1146/annurev-fluid-120710-101148
https://doi.org/10.1016/j.physrep.2010.03.003
https://doi.org/10.1615/AtomizSpr.2013007653
https://doi.org/10.1063/1.4790193
https://doi.org/10.1146/annurev-fluid-022321-114001
https://doi.org/10.1615/AtomizSpr.2020034559
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1016/j.ces.2009.11.042
https://doi.org/10.1103/PhysRevX.8.031019
https://doi.org/10.1016/j.jnnfm.2022.104813
https://doi.org/10.1017/S0022112086001118
https://doi.org/10.1017/S0022112004009759
https://doi.org/10.1103/PhysRevLett.108.074506
https://doi.org/10.1063/1.4811849
https://doi.org/10.1103/PhysRevFluids.4.093601
https://doi.org/10.1017/jfm.2018.855
https://doi.org/10.1017/jfm.2021.855
https://doi.org/10.1016/j.cropro.2012.10.020
https://doi.org/10.1017/jfm.2020.476
https://doi.org/10.1017/S0022112069002540


LIU, WAGONER, AND BASARAN

[23] D. W. Bousfield, R. Keunings, G. Marrucci, and M. M. Denn, Nonlinear analysis of the surface tension
driven breakup of viscoelastic filaments, J. Non-Newtonian Fluid Mech. 21, 79 (1986).

[24] A. L. Yarin, Free Liquid Jets and Films: Hydrodynamics and Rheology (Longman Scientific & Technical,
1993).

[25] H. J. Shore and G. M. Harrison, The effect of added polymers on the formation of drops ejected from a
nozzle, Phys. Fluids 17, 033104 (2005).

[26] N. F. Morrison and O. G. Harlen, Viscoelasticity in inkjet printing, Rheol. Acta 49, 619 (2010).
[27] S. D. Hoath, D. C. Vadillo, O. G. Harlen, C. McIlroy, N. F. Morrison, W.-K. Hsiao, T. R. Tuladhar, S. Jung,

G. D. Martin, and I. M. Hutchings, Inkjet printing of weakly elastic polymer solutions, J. Non-Newtonian
Fluid Mech. 205, 1 (2014).

[28] Y. Amarouchene, D. Bonn, J. Meunier, and H. Kellay, Inhibition of the Finite-Time Singularity during
Droplet Fission of a Polymeric Fluid, Phys. Rev. Lett. 86, 3558 (2001).

[29] S. L. Anna and G. H. McKinley, Elasto-capillary thinning and breakup of model elastic liquids, J. Rheol.
45, 115 (2001).

[30] C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, The beads-on-string structure of
viscoelastic threads, J. Fluid Mech. 556, 283 (2006).

[31] P. P. Bhat, O. A. Basaran, and M. Pasquali, Dynamics of viscoelastic liquid filaments: Low capillary
number flows, J. Non-Newtonian Fluid Mech. 150, 211 (2008).

[32] J. Eggers, M. A. Herrada, and J. Snoeijer, Self-similar breakup of polymeric threads as described by the
Oldroyd-B model, J. Fluid Mech. 887, A19 (2020).

[33] J. Dinic, L. N. Jimenez, and V. Sharma, Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry
of complex fluids, Lab Chip 17, 460 (2017).

[34] J. Dinic and V. Sharma, Flexibility, extensibility, and ratio of Kuhn length to packing length govern the
pinching dynamics, coil-stretch transition, and rheology of polymer solutions, Macromolecules 53, 4821
(2020).

[35] L. N. Jimenez, J. Dinic, N. Parsi, and V. Sharma, Extensional relaxation time, pinch-off dynamics, and
printability of semidilute polyelectrolyte solutions, Macromolecules 51, 5191 (2018).

[36] G. I. Taylor, The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets, Proc. R. Soc. London
253, 313 (1959).

[37] F. E. C. Culick, Comments on a ruptured soap film, J. Appl. Phys. 31, 1128 (1960).
[38] J.-L. Pierson, J. Magnaudet, E. J. Soares, and S. Popinet, Revisiting the Taylor-Culick approximation:

Retraction of an axisymmetric filament, Phys. Rev. Fluids 5, 073602 (2020).
[39] X. Liu, B. W. Wagoner, H. Wee, and O. A. Basaran, Effect of initial conditions on promotion and

inhibition of breakup during filament contraction, AIChE J. 68, e17491 (2022).
[40] M. A. Fontelos and J. Li, On the evolution and rupture of filaments in Giesekus and FENE models,

J. Non-Newtonian Fluid Mech. 118, 1 (2004).
[41] M. Pasquali and L. Scriven, Free surface flows of polymer solutions with models based on the conforma-

tion tensor, J. Non-Newtonian Fluid Mech. 108, 363 (2002).
[42] C. R. Anthony, H. Wee, V. Garg, S. S. Thete, P. M. Kamat, B. W. Wagoner, E. D. Wilkes, P. K. Notz, A. U.

Chen, R. Suryo, K. Sambath, J. C. Panditaratne, Y.-C. Liao, and O. A. Basaran, Sharp interface methods
for simulation and analysis of free surface flows with singularities: Breakup and coalescence, Annu. Rev.
Fluid Mech. 55, 707 (2023).

[43] J. Eggers, Universal Pinching of 3D Axisymmetric Free-Surface Flow, Phys. Rev. Lett. 71, 3458 (1993).
[44] J. Eggers and T. F. Dupont, Drop formation in a one-dimensional approximation of the Navier-Stokes

equation, J. Fluid Mech. 262, 205 (1994).
[45] P. P. Bhat, S. Appathurai, M. T. Harris, and O. A. Basaran, On self-similarity in the drop-filament corner

region formed during pinch-off of viscoelastic fluid threads, Phys. Fluids 24, 083101 (2012).
[46] B. Ambravaneswaran, S. D. Phillips, and O. A. Basaran, Theoretical Analysis of a Dripping Faucet, Phys.

Rev. Lett. 85, 5332 (2000).
[47] B. Ambravaneswaran, E. D. Wilkes, and O. A. Basaran, Drop formation from a capillary tube: Compari-

son of one-dimensional and two-dimensional analyses and occurrence of satellite drops, Phys. Fluids 14,
2606 (2002).

L121601-10

https://doi.org/10.1016/0377-0257(86)80064-7
https://doi.org/10.1063/1.1850431
https://doi.org/10.1007/s00397-009-0419-z
https://doi.org/10.1016/j.jnnfm.2014.01.002
https://doi.org/10.1103/PhysRevLett.86.3558
https://doi.org/10.1122/1.1332389
https://doi.org/10.1017/S0022112006009633
https://doi.org/10.1016/j.jnnfm.2007.10.021
https://doi.org/10.1017/jfm.2020.18
https://doi.org/10.1039/C6LC01155A
https://doi.org/10.1021/acs.macromol.0c00076
https://doi.org/10.1021/acs.macromol.8b00148
https://doi.org/10.1098/rspa.1959.0196
https://doi.org/10.1063/1.1735765
https://doi.org/10.1103/PhysRevFluids.5.073602
https://doi.org/10.1002/aic.17491
https://doi.org/10.1016/j.jnnfm.2004.02.002
https://doi.org/10.1016/S0377-0257(02)00138-6
https://doi.org/10.1146/annurev-fluid-120720-014714
https://doi.org/10.1103/PhysRevLett.71.3458
https://doi.org/10.1017/S0022112094000480
https://doi.org/10.1063/1.4745179
https://doi.org/10.1103/PhysRevLett.85.5332
https://doi.org/10.1063/1.1485077


CONTRACTION VELOCITY OF VISCOELASTIC …

[48] G. Debrégeas, P.-G. De Gennes, and F. Brochard-Wyart, The life and death of “Bare” viscous bubbles,
Science 279, 1704 (1998).

[49] M. P. Brenner and D. Gueyffier, On the bursting of viscous films, Phys. Fluids 11, 737 (1999).
[50] N. Savva and J. W. Bush, Viscous sheet retraction, J. Fluid Mech. 626, 211 (2009).
[51] J. R. Castrejón-Pita, A. A. Castrejón-Pita, S. S. Thete, K. Sambath, I. M. Hutchings, J. Hinch, J. R. Lister,

and O. A. Basaran, Plethora of transitions during breakup of liquid filaments, Proc. Natl. Acad. Sci. USA
112, 4582 (2015).

[52] P. M. Kamat, C. R. Anthony, and O. A. Basaran, Bubble coalescence in low-viscosity power-law fluids,
J. Fluid Mech. 902, A8 (2020).

[53] P. K. Notz, A. U. Chen, and O. A. Basaran, Satellite drops: Unexpected dynamics and change of scaling
during pinch-off, Phys. Fluids 13, 549 (2001).

[54] C. Planchette, F. Marangon, W.-K. Hsiao, and G. Brenn, Breakup of asymmetric liquid ligaments, Phys.
Rev. Fluids 4, 124004 (2019).

Correction: The year of publication in Ref. [42] was set incorrectly during the proof correction
cycle and has been fixed.

L121601-11

https://doi.org/10.1126/science.279.5357.1704
https://doi.org/10.1063/1.869942
https://doi.org/10.1017/S0022112009005795
https://doi.org/10.1073/pnas.1418541112
https://doi.org/10.1017/jfm.2020.571
https://doi.org/10.1063/1.1343906
https://doi.org/10.1103/PhysRevFluids.4.124004

