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Breakup of a low-viscosity liquid thread
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The thinning of threads of low-viscosity fluids like water in air has been of interest
for more than a century and is gaining new importance because of the emergence of
applications involving the breakup of drops and jets of liquid metals which have viscosities
comparable to but surface tensions and densities much larger than water. The dynamics of
thinning and pinch-off is governed by the Ohnesorge number Oh = μ/

√
ργ R, where μ,

ρ, γ , and R stand for viscosity, density, surface tension, and nozzle or initial jet radius.
When Oh � 1, the thread initially thins as if it were inviscid and its minimum radius h̃min

obeys a universal scaling law h̃min = A(γ /ρ )1/3(t̃b − t̃ )2/3, where t̃b is the time t̃ at which
the thread breaks up and A

.= 0.717. As the interface overturns prior to breakup when Oh
is sufficiently small, it has proven challenging to observe in simulations and experiments
the value of the prefactor A predicted from theory and furthermore the transition of the
dynamics as h̃min → 0 from the inviscid regime to a different scaling regime in which the
effect of viscosity is no longer negligible. Here we employ high-accuracy simulation using
a sharp-interface algorithm to show that for sufficiently small Oh, the value of A predicted
from computations agrees with the theoretical value to three decimal places and the inviscid
power-law behavior can be observed over two to three decades in h̃min as t̃b − t̃ → 0.
Transition out of the inviscid regime and into a viscous one is also demonstrated from
simulations.

DOI: 10.1103/PhysRevFluids.7.L112001

I. INTRODUCTION

Thinning and pinch-off of liquid threads or filaments arise during the breakup of liquid jets
and drops [1–3] and occur in diverse industrial, natural, and everyday settings including drop-on-
demand and continuous inkjet printing [4–6], plasmas produced from molten-tin microdroplets that
are used to generate extreme ultraviolet light for nanolithography [7–9], production of particles
and capsules [2,10,11], and measurement of physical properties such as surface tension γ [12,13].
While the dynamics of jet and drop breakup for Newtonian fluids has been studied continuously
for two centuries [14–19], interest in the physics of thread pinch-off has grown explosively over the
past three to four decades since the publication of several landmark papers on the subject [20–23].
Given the growing importance of the breakup of low-viscosity liquid metal jets in state-of-the art
applications in semiconductor manufacturing and other industrial settings [8,9,24,25], the goal of
this paper is to improve the understanding of the breakup of threads of nearly inviscid fluids.

The thinning of the thread is driven by surface tension or capillary pressure and resisted by inertia
and viscous stress. For a thread of an incompressible Newtonian liquid of viscosity μ and density
ρ that is surrounded by a dynamically passive gas, e.g., air, breakup occurs in finite time, giving
rise to a finite-time singularity [1]. There are three theories that describe pinch-off of Newtonian
threads. If fluid viscosity is negligible, breakup is described by an inviscid (or inertial or potential
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flow) scaling theory where surface tension pressure and inertia are in balance as t̃ → t̃b, where t̃b
denotes the time t̃ at which breakup occurs, and the minimum radius of the thread h̃min follows the
power-law scaling given by [26,27]

h̃min = A

(
γ

ρ

)1/3

(t̃b − t̃ )2/3. (1)

Here A is a universal constant given by A = 0.717 . . . [3,27,28]. If inertia is negligible, breakup is
described by a viscous scaling theory in which surface tension and viscous stresses are in balance
as the thread tends toward pinch-off and h̃min follows the power-law scaling given by [29]

h̃min = 0.0709

(
γ

μ

)
(t̃b − t̃ ). (2)

When all three forces are important, breakup is described by the inertial-viscous scaling theory of
Eggers [22] in which

h̃min = 0.0304

(
γ

μ

)
(t̃b − t̃ ). (3)

Since neither viscosity nor density can be identically zero or, equivalently, the Ohnesorge number
Oh ≡ μ/

√
ρRγ , where R is the initial undisturbed radius of a cylindrical column of liquid or tube

radius when a drop or a jet is emitted from a nozzle, can be neither zero nor infinite, the inviscid and
the viscous scaling regimes are transient ones and only apply during the initial stages of thinning of
real threads [30]. Thus, for slightly viscous and highly viscous threads, a transition from these initial
regimes takes place to a final or asymptotic inertial-viscous regime as the time remaining until pinch-
off τ̃ ≡ t̃b − t̃ → 0 and/or h̃min → 0 [30]. In the former case, the transition is expected to occur
when h̃min becomes comparable to the viscous length lμ ≡ μ2/ργ or when h̃min/R ≈ Oh2 [2,30,31].
In the latter case, the transition is expected to occur when h̃min/R ≈ Oh2/(2β−1) [2,30,31], where the
exponent β

.= 0.175 [29]. Within a few years of the discovery of the three scaling laws and of the
possibility of transitions between them, the validity of these laws and possible transitions between
them were also demonstrated in a number of computational and experimental studies [32–35]. Thus,
by the end of the first decade of the new millennium, the fluid dynamics of Newtonian pinch-off was
for all practical purposes considered to be completely worked out [3].

In practice, however, the approach to the pinch-off singularity is more complex, as first antic-
ipated in [31] and demonstrated via detailed simulations and experiments in [36]. Starting in the
inviscid (I) regime, low-viscosity threads undergo transitions as I → V → IV (V and IV denote
viscous and inertial-viscous regimes, respectively) as h̃min → 0. Similarly, starting in the viscous
regime, high-viscosity threads undergo transitions as V → I → V → IV as h̃min → 0. This complex
and slow approach to the asymptotic IV regime during pinch-off was subsequently confirmed by an
exceptionally thorough computational study in [37] (see also [38]).

Motivated by applications involving breakup of threads of liquid metals which have viscosities
comparable to that of water but surface tensions and densities an order of magnitude larger than
those for water [39–43], we address the following questions. First, when Oh � 1, we investigate
whether the inviscid scaling law not only with the correct scaling exponent but also with the correct
value of the universal constant A can be observed in practice. We further probe the occurrence of
any possible transitions out of the inviscid regime into a viscous one as h̃min → 0 at extremely small
values of Oh. The first of these two issues has recently been investigated in a careful computational
and experimental study [44]. Here we use a high-accuracy sharp interface algorithm (see, e.g.,
[45–47]) to probe length and time scales that are several orders of magnitude smaller than those
achieved in that pioneering study to provide additional insights and answers to these questions.
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FIG. 1. (a) Definition sketch: an infinitely long liquid column (jet or thread) surrounded by air that is
subjected to an axially periodic shape perturbation of wavelength λ̃. The inset shows the computational domain,
shaded in blue, of axial extent λ̃/2. Computed profiles of a thinning liquid jet or thread are shown at (b) t =
12.035 and (c) t = 13.678. (d) Computed profiles of the jet or thread of (b) and (c) at later times t or smaller τ :
(i) overall view of the pinching zone showing the thread and the drop after the interface has already overturned,
(ii) zoomed-in view of the interface in the inertial regime, and (iii) zoomed-in view of the interface in the
viscous regime. In (b)–(d) Oh = 0.001, λ = 20, and ε = 0.1.

II. MATHEMATICAL FORMULATION

The system is isothermal and consists of an infinitely long liquid column (also referred to as
a liquid thread or jet) of an incompressible Newtonian fluid of constant density ρ and constant
viscosity μ of unperturbed radius R that is surrounded by a dynamically passive ambient gas that
simply exerts a constant pressure, which is taken here to be the pressure datum, on the column,
as shown in Fig. 1. The surface tension of the liquid-gas (LG) interface is constant and is denoted
by γ . The dynamics is taken to be axisymmetric about the centerline of the initially cylindrical
column. It thus proves convenient to use a cylindrical coordinate system (r̃, θ, z̃) with its origin
located along the centerline of the initially cylindrical column and where z̃ is the axial coordinate
measured along the column’s axis, r̃ is the radial coordinate measured from that axis, and θ is
the usual angle measured around the symmetry axis r̃ = 0. When subjected to axisymmetric shape
perturbations of infinitesimal amplitude whose wavelength in the axial direction is given by λ̃, a
quiescent cylindrical column of liquid undergoes capillary or Rayleigh-Plateau instability if λ̃ >

2πR or k̃R < 1, where k̃ = 2π/λ̃ is the wave number [15,17,48]. In this paper the capillary pinching
of a quiescent liquid column is initiated by subjecting its surface S̃(t̃ ), where t̃ is time, at time
t̃ = 0 to a shape perturbation of sufficiently long wavelength but of arbitrary amplitude so that the
column’s profile is given by

r̃(z̃, t̃ = 0)

R
=

√
1 − ε2

2
− ε cos k̃z̃. (4)

When the disturbance amplitude is small ε � 1, Eq. (4) simplifies to r̃(z̃, 0)/R = 1 − ε cos k̃z̃.
In what follows, we nondimensionalize the problem by using as characteristic length lc, time tc,
velocity vc, and stress Tc the unperturbed jet radius lc ≡ R, inertial-capillary time tc ≡

√
ρR3/γ ,

inertial-capillary velocity vc ≡ √
γ /ρR, and capillary pressure Tc ≡ γ /R, respectively. Hencefor-

ward, variables without tildes are the dimensionless counterparts of variables with tildes, e.g., t̃ and
t ≡ t̃/tc stand for the dimensional and dimensionless time.
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The dynamics of the thinning and breakup of the jet is analyzed by solving the transient free-
boundary problem consisting of the continuity and Navier-Stokes equations for fluid velocity v and
pressure p within the jet V (t ):

∇ · v = 0 in V (t ), (5)

∂v
∂t

+ (v · ∇)v = ∇ · T in V (t ). (6)

In (6), T = −pI + Oh[∇v + (∇v)T ] is the total stress tensor for a Newtonian fluid, I is the identity
tensor, and Oh ≡ μ/

√
ρRγ is the Ohnesorge number.

As (5) and (6) are balances of mass and momentum conservation in the bulk V (t ), the corre-
sponding principles of mass and momentum conservation at the LG interface S(t ) are the kinematic
and traction boundary conditions [49–52]. In the absence of bulk flow or mass transfer across the
interface [51], the kinematic boundary condition is given by [51,52]

n · (v − vs) = 0 on S(t ), (7)

where vs is the velocity of points on the interface and n is the outward pointing unit normal to S(t ).
The traction or the stress-balance boundary condition at the free surface is given by [51,52]

n · T = 2Hn on S(t ), (8)

where 2H ≡ −∇ · n is twice the mean curvature of the free surface.
Because the dynamics is axisymmetric about the z axis, the shear stress and the radial velocity

have to vanish along the centerline (r = 0), viz., er · T · ez = 0 and u ≡ v · er = 0, where er and ez

stand for the unit vectors in the radial and axial directions, respectively. On account of the periodicity
of the imposed initial perturbation of the jet’s surface, the problem only needs to be solved over an
axial distance equal to one-half of the wavelength of the imposed perturbation. Thus, along the two
symmetry planes located at z = 0 and z = π/k = λ/2, both the shear stress and the axial velocity
must vanish, viz., ez · T · er = 0 and v ≡ v · ez = 0. Also because of periodicity, the interface profile
must obey er · t = 0, where t is the unit tangent to S(t ), at z = 0 and z = π/k.

III. NUMERICAL ANALYSIS

The transient system of three-dimensional but axisymmetric (3DA) equations (5) and (6) is
solved numerically by means of a fully implicit, arbitrary Lagrangian-Eulerian method-of-lines
algorithm in which the Galerkin finite-element method is used for spatial discretization [53–56] and
an adaptive, implicit finite-difference method is employed for time integration [54,57–61]. As jet
breakup is a free-boundary problem that involves a highly deformable LG interface, an elliptic mesh
generation technique [62] is employed to track the moving boundary and determine the radial and
axial coordinates of each grid point in the moving, adaptive mesh simultaneously with the velocity
and pressure unknowns in the jet as well as the free-surface profile. In the 3DA sharp-interface
algorithm, the free surface is parametrized in terms of arc length s (see, e.g., [34,60,63]). This
parametrization, as opposed to using one where the interface shape is a single-valued function of
the axial coordinate, coupled to the elliptic mesh generation algorithm allows simulation of jet
dynamics in which the interface may overturn [34,60,63]. At each time step, the resulting system
of nonlinear algebraic equations is solved iteratively using Newton’s method where the Jacobian is
computed analytically. The large system of linear equations at each iteration is solved by means of
a direct solver using Gaussian elimination and a multifrontal algorithm [64] based on the frontal
solver concept developed by Hood [65]. We have used similar versions of the algorithm over the
past two decades to analyze the breakup of jets, drops, and filaments [34,45,47,63,66–68].
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(a) (b)

FIG. 2. Variation of the minimum thread radius hmin with time remaining until pinch-off τ : (a) Oh = 0.001
and (b) Oh = 0.01. Orange squares represent the simulation data, green lines show the inertial scaling law,
black lines show the viscous scaling law, and the blue line shows the inertial-viscous scaling law. The insets
show the variation of the local Reynolds number Reloc with hmin. Here λ = 20 and ε = 0.1.

IV. RESULTS

In this section we report the results of simulations carried out when initially quiescent liquid
columns are subjected to perturbations of amplitude ε = 0.1 and dimensionless wavelength λ = 20.
It should be noted that when a water jet issues out of a capillary tube of 1 mm radius, Oh = 3.7 ×
10−3. If the tube radius were decreased by two orders of magnitude to 10 μm, we would obtain a
value that is typical of modern inkjet printers [2,4–6], Oh = 3.7 × 10−2. In [44] the authors report
results in a number of situations including the breakup of mercury bridges of Oh = 6.0437 × 10−4.
Therefore, we have picked Oh = 2 × 10−3, 10−3, 5 × 10−4, and 2.5 × 10−4, in which the value of
Oh is systematically halved to probe the dynamics of breakup for nearly inviscid fluids. We have also
considered two additional situations, one with Oh = 2.6 × 10−3 to provide a direct comparison with
[44] and another with Oh = 10−2 where the Ohnesorge number is comparable to the inkjet example
given above. In much of the discussion to follow, we present results on how the minimum jet radius
hmin ≡ h̃min/R or the prefactor A varies with time remaining until rupture τ ≡ τ̃ /tc = (t̃b − t̃ )/tc =
tb − t .

Figures 1(b)–(d) show the profiles of a jet of Oh = 10−3 at five instances in time. Following
the imposition of the initial perturbation, the column deforms at early times such that its radius is
a minimum at z = 0 [Fig. 1(b)]. However, the location of the minimum radius hmin migrates from
z = 0 due to inertia as shown in Figs. 1(c) and 1(d i), in accord with previous studies [36]. As the jet
continues to thin, the interface overturns in the vicinity of hmin and the interface profile resembles
two cones that meet in the neighborhood of that location [27,69,70]. A zoomed-in view of the jet
profile in the vicinity of hmin is shown in Fig. 1(d ii). Here the computed cone angles of 18.1◦ for
the shallow cone and 112.5◦ for the overturned steep cone are in excellent agreement with results of
boundary integral simulations [27,69] and experiments [70]. As hmin continues to decrease, a thin
thread forms which connects the thread side of the jet to its drop side [Fig. 1(d iii)].

Figure 2 shows the computed variation of the minimum neck radius hmin with time remaining
until pinch-off τ when Oh = 0.001 [Fig. 2(a)] and Oh = 0.01 [Fig. 2(b)] and the variation of the
local Reynolds number Reloc = v′z′/Oh (here v′ and z′ stand for the characteristic axial velocity in
and axial extent of the pinching zone, respectively) [36] with hmin as insets in both cases. Figure 2(a)
makes plain that after the decay of initial transients, the computed variation of hmin with τ follows
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(a) (c) (e)

(b) (d) (f)

FIG. 3. Variation of the prefactor A with time remaining until pinch-off τ , rescaled time until pinch-off
τ/Oh3, minimum thread radius hmin, and rescaled minimum radius hmin/Oh2 (see the text). (a) and (b) Results
from dripping studies of [44], except for the dashed curve labeled “This work” in (a). (c)–(f) Results obtained
with the sharp-interface algorithm of this paper when λ = 20 and ε = 0.1. Our simulation results for Oh =
0.0026 are also shown in (a) for a side-by-side comparison with [44]. The difference between the two sets of
results at early times (or large τ ) can be attributed to the different physical problems studied in [44] and here.

the inviscid scaling law (1) over several decades of variation in these variables. Figure 2(a) further
shows that when hmin ≈ 10−5, the dynamics begins to transition into the viscous regime where the
variation of hmin with τ is dictated by (2). In Fig. 2(b), on account of the fact that Oh is an order of
magnitude larger than that in Fig. 2(a), the duration of the I regime is too short but the dynamics
even exhibits a transition to an intermediate V regime that is then followed by a final transition to
the asymptotic IV regime as hmin → 0. We note that in both Figs. 2(a) and 2(b) it is shown from the
insets that the inertial regime is exited when Relocal becomes sufficiently small.

Figure 3 shows the variation of the prefactor A with time remaining until pinch-off reported
in [44] [Figs. 3(a) and 3(b)] and the evolution of A obtained with our sharp-interface algorithm
[Figs. 3(c)–3(f)]. Following [37] and as in [44], we determine A from the slope of h3/2

min = A3/2τ =
A3/2(tb − t ) versus time [cf. Eq. (1)] which does not require knowledge of and/or sidesteps the
estimation of the breakup time by extrapolation. The results of Figs. 3(c) and 3(e) make plain that
as Oh → 0, not only does the computed value of A approach the theoretical value of A

.= 0.717
but the system follows the inviscid scaling law over several decades of variation in τ and/or hmin.
The new simulations predict that when Oh = 5 × 10−4, A = 0.713, which is within 0.6% of the
value predicted from theory, and that when Oh = 2.5 × 10−4, A = 0.717, which agrees with the
theoretical value to three decimal places. A comparison of the new results of Fig. 3(c) with those
of Fig. 3(a) makes plain that the sharp-interface algorithm of this paper has achieved a number
of improvements with respect to the earlier results: The curve depicting the variation of A with τ

determined by the present sharp-interface algorithm is devoid of wiggles, the time period over which
the inviscid regime is observed is much longer, and a more accurate prediction has been made of the
value of A.

As hmin continues to decrease, viscous effects come into the picture, as shown in Fig. 2. In
Ref. [44] the authors illustrate this fact by replotting the time evolution of the prefactor as A
versus time remaining until pinch-off nondimensionalized by the viscous time tμ ≡ μ3/ργ 2, viz.,
τ̃ /tμ ≡ τ/Oh3. Figure 3(b) and 3(d) show the variation of A with τ/Oh3 reported in [44] and
determined with the algorithm of this paper. Additionally, we show in Fig. 3(f) the variation of
A with the minimum thread radius nondimensionalized by the viscous length lμ = μ2/ργ , viz.,

L112001-6



BREAKUP OF A LOW-VISCOSITY LIQUID THREAD

FIG. 4. Suitably rescaled interface shapes in the vicinity of the minimum thread radius, which is located
at (r, z) = (hmin, zmin), obtained from simulations that show the collapse of the shapes onto the double-cone
inviscid similarity profile. The two curves corresponding to the two smallest values of hmin are nearly
indistinguishable as they virtually fall on top of one another. Here Oh = 5 × 10−4, λ = 20, and ε = 0.1.

h̃min/lμ ≡ hmin/Oh2. Whereas the data far from pinch-off collapse onto one curve when A is plotted
against τ or hmin, the data near pinch-off collapse nicely onto one master curve when A is plotted
against τ/Oh3 or hmin/Oh2.

When the system is in the inviscid regime and before it transitions out of that regime into the
viscous regime, the interface profiles in the vicinity of hmin can be suitably collapsed to illustrate
not only the self-similarity of the dynamics but also the double-cone structure that is now well
known from theory, simulations, and experiments. Figure 4 shows these collapsed shapes obtained
with the new algorithm when Oh = 5 × 10−4. We also note that these shapes too are devoid of
wiggles even at the latest times in contrast to the earlier work by Deblais et al. [44].

V. CONCLUSION

The topic of the thinning and pinch-off of liquid threads of Newtonian fluids has remained a rich
and rewarding subject despite nearly 200 years of continuous study (see, e.g., [1,2,14,15,17,71]).
The results presented in this paper on certain details of the flow in the vicinity of the pinch-off
singularity for low-viscosity or nearly inviscid fluids are especially relevant and timely given the
growing interest in the breakup of drops and jets of liquid metals [7–9,24,43].

According to the foregoing results and especially those presented in Figs. 2 and 3, liquid drops
and jets of Oh � 10−3 thin as if the fluid were inviscid as the minimum radius of the drop or jet falls
by four (or more) orders of magnitude from macroscopic to molecular scales. In the experiments
with mercury carried out in [35], lμ = 0.35 nm. Therefore, if the initial jet radius in Fig. 2 were
R = 350 μm, viscous effects would be negligible until the minimum neck radius of a thinning
mercury jet fell by about five orders of magnitude or below 3.5 nm, which is of the order of the limit
of applicability of continuum mechanics. Burton et al. [35] found that the mercury bridges in their
experiments followed the inviscid scaling law with the 2/3 power-law exponent until the minimum
neck radius fell to about a few nanometers. In conclusion, it would be both physically realistic and
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computationally efficient to model the dynamics of drop and jet breakup when Oh � 1 by treating
the fluid as inviscid and using a potential flow code [27,58,59,69].
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