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Reduced-order Galerkin models of plane Couette flow
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Reduced-order models were derived for plane Couette flow using Galerkin projection,
with orthonormal basis functions taken as the leading controllability modes of the lin-
earized Navier-Stokes system for a few low wave numbers. Resulting Galerkin systems
comprise ordinary differential equations, with a number of degrees of freedom ranging
from 144 to 600, which may be integrated to large times without any indication of numer-
ical instability. The reduced-order models so obtained are also found to match statistics of
direct numerical simulations at Reynolds number 500 and 1200 with reasonable accuracy,
despite a truncation of orders of magnitude in the degrees of freedom of the system. The
present models offer thus an interesting compromise between simplicity and accuracy in
a canonical wall-bounded flow, with relatively few modes representing coherent structures
in the flow and their dominant dynamics.
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The complexity of the Navier-Stokes equation has motivated the development of reduced-order
models (ROMs) over the years. By reducing a full model to a simplified system, computational gains
may be achieved, but, perhaps more importantly, one greatly simplifies the dynamics, allowing a
closer inspection of the mechanisms at play [1,2]. ROMs are also important to derive flow control
schemes [3], as obtaining control laws may become prohibitively expensive when dealing with the
full system.

A widespread technique for model reduction is Galerkin projection, where partial differential
equations are projected onto a reduced set of modes that form a basis of a subspace of interest
[4]. This is also attractive as such modes may be related to coherent structures in flows [5].
When Galerkin projections are applied to three-dimensional spatial modes, one obtains a system of
ordinary differential equations that models the time evolution of mode amplitude [2], and one may
easily explore the interplay between coherent structures, or modes, by examining energy exchanges
in the system [6,7]. In some cases, Fourier modes may be directly used in a Galerkin projection [1,8],
but in more complex flows, with nonhomogeneous directions, Fourier modes may not be applicable.
A common choice of modes is based on proper orthogonal decomposition (POD) of numerical
or experimental databases. POD provides an orthonormal basis that is optimal in representing the
energy of the database at hand, and, for that property, was chosen in the derivation of a few ROMs
in the literature [2,9–11].

Unlike Galerkin models built with analytical basis functions [1,7,12,13], it is often mentioned
that numerical Galerkin systems built using POD require a closure model to represent neglected
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modes, as discussed by Grimberg et al. [14] and Callaham et al. [15]; otherwise, one may obtain
numerically unstable ROMs. Such closure models were developed in the early work of Aubry et al.
[9], and modeling works have attempted various forms of closure in order to obtain a numerically
stable and accurate Galerkin system [10,11,15]; a comprehensive review is provided by Ahmed et al.
[16]. In this work, we derive numerical Galerkin models for Couette flow with arbitrary order, which
will be shown to be numerically stable and reproduce standard turbulence statistics with reasonable
accuracy. This raises questions on the actual need of closure models to stabilize Galerkin models.
Plane Couette flow is an ideal case for such a study, as a canonical flow for studies of transition and
of wall-bounded turbulence. Successful model reductions of the Navier-Stokes system have already
been obtained, either by a Galerkin projection along a spatial direction [17], or by restricting the
possible nonlinear interactions in the system [18]. Moreover, it is known that this flow is dominated
by coherent structures spanning the entire space between walls [19–21], which may be modeled
using the linearized Navier-Stokes system [22–25]; such a feature enables the description of the
flow with a low or moderate number of modes representing coherent structures.

Following the same conventions in [7], we consider incompressible plane Couette flow in
Cartesian coordinates (x, y, z) corresponding to streamwise, wall-normal, and spanwise directions,
with a zero pressure gradient along x. Quantities are normalized by wall velocity and half-wall
separation, such that the walls are placed at y = ±1 and move with velocity u = ±1. The velocity
vector u, taken as fluctuations around the laminar solution u0 = [y 0 0]T , has components u,
v, and w along each Cartesian coordinate. We consider a computational domain with periodic
boundary conditions in x and z, with lengths given by Lx and Lz, respectively. Nonslip boundary
conditions are imposed on the walls at y = ±1.

Galerkin models are obtained based on an inner product defined as

〈f, g〉 = 1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0
f (x, y, z) · g(x, y, z)dxdydz, (1)

which for velocity fields in incompressible flows corresponds to the volume-averaged kinetic energy.
We consider a modal decomposition of the velocity fluctuations u around the laminar solution

u0 = [y 0 0]T as

u(x, y, z, t ) =
∑

j

a j (t )v j (x, y, z), (2)

where each of the spatial modes v j (x, y, z) satisfies the continuity equation and the boundary
conditions, forming an orthonormal basis. We consider the Navier-Stokes equation for fluctuations
around the laminar solution,

∂u
∂t

+ (u0 · ∇)u + (u · ∇)u0 + (u · ∇)u = −∇p + 1

Re
∇2u, (3)

where p is the pressure. Inserting the decomposition of Eqs. (2) in (3), and taking an inner product
with ui, leads to a system of ordinary differential equations given by

dai

dt
= 1

Re

∑
j

Li, ja j +
∑

j

L̃i, ja j +
∑

j

∑
k

Qi, j,ka jak, (4)

where

Li, j = 〈∇2vj, vi〉, (5)

L̃i, j = −〈[(vj · ∇)u0 + (u0 · ∇)vj], vi〉, (6)

Qi, j,k = −〈(vj · ∇)vk, vi〉. (7)
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TABLE I. Galerkin systems of this work.

N kx/α nmodes,y kz/β

144 0, 1 16 −1, 0, 1
360 0, 1 24 −2, −1, 0, 1, 2
600 0, 1, 2 24 −2, −1, 0, 1, 2

The pressure is eliminated from the equations using the divergence-free property of the modes. The
coefficients in the ODE system of Eq. (4) include two linear terms Li, j and L̃i, j , corresponding,
respectively, to the viscous term and to interaction with the laminar solution u0. The quadratic term
Qi, j,k represents nonlinear interactions among modes.

Orthogonal modes vi may be obtained as eigenfunctions of the controllability Gramian, con-
sidering the linearized Navier-Stokes system forced with white noise in space and time [26,27].
We follow the formulation of Jovanovic and Bamieh [27] and obtain orthonormal velocity modes
considering as base flow the laminar solution for Couette flow, considering white-noise forcing in
the momentum equations. This is done for combinations of streamwise and spanwise wave numbers
kx and kz, as indicated in Table I. The supplemental material [28] shows results for Galerkin systems
with other numbers of modes, all of which display behavior similar to the three ROMs studied here.
A normal-mode ansatz for controllability modes implies a dependence vi(x, y, z) = v̂i(y)ei(kxx+kzz),
which leads to complex-valued modes; we deal here with real modes by taking separate modes for
the real and imaginary parts of v̂i(y)ei(kxx+kzz), which leads to a pair of modes that only differ by a
phase shift of π/2. The wave numbers kx and kz are taken as integer multiples of the fundamental
wave numbers α = 2π/Lx and β = 2π/Lz, respectively, in order to match the periodicity imposed
by the domain dimensions Lx and Lz. Since modes with (−kx,−kz ) are simply complex conjugates
of (kx, kz ), only positive kx is considered; for kx = 0, only kz � 0 needs to be included in the basis.
For kx = kz = 0, corresponding to mean-flow modes, the linearized operator becomes singular and
we need to resort to a different option. In this case, we have taken Stokes modes, eigenfunctions of
viscous diffusion, as in earlier works [1]. The number of controllability modes in Table I was chosen
to ensure the stability of the laminar solution of Couette flow; stronger truncations were seen to lead
to an unstable laminar solution, which would not be physical.

The choice of controllability modes is similar to the use of POD to derive several reduced-order
models in the literature [2,9,11], as controllability modes correspond to POD for the linear system
driven with white noise [26,27,29,30]. The leading modes represent streaks and rolls, which are
dominant coherent structures in Couette flow, and also for other wall-bounded turbulent flows
[31,32]; some sample modes are shown and discussed in the supplemental material [28]. The
advantage of using controllability modes is that one does not need a full numerical or experimental
database to obtain POD modes; here, the linearized operator is used to obtain an orthonormal basis
that approximates large-scale structures in the flow. Unless otherwise specified, for the present
ROMs we have constructed bases with controllability modes taken at a low Reynolds number,
Re = 100. Values of Reynolds number matching the cases explored here, Re = 500 and 1200,
were also attempted, but led to slightly worse quantitative agreement with reference statistics; we
will later illustrate some results for a basis constructed using Re = 500. Controllability modes for
higher Re become increasingly localized in space or oscillatory, which contrasts with observations
of coherent structures for Couette flow [19–21]. The better performance of a basis constructed at
low Re may be a further indication that linearized models obtained considering additional viscous
effects, akin to an eddy viscosity, may be a better representation of coherent structures in turbulent
flows, as explored in recent works [33,34]. It is nonetheless interesting to use a fixed set of modes
for various Reynolds numbers, as it allows us to use a single ROM for several Re, such that invariant
solutions and bifurcations may be studied with ease [13,35].
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FIG. 1. Time series of the first mode coefficient, a1(t ), from an integration of the N = 144 ROM at Re =
1200.

The controllability modes are obtained using spectral methods, with a Chebyshev discretization
in y following Weideman and Reddy [36], considering 65 Chebyshev polynomials for all cases,
consistently with discretizations used in DNS. The direct and adjoint linearized operators are written
in matrix form, and the resulting Lyapunov equation (which, in matrix form, becomes a Sylvester
equation) is solved numerically using the LAPACK routine ztrsyl in its MATLAB implementation.
The modes so obtained were verified to satisfy the continuity equation to machine precision.
Quadratures were carried out using Clenshaw-Curtis quadrature in y [37], and the standard trape-
zoidal rule in x and z as it has spectral accuracy for a Fourier discretization [38]. The domain
considered here has lengths (Lx, Lz ) = (2π, π ), a domain size often used in studies of transitional
Couette flow [39], discretized with 16 points in x and z and 65 points in y; the lower number of
points in x and z is nonetheless well beyond the required amount for dealiasing the few Fourier
modes at hand. Time integration is carried out with a standard 4th/5th Runge-Kutta method for
3000 nondimensional time units in order to collect statistics. A random initial condition was taken,
and statistics are collected after a transient of 500 time units. Albeit not shown here, the models
display transient chaos, as in our earlier work [7], but with longer lifetimes, well beyond the 3000
time units considered for statistics. The models have been shown to be numerically stable, with
integrations carried out to much higher times, up to 106, which is much longer than typical direct
numerical simulations of turbulent Couette flow. A sample time series in shown in Fig. 1, with
integration carried out for 105 time units without any sign of numerical instability, such as reported
in the literature to occur in about 100 nondimensional time units [14].

The statistics obtained with the Galerkin systems of Table I are shown in Fig. 2 for Re = 500.
We show the mean velocity profile U , which results from the kx = kz = 0 modes in the ROM,
and the root-mean-square (RMS) values of the three velocity components u, v, and w. Results
are compared to reference DNS statistics obtained with Channelflow [40], with a grid resolution
of (Nx, Ny, Nz ) = (32, 65, 32), times a 3/2 factor in Nx and Nz for dealiasing; the DNS thus has
a number of degrees of freedom (DoFs) of about 105. We initially focus on the results obtained
with Re = 100 controllability modes, displayed in full colored lines. The various ROMs display a
reasonable agreement with the DNS statistics, with a somewhat lower accuracy for the strongest
truncation with N = 144 DoFs. The present reductions of two to three orders of magnitude retain
nonetheless the salient features of turbulent Couette flow. For the truncations at hand, which are
coarse approximations of the full system, we are still far from a monotonic convergence to DNS.
Such a nonmonotonic convergence was observed for turbulent channel flow solved with coarse
numerical resolutions [41,42]. One would thus expect monotonic convergence to reference statistics
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FIG. 2. Statistics of ROMs and DNS for Re = 500. Full colored lines show results obtained with Re = 100
controllability modes; green dashed line for Re = 500 controllability modes.

only for a number of DoFs significantly higher than the present models; however, it is encouraging
that all present discretizations lead to statistics in fair agreement with DNS data. The present ROM
displays an agreement to reference DNS results that is equal to or better than earlier POD-Galerkin
ROMs for plane Couette flow [10,11], which use DNS data to calibrate closure models. Here, no
calibration is performed, and accurate dynamics are obtained by simply increasing the number of
modes in the basis. The agreement in statistics is also equal to or better than what is obtained when
some nonlinear interactions in the Navier-Stokes system are neglected [43].

The model results are compared to DNS for Re = 1200 in Fig. 3. In this case, the DNS was
carried out with (Nx, Ny, Nz ) = (64, 65, 64) to maintain typical resolutions of direct numerical
simulation, leading to a number of DoFs of about 5 × 105. The present ROMs thus have a reduction
of three to four orders of magnitude in the number of DoFs, and they maintain nonetheless a
reasonable quantitative agreement with reference statistics. The profiles in y display oscillations
in some of the cases, which we attribute to a low number of controllability modes to discretize the y
direction. This is observed for the w statistics of the N = 144 ROM for Re = 500, and for the three
ROMs as Re is increased to 1200 in Fig. 3.

The green dashed lines in Figs. 2 and 3 show statistics of the largest ROM, constructed with
controllability modes taken at Re = 500. For the “design” Re = 500, this ROM has almost the same
velocity statistics as the one constructed with Re = 100 controllability modes. This is reassuring, as
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FIG. 3. Statistics of ROMs and DNS for Re = 1200. See the caption of Fig. 2.

it shows that the performance of the present models does not depend crucially on a specific choice
of basis functions. However, when the basis is “off-design” at Re = 1200 the model statistics are
further from the reference results. All ROMs tested are nonetheless stable and lead to reasonable
statistics, but we observe that the convergence to DNS results depends on the choice of basis
functions. In what follows, we will restrict ourselves to the ROMs constructed with Re = 100
controllability modes.

A further check of the accuracy of the ROMs was made by projecting the DNS data onto the
modal basis vi as

a(DNS)
i (t ) = 〈uDNS, vi〉, (8)

and then computing the RMS values of time coefficients ai, obtained either from the ROM or from
the projection of DNS data onto the modal basis following Eq. (8). Results are shown in Fig. 4 for
the largest ROM with N = 600. The results for both Reynolds numbers show RMS values of modes
decaying with increasing mode number, as expected as one goes from larger to smaller structures in a
cascade. Focusing on the results for Re = 500, we observe similar trends between ROM results and
DNS projections, which indicates that the ROM accurately represents the dynamics of Couette flow
in the subspace spanned by the modal basis. However, the RMS values in the ROM are generally
higher than the DNS projections, which may be understood by the lower number of DoFs in the
ROM. In the DNS the energy may be transferred to smaller structures in higher wave numbers,
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FIG. 4. Root-mean-square values of temporal coefficients ai(t ) obtained either from a ROM simulation or
from projection of DNS data onto the ROM modal basis. Results for the N = 600 ROM.

a process that is halted in the ROM as one truncates the basis, a phenomenon known as spectral
blocking [44]. This is more visible in the Re = 1200 results, where RMS values of the ROM
are significantly higher than the DNS projections, especially for higher-order modes, which is a
symptom of accumulation of energy at higher modes due to their inability to transfer such energy to
even smaller structures.

In summary, the ROMs obtained in this work, with a few hundred degrees of freedom, have
been shown to represent the statistics and dynamics of plane Couette flow with moderate Reynolds
number. The various truncations explored here all led to Galerkin systems which may be integrated
in time without numerical instabilities, with model results that are reasonably close to reference
DNS data despite the strong truncations. This indicates that inclusion of closure models [15,16]
is not an essential feature of Galerkin models that are robust and accurate, at least for the flow
configuration at hand, Reynolds number, choice of modes, and selected truncations. No numerical
instability was observed in any of the present models, and a possible reason for this was the use of the
same numerics of DNS in each step in the derivation of the ROM: the same pseudospectral methods
of the DNS were used to compute derivatives and integrals. The robustness of the present model is
similar to other Galerkin models built with analytical basis functions, which could be extensively
integrated to large times without reported numerical issues [7,12,45]. However, inclusion of closure
models may be beneficial for model accuracy, similarly to the use of subgrid models in large-eddy
simulations, especially if one wishes to model high-Reynolds number flows with small dissipative
lengthscales, which may require a large number of modes. The use of plane Couette flow, with its
simple geometry and nonetheless complex dynamics, plenty of available literature on transition and
turbulence, and the availability of open-source codes for direct numerical simulation, is suggested
as a benchmark case for further development of reduced-order models.

The present ROMs open a number of interesting directions for further work on turbulence
dynamics. It is straightforward to include or remove modes of interest, or even specific nonlinear
interactions, and inspect the effect on the dynamics, as was done in our previous work [7]. This may
help to probe further wall-bounded turbulence in search of nonlinear interactions with a dominant
effect on dynamics. The observation that all ROMs in this work reproduce, within some error
tolerance, the expected statistics of turbulent Couette flow indicates that the bulk of the dynamics
may be described by nonlinear interaction involving a few modes representing coherent structures.
Nonlinear interactions involving streamwise wave numbers have successfully been truncated in
recent works [18,46,47], and the present ROMs also involve truncations in wall-normal and span-
wise directions, retaining nonetheless a good amount of the underlying dynamics. Our ongoing
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work on turbulent channel flow has also led to stable ROMs with similar accuracy, showing that
the present observations are not specific to Couette flow. It is of course clear that in order to
obtain DNS-type agreement with reference quantities, one needs DNS-range numbers of degrees
of freedom, but significantly reduced systems may nonetheless provide an interesting compromise
between simplicity and fidelity.
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[27] M. R. Jovanović and B. Bamieh, Componentwise energy amplification in channel flows, J. Fluid Mech.
534, 145 (2005).

[28] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.L102601 for
further information on controllability modes used to build the models, and for comparison of other ROMs,
with various truncation levels, with reference DNS data.

[29] M. Ilak and C. W. Rowley, Modeling of transitional channel flow using balanced proper orthogonal
decomposition, Phys. Fluids 20, 034103 (2008).

[30] S. Bagheri, D. Henningson, J. Hoepffner, and P. Schmid, Input-output analysis and control design applied
to a linear model of spatially developing flows, Appl. Mech. Rev. 62, 020803 (2009).

[31] L. H. Hellström, I. Marusic, and A. J. Smits, Self-similarity of the large-scale motions in turbulent pipe
flow, J. Fluid Mech. 792, R1 (2016).

[32] L. I. Abreu, A. V. Cavalieri, P. Schlatter, R. Vinuesa, and D. S. Henningson, Spectral proper orthogonal
decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows, J. Fluid
Mech. 900, A11 (2020).

[33] P. Morra, O. Semeraro, D. S. Henningson, and C. Cossu, On the relevance of reynolds stresses in resolvent
analyses of turbulent wall-bounded flows, J. Fluid Mech. 867, 969 (2019).

[34] E. Pickering, G. Rigas, O. T. Schmidt, D. Sipp, and T. Colonius, Optimal eddy viscosity for resolvent-
based models of coherent structures in turbulent jets, J. Fluid Mech. 917, A29 (2021).

[35] J. Moehlis, H. Faisst, and B. Eckhardt, Periodic orbits and chaotic sets in a low-dimensional model for
shear flows, SIAM J. Appl. Dyn. Syst. 4, 352 (2005).

[36] J. A. Weideman and S. C. Reddy, A matlab differentiation matrix suite, ACM Trans. Math. Softw. 26, 465
(2000).

[37] L. N. Trefethen, Spectral Methods in MATLAB (Society for Industrial Mathematics, 2000), Vol. 10.
[38] L. N. Trefethen and J. Weideman, The exponentially convergent trapezoidal rule, SIAM Rev. 56, 385

(2014).
[39] T. Kreilos, B. Eckhardt, and T. M. Schneider, Increasing Lifetimes and the Growing Saddles of Shear

Flow Turbulence, Phys. Rev. Lett. 112, 044503 (2014).
[40] J. F. Gibson, F. Reetz, S. Azimi, A. Ferraro, T. Kreilos, H. Schrobsdorff, M. Farano, A. F. Yesil, S. S.

Schütz, M. Culpo, and T. M. Schneider (unpublished).
[41] J. Meyers and P. Sagaut, Is plane-channel flow a friendly case for the testing of large-eddy simulation

subgrid-scale models? Phys. Fluids 19, 048105 (2007).
[42] A. Rasam, G. Brethouwer, P. Schlatter, Q. Li, and A. V. Johansson, Effects of modelling, resolution and

anisotropy of subgrid-scales on large eddy simulations of channel flow, J. Turbul. 12, N10 (2011).

L102601-9

https://doi.org/10.1063/1.4931776
https://doi.org/10.1017/S0022112095000978
https://doi.org/10.1063/1.2844476
https://doi.org/10.1017/S0022112009992151
https://doi.org/10.1016/j.euromechflu.2014.03.005
https://doi.org/10.1017/jfm.2020.86
https://doi.org/10.1063/1.858894
https://doi.org/10.1017/S0022112005004295
http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.L102601
https://doi.org/10.1063/1.2840197
https://doi.org/10.1115/1.3077635
https://doi.org/10.1017/jfm.2016.100
https://doi.org/10.1017/jfm.2020.445
https://doi.org/10.1017/jfm.2019.196
https://doi.org/10.1017/jfm.2021.232
https://doi.org/10.1137/040606144
https://doi.org/10.1145/365723.365727
https://doi.org/10.1137/130932132
https://doi.org/10.1103/PhysRevLett.112.044503
https://doi.org/10.1063/1.2722422
https://doi.org/10.1080/14685248.2010.541920


CAVALIERI AND NOGUEIRA
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