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A solid, withdrawn from a wetting liquid bath, entrains a thin liquid film. This simple
process, first described by Landau, Levich, and Derjaguin (LLD), is commonly observed
in everyday life. It also plays a central role in liquid capture by animals, and is widely
used for surface-coating purposes in industry. Motivated by the emerging interest in the
mechanics of very soft materials, and in particular the resulting elastocapillary coupling,
we develop a dip-coating model that accounts for the additional presence of a soft solid
layer atop the rigid plate. The elastic response of this soft layer is described by a Winkler’s
foundation. Using a combination of numerical, scaling, and asymptotic-matching methods,
we find a new softness-dependent power-law regime for the thickness of entrained liquid at
a small capillary number, which corresponds to a modified physics at play in the dynamic
meniscus. The crossover between this regime and the classical dip-coating one occurs when
the substrate’s deformation is comparable to the thickness of the entrained liquid film.
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A solid object, withdrawn from a wetting liquid bath, entrains a thin liquid film via viscous
forces. Such a process is called dip coating and is commonly used in industry for surface treatment
with specific (e.g., optical) properties [1,2]. The central quantity of interest is the thickness h∞ (see
Fig. 1) of the entrained liquid film. Using asymptotic-matching methods, Landau, Levich, [3] and
Derjaguin [4] were the first ones to calculate this thickness for a Newtonian liquid coating a rigid
substrate. Over the last decades, the LLD description has been extended in several ways [5]. The
film thickness can deviate from the classical prediction because of fluid inertia [6,7], the presence
of surfactants at the liquid-air interface [8], the non-Newtonian properties of the liquid [9–14], or
the roughness of the solid [15,16], to cite a few.

Perhaps surprisingly, the influence of the softness of the substrate in the dip-coating process does
not seem to have been considered so far. However, a recent and growing interest was generally
devoted to the mechanics of soft materials (Young’s modulus E ∼ kPa), with applications towards
micrometric and biomimetic systems [17–20]. When wetted by droplets, such materials exhibit
rich soft-wetting properties, as contact-line capillary forces (through, e.g., the liquid-air surface
tension γ ) are sufficient to deform them [19]. This generates, e.g., interfacial ridges [18,20], which
considerably change the spreading and motion of droplets in comparison with the case of rigid
substrates [21,22].

In a dip-coating process involving soft surfaces, the Laplace pressure is expected to induce
elastic deformations that modify the flow and the entrained thickness (cf. Fig. 1). This situation is
reminiscent of soft leveling [23], and might have implications in liquid capture by animals [24–26]
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FIG. 1. Schematic of the soft dip-coating problem. The inset exhibits a zoom in the dynamic-meniscus
zone where the flow is localized. The liquid-air interfacial profile is denoted h(z) and its curvature induces a
negative Laplace pressure that generates a deformation δ(z) of the soft substrate.

through, e.g., the softness and geometry of the tongue [27]. In this Letter we thus study theoretically
the influence of the elastic deformation of a soft substrate on the thickness of liquid entrained in dip
coating. Mainly, a new, soft-LLD regime is identified, and characterized using a similarity solution.

A schematic of the system is shown in Fig. 1. We consider a rigid substrate covered by an elastic
layer. The ensemble is withdrawn with a velocity V from a reservoir of liquid of viscosity η and
density ρ. We suppose that the liquid wets the soft surface. The problem is assumed to be invariant in
the y direction, and is solved using a LLD-like asymptotic-matching method [3,28]. We focus on the
dynamic-meniscus zone (see inset of Fig. 1) and use the lubrication approximation to characterize
the steady liquid-air interface profile h(z). Gravity is neglected in this dynamic-meniscus region,
which is known to be a valid assumption [28] at small entrained thickness. The key element
introduced in this work is that the hydrodynamic pressure induces a normal elastic deformation
δ(z) of the soft layer. The thickness of the liquid layer is thus given by h − δ, which modifies the
thin-film equation [29] to the form

γ

3η
[h(z) − δ(z)]3h′′′(z) + V [h(z) − δ(z)] = V h∞, (1)

where a prime denotes one spatial derivative with respect to z, and V h∞ is the flow rate (per unit
length). Far from the bath, the liquid-film thickness reaches h∞, such that

h(z → ∞) = h∞. (2)

Following the standard procedure [28,30], matching to the static meniscus is achieved via the
boundary condition

h′′(z → −∞) =
√

2

�cap
, (3)

where �cap = √
γ /(ρg) is the capillary length.

To close the problem, we need to specify the deformation δ. As a minimal description of the
mechanical response of the elastic layer, we use the Winkler’s foundation [31], which is valid for
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FIG. 2. Normalized thickness of the entrained liquid film versus capillary number, for different values of
the dimensionless softness parameter L = ρgt/E∗, as obtained from the numerical integration of Eq. (5). The
black dotted line represents the classical LLD law of Eq. (6) and the gray dashed line shows the soft-LLD
law of Eq. (7). The slope triangles indicate the power-law exponents of Eqs. (6) and (7). The inset shows the
thickness of the entrained film normalized by the LLD scaling versus the dimensionless parameter Ca2/3/L.

thin-enough compressible materials under small deformations [32]. Essentially, the soft layer is
described as a mattress of independent springs. Thus, the normal deformation is simply proportional
to the local pressure, as

δ(z) = tγ

E∗ h′′(z), (4)

with the layer thickness t and the effective modulus E∗ = E (1−ν)
(1+ν)(1−2ν) , where ν denotes the Poisson

ratio (ν �= 1/2). The length scale �ec = √
tγ /E∗ is the relevant elastocapillary length for the current

geometry and elastic response [19]. Inserting Eq. (4) into Eq. (1), we find a closed differential
equation

(h − �2
ech′′)3h′′′ = 3Ca

(
h∞ − h + �2

ech′′), (5)

where Ca = ηV/γ is the capillary number. The equation contains �ec, while the matching condition
[see Eq. (3)] involves �cap. Therefore, besides Ca, the problem contains another dimensionless soft-
ness parameter L = (�ec/�cap)2 = ρgt/E∗, which characterizes the relative importance of softness
in the problem.

We numerically solve Eq. (5) using a fourth-order Runge-Kutta scheme, where the boundary
condition of Eq. (2) is imposed via the solution of the linearized version of Eq. (5) [33]. The
numerical solution behaves as h ∼ z2 as z → −∞, and we adapt the value of h∞ via a shooting
algorithm to achieve the curvature-matching condition of Eq. (3).

Figure 2 reports the normalized thickness of the entrained liquid film as a function of the capillary
number, for three different dimensionless softness parameters. Two distinct scaling regimes can be
observed. At large Ca, we recover the classical LLD power law of the rigid case [3]

h∞ ≈ 0.946 �cap Ca2/3. (6)

At finite values of the softness parameter L, however, one finds that the result deviates from Eq. (6) at
small Ca. The larger the L, the stronger the departure from the classical scaling. At small dip-coating
velocities, we find a novel, soft-LLD power-law regime for which the thickness of the entrained
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FIG. 3. Profiles of the liquid-air interface (blue) and the normal deformation of the elastic layer (green)
normalized by the capillary length, as functions of the vertical position normalized by the capillary length, as
obtained from the numerical integration of Eq. (5). The dimensionless softness parameter is set to L = 0.1.
The capillary numbers are Ca = 10−1, 10−2, 10−3, and 10−4, in (a)–(d), respectively.

liquid film is given by

h∞ = 2−1/4 2

3

√
�ec�cap Ca1/2. (7)

The determination of the scaling and prefactor of Eq. (7) will be discussed below. Our central result
is thus that, at small-enough velocity, the wall softness enhances the dip-coating efficiency with
respect to the classical LLD scenario.

The emergence of a soft-LLD regime at low velocity can be understood by comparing the
typical elastic deformation to the thickness of the entrained liquid film. As z → −∞, the normal
deformation of the soft layer, which is proportional to the curvature of the liquid-air interface in the
Winkler’s model, reaches

δ(z → −∞) =
√

2 �2
ec/�cap, (8)

as obtained from injecting Eq. (3) into Eq. (4). Interestingly, Eq. (8) does not involve the velocity.
Therefore, the relative magnitude of the elastic deformation versus the thickness of the entrained
liquid film increases with decreasing Ca. This explains why the soft regime emerges at small
velocity. Estimating the rigid-to-soft crossover to take place when the normal elastic deformation
and the thickness of the entrained liquid film are of the same order [i.e., δ(z → −∞) ∼ �capCa2/3],
we obtain a critical capillary number Ca∗ ∼ L3/2, which is exactly the scaling obtained by balancing
Eqs. (6) and (7). As shown in the inset of Fig. 2, the thicknesses of the entrained liquid films collapse
onto a single curve when using rescalings involving the LLD scaling and dimensionless softness
parameter L. To verify the above scenario, we show in Fig. 3 both the liquid-air interface profile
and the normal deformation profile of the elastic layer versus the vertical position, for a situation
where Ca∗ = 10−3/2 
 0.03. For Ca < Ca∗, the normal elastic deformation is found to be larger
than the thickness of the entrained liquid film (and vice versa), thus confirming the above criterion.

We now turn to a detailed analysis of the soft LLD regime, including the derivation of Eq. (7).
Figure 4(a) depicts the typical problem structure in the soft regime, i.e., Ca � Ca∗, through four
main regions. In contrast to the rigid case, the flat-film region (i) does not immediately connect to
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FIG. 4. (a) Schematic showing the four regions of interest: (i) at large z, the entrained liquid film is flat
and the elastic layer is not deformed; (ii) reducing z, one enters the elastocapillary region, with a constant
fluid thickness and a progressively deformed elastic layer; (iii) a dynamic meniscus (“boundary layer”) then
connects the elastocapillary region to the static meniscus; (iv) the static meniscus. Note that the schematic is
reoriented with respect to Fig. 1. (b) Profiles of the liquid-air interface (blue) and the normal deformation of the
elastic layer (green) normalized by the typical normal deformation of the soft layer [see Eq. (8)], as functions
of the vertical position rescaled by the capillary length, as obtained from the numerical integration of Eq. (5)
with Ca = 10−9 and L = 0.01. The dotted pink line corresponds to the outer elastocapillary solution given by
Eq. (10), where the boundary layer position is indicated with a vertical dashed line. The inset shows a zoom of
the boundary layer region, where the black dashed line displays the boundary-layer solution of Eq. (12). In the
inset, the profiles are plotted with the self-similar variables.

the dynamic meniscus/boundary layer (iii): instead, one observes an intermediate elastocapillary
region (ii) for which the elastic layer deforms significantly while the liquid-film thickness h − δ

remains approximately constant and equal to h∞ [see also Figs. 3(c) and 3(d)]. This fundamentally
changes the structure of the boundary layer, and the subsequent matching to the static meniscus (iv).

We describe the elastocapillary region by assuming that it is essentially static, i.e., devoid
of hydrodynamics, owing to the nearly constant liquid-film thickness. Inserting h − δ = h∞ in
Eq. (4) and solving the obtained differential equation, we get the liquid-air interface profile in the
elastocapillary region

hec(z) 
 h∞ + A e−z/�ec , (9)
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where A is an integration constant. Note that this solution corresponds to nullifying the right-hand
side of Eq. (5), i.e., by removing hydrodynamic effects.

Next, we need to connect the static elastocapillary solution (ii) to the static meniscus (iv).
The latter exhibits a finite curvature

√
2/�cap, so that the exponentially growing curvature of the

elastocapillary solution in Eq. (9) with decreasing z must saturate. This saturation is achieved via a
hydrodynamic boundary layer (iii). Introducing the location zc of the boundary layer, we first rewrite
the outer elastocapillary solution as

hec(z) 
 h∞ +
√

2
�2

ec

�cap
e(zc−z)/�ec . (10)

This elastocapillary solution perfectly describes the numerical liquid-air interface profile for z > zc

[see Fig. 4(b)] [34]. Below zc, the elastic deformation δ saturates to its limiting value of Eq. (8). The
inset of Fig. 4(b) provides a zoom in the boundary layer where the elastic deformation smoothly
approaches its saturation value.

To characterize the boundary layer, we consider the vicinity of zc, and define the similarity
variable ξ = (z − zc)/λ, where λ is the unknown boundary-layer width [see Fig. 4 (a)]. We make
the following ansatz:

h(z) = h∞ +
√

2
�2

ec

�cap

(
1 − Z + 1

2
Z2

)
+ BH(ξ ). (11)

This expression contains the second-order expansion of hec(z) expressed with the variable Z =
(z − zc)/�ec, while the boundary layer is described by a self-similar function H(ξ ) and a constant B.
The self-similar function must ensure the saturation of the curvature, and for that reason we define
the natural auxiliary function K = H′′. The boundary condition in Eq. (3) imposes K(ξ → −∞) =
0. On the other side, matching to the third order of the expansion of hec(z) requires that K(ξ →
∞) = −√

2ξλ3/(B�ec�cap), which after setting B = √
2λ3/(�ec�cap) reduces to K(ξ → ∞) = −ξ .

Inserting Eq. (11) in Eq. (5), we obtain at leading order in λ,

K′ = −3
K + ξ

(K + ξ − H∞)3
, (12)

where we set λ = 2−3/4Ca1/2�
3/2
cap�

−1/2
ec to remove the capillary number from the problem, and we

introduce h∞ = √
2�ecλH∞/�cap, with H∞ a numerical prefactor. These relations lead to

h∞ = 2−1/4H∞
√

�ec�capCa1/2, (13)

where we recover the scaling of Eq. (7).
The remaining task is to solve Eq. (12) subjected to the boundary conditions, which will select

the value of H∞. Towards the static meniscus, i.e., as ξ → −∞, Eq. (12) has an asymptotic solution
of the form K(ξ ) 
 3/ξ which does not depend on H∞. Besides, towards the elastocapillary region,
we expect the asymptotic behavior of the boundary layer to be of the form K 
 −ξ + C + K1(ξ )
where K1(ξ ) is a function vanishing at ξ → ∞. Here the asymptotic solution does depend on H∞
as C must satisfy 3C/(C − H∞)3 = 1. Performing a linear-stability analysis, we find that H∞ = 2/3
(and thus C = −1/3) is the only value that ensures an algebraic decay of K1 at large ξ , as required
for the matching to the elastocapillary region [35,36].

The solution of Eq. (12) with H∞ = 2/3 is plotted in the inset of Fig. 4(b), offering a perfect
description of the elastic deformation inside the boundary layer. More importantly, H∞ = 2/3
provides the sought-after prefactor present in Eq. (7), which is in perfect agreement with direct
numerical integration of Eq. (5) (see Fig. 2).

We conclude here by some rough estimates towards practical relevance of the soft-LLD scenario
exhibited in this Letter. For thin elastic layers, a significant increase of the film thickness in the
capillary number range 10−3–10−6 is expected as long as the softness parameter L is larger than
10−2 (see Fig. 2). In the case of a substrate coated with a thick elastic layer, the deformation
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does not depend anymore on the layer thickness t , and the Winkler’s foundation no longer holds.
An extension of the present model to the nonlocal elastic kernel of semi-infinite media would be
valuable. As a first estimation, the magnitude of the typical solid deformation of thick layers should
be of the same order as that of the soft-wetting ridge, i.e., typically in the range of 1–10 μm for
soft gels [19,20]. If the scenario identified in the current work through a Winkler’s foundation
remains valid with other elastic responses, the crossover to the soft-LLD regime should occur
when hLLD ∼ 10 μm. This typically corresponds to a capillary number around 10−3, which is in
the accessible range for experiments [5]. Nevertheless, we stress that the modification of the scaling
exponent of the soft-LLD regime with respect to the one in the classical LLD regime is moderate.

As a perspective, extensions of the present model to layers of arbitrary thickness, and incom-
pressible layers, as well as comparisons to experiments, would be interesting for future work. In
addition, viscoelastic properties of the soft solid may affect the results [37]. Lastly, the displacement
of a liquid meniscus on a solid occurs in various other situations [38], such as the motion of confined
bubbles in a channel [39], or the spreading of a droplet [40,41]. These problems also involve
LLD-like solutions. Hence, it would be interesting to revisit them with soft boundaries using the
present soft-LLD theory [42].
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