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Viscous flows through configurations manufactured or naturally assembled from soft
materials apply both pressure and shear stress at the solid-liquid interface, leading to
deformation of the fluidic conduit’s cross section, which, in turn, affects the flow rate-
pressure drop relation. Conventionally, calculating this flow rate-pressure drop relation
requires solving the complete elastohydrodynamic problem, which couples the fluid flow
and elastic deformation. In this Letter, we use the reciprocal theorems for Stokes flow
and linear elasticity to derive a closed-form expression for the flow rate-pressure drop
relation in deformable microchannels, bypassing the detailed calculation of the solution
to the fluid-structure-interaction problem. For small deformations (under a domain pertur-
bation scheme), our theory provides the leading-order effect of the interplay between the
fluid stresses and the compliance of the channel on the flow rate-pressure drop relation.
Our approach uses solely the fluid flow solution and the elastic deformation due to the
corresponding fluid stress distribution in an undeformed channel, eliminating the need
to solve the coupled elastohydrodynamic problem. Unlike previous theoretical studies
that neglected the presence of lateral sidewalls (and considered shallow geometries of
effectively infinite width), our approach allows us to determine the influence of confining
sidewalls on the flow rate-pressure drop relation. In particular, for the flow-rate-controlled
situation and the Kirchhoff-Love plate-bending theory for the elastic deformation, we show
a trade-off between the effect of compliance of the deforming top wall and the drag due to
sidewalls on the pressure drop. Whereas compliance decreases the pressure drop, the drag
due to sidewalls increases it. Our theoretical framework may provide insight into existing
experimental data and pave the way for the design of novel optimized soft microfluidic
configurations of different cross-sectional shapes.

DOI: 10.1103/PhysRevFluids.7.L092201

I. INTRODUCTION

Pressure-driven viscous flows through conduits manufactured from soft materials apply both
pressure and shear stress at the solid-liquid interface, leading to deformation of the cross-section,
which, in turn, affects the relationship between the flow rate q and the pressure drop �p [1–3].
Understanding this q − �p relation is important for various microfluidic, lab-on-a-chip, biomedical,
and soft robotics applications, such as pressure-actuated valves [4], passive fuses [5], pressure
sensors [6,7], soft actuators [8,9], and estimating the drug injection force [10]. Conventionally,
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calculating the flow rate-pressure drop relation requires solving the complete elastohydrodynamic
problem [11], which couples the hydrodynamics to the elastic response, or a pressure-deformation
relation is assumed a priori [12,13]. For example, recent studies used lubrication theory and
linear elasticity to obtain the solution of the coupled problem for the fluid velocity and the elastic
deformation. Then, the q − �p relation for Newtonian and complex fluids was derived from the
latter for deformable microchannels that are slender and shallow [14–19]. However, as we show,
these detailed calculations of the solution for coupled fluid-structure interaction can be bypassed, at
least in some cases, by jointly applying the reciprocal theorems for the fluidic and elastic problems.

The Lorentz reciprocal theorem has been applied widely in low-Reynolds-number fluid mechan-
ics to facilitate the calculation of integrated quantities by eliminating the need for calculating the
detailed velocity and pressure fields (e.g., Refs. [20–22]). In particular, several studies showed
the versatility of the Lorentz reciprocal theorem for evaluating the force and torque on a particle
moving in the vicinity of a deformable boundary [23–29] as well as its linear and angular velocities.
Although the integral form of the reciprocal theorem is particularly convenient for calculating
integrated hydrodynamic quantities, such as force, torque, and flow rate [22], its use has been
primarily limited to obtaining the force and torque acting on particles in flows of viscous fluids
in unbounded and semi-infinite domains [30,31]. To date, only a few studies have utilized the
reciprocal theorem to obtain the flow rate or flow rate-pressure drop relation for confined viscous
Newtonian and complex fluid flows, such as in rigid channels [32–35].

In addition to fluid mechanics, the reciprocal theorem has been used extensively in the solid
mechanics community since Maxwell [36] and Betti [37]; we refer the interested reader to the
book of Achenbach [38]. Similar to the fluidic reciprocal theorem, which relates the velocity v

and stress σ f fields of one problem to the velocity v̂ and stress σ̂ f fields of an auxiliary problem,
the elastic reciprocal theorem relates the displacement u and stress σs fields of one problem to the
displacement û and stress σ̂s fields of an auxiliary problem. Given this similarity between the fluidic
and elastic reciprocal theorems, one would expect to find the application of the theorems to fluid-
structure interaction problems involving fluid flow and elastic deformation. However, to the best of
our knowledge, no simultaneous application of the fluid and elastic reciprocal theorems has been
presented to date, particularly, for calculating the flow rate-pressure drop relation for deformable
channels.

In this Letter, we show how the reciprocal theorems for Stokes flow and linear elasticity can
be harnessed to obtain the flow rate-pressure drop relation in deformable channels of an initially
rectangular cross section, bypassing the detailed calculation of the solution to the fluid-structure
interaction problem. Employing the slenderness of the geometry and considering small deforma-
tions, we derive a closed-form expression for the flow rate-pressure drop relation under a domain
perturbation scheme. This relation accounts for the leading-order effect of the interplay between the
fluid stresses and the compliance of the channel. Our approach uses only the fluid flow solution and
the elastic deformation due to the corresponding fluid stress distribution in an undeformed channel
without the need to solve the coupled elastohydrodynamic problem. Furthermore, we show that our
theory allows determining the influence of confining lateral sidewalls on the q − �p relation, in
contrast to previous theoretical studies that neglected the presence of sidewalls and considered shal-
low geometries of effectively infinite width [14,15,17–19,39]. We illustrate the use of our approach
for the model case of a thin deformable top wall that obeys the Kirchhoff-Love plate-bending theory.
For the flow-rate-controlled situation, we show that, whereas increased compliance of the channel
decreases the pressure drop, the drag due to the sidewalls increases it.

II. PROBLEM FORMULATION AND GOVERNING EQUATIONS

Consider the incompressible steady pressure-driven flow of a Newtonian viscous fluid in a
slender and deformable channel of length �, width w, and (deformed) height h as shown in Fig. 1.
The fluid flow has velocity v = (vx, vy, vz ) and pressure distribution p, which are induced by the
imposed flow rate q. Our goal is to determine the resulting axial pressure drop �p for a given
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FIG. 1. Schematic illustration of the geometry consisting of a three-dimensional deformable channel of
length � with an initially rectangular cross section of width w and height h0. The channel contains a viscous
fluid steadily driven by an imposed flow rate q, leading to the deformation uy(x, z) of the top wall of thickness
b, which, in turn, affects the pressure drop �p over the axial distance �. The sidewalls are assumed to be rigid.

q. The top wall of the channel is soft and may deform due to the fluid stress distribution, acting
at the fluid-solid interface, leading to the displacement field u = (ux, uy, uz ). The sidewalls are
assumed to be rigid. Specifically, we use u0

y (x, z) to denote the steady vertical displacement of
the lower surface of the top wall, i.e., the fluid-solid interface so that its position is given by
y = h(x, z) = h0 + u0

y (x, z), where h0 is the undeformed height of the channel (in the absence of
flow). We further assume the top wall of the channel has a constant thickness b and constant material
properties.

We consider low-Reynolds-number flow so that fluid inertia is negligible compared to viscous
forces. In this limit, the continuity and momentum equations governing the fluid motion take the
form

∇ · v = 0, ∇·σ f = 0, (1)

where σ f = −pI + μ[∇v + (∇v)T] is the Newtonian stress tensor, I is the identity tensor, and
μ is the fluid’s dynamic viscosity. The governing equations (1) are supplemented by the no-slip
and no-penetration boundary conditions along the channel walls, v = 0 at y = 0, h(x, z), and at
x = ±w/2. Furthermore, the integral constraint

∫ w/2
−w/2

∫ h(x)
0 vz(x, y, z) dy dx = q enforces the flow

rate. In addition, we assume that fluid exits at the outlet to atmosphere and set p(�) = 0 so that
�p = p(0).

Suppose that the top wall of the channel can be modeled as a linearly elastic isotropic solid with
shear modulus G and first Lamé parameter λ. Neglecting body forces in the solid, the steady stress
balance in the elastic material takes the form

∇ · σs = 0, (2)

where σs = λ(∇·u)I + 2GD is the stress tensor of a linearly elastic solid and D = [∇u + (∇u)T]/2
is the infinitesimal strain tensor. Note that G and λ are related to Young’s modulus E and Poisson’s
ratio ν as G = E/[2(1 + ν)] and λ = Eν/(1 + ν)(1 − 2ν). The governing equation (2) is supple-
mented by the no-displacement boundary condition, u = 0 along the lines of contact, z = 0, �, and
x = ±w/2, with the inlet/outlet and rigid walls. In addition, at the fluid-solid interface y = h(x, z),
the continuity of stresses requires that n · σs = n · σ f , where n is the unit normal vector to the
fluid-solid interface. This condition couples the fluidic and elastic problems. Finally, we assume a
stress-free condition at the upper surface of the top wall, i.e., ñ · σs = 0, where ñ is the unit normal
vector to the upper surface of the soft wall.
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We introduce dimensionless variables based on lubrication theory,

X = x

w
, Y = y

h0
, Z = z

�
, Vx = vx

(ε/δ)vc
, Vy = vy

εvc
, Vz = vz

vc
, (3a)

P = p

pc
, H = h

h0
, U = uy

uc
, (3b)

where vc = q/(h0w) is the characteristic axial velocity scale, pc = μvc�/h2
0 = μq�/(wh3

0) is the
characteristic pressure scale, and uc is the characteristic scale of deformation of the top wall [14].
Also, we have defined ε = h0/� and δ = h0/w, which represent, respectively, the slenderness and
the shallowness of the channel. We assume ε = h0/� to be small, ε � 1, but δ = h0/w can be
O(1) with the ordering 0 < ε � min(δ, 1). Thus, unlike previous theoretical studies that assumed
δ = h0/w � 1 [14,15,17–19,39], we consider a slender channel that is not necessarily shallow.

In recent studies it was shown that for rectangular elastic top wall geometries, the horizontal
displacements ux and uz are much smaller in comparison to the vertical displacement uy [18]. The
latter can also be rationalized using a scaling argument. Balancing the elastic elongational stress and
the viscous stress at the top wall, we obtain that uz scales as μq�/(Ewh2

0 ). Thus, for example, for the
plate-bending theory in which b � w and uy ∼ μq�w3/(Eb3h3

0), we find uz/uy ∼ b3h0/w
4 � 1. A

similar argument yields ux/uy � 1. Therefore, it is sufficient and convenient to consider that the
entire deformation of the top wall is in the y direction. Furthermore, for thin structures b � w, the
deformation at the fluid-solid interface is representative of the entire wall motion (i.e., uy ≈ u0

y),
consistent with reduced theories of elastic deformation, such as those due to Winkler, Kirchhoff-
Love, Mindlin-Reissner, and Föppl–von Kármán [40,41]. Therefore, in the following, we make
explicit the kinematic assumption that the displacement of the fluid-solid interface can be written
as u = (0, uy(x, z), 0). Thus, the dimensionless deformed shape of the channel H (X, Z ) can be
expressed in terms of the dimensionless top wall deformation U (X, Z ) as

H (X, Z ) = 1 + (uc/h0)U (X, Z ) = 1 + βU (X, Z ), (4)

where β = uc/h0 is the dimensionless ratio that quantifies the compliance of the top wall.

III. RECIPROCAL THEOREMS FOR VISCOUS FLOWS IN WEAKLY DEFORMABLE
CHANNELS

A. Fluidic reciprocal theorem

Let v̂, p̂, and σ̂ f denote, respectively, the velocity, pressure, and stress fields corresponding to the
solution of the pressure-driven flow in a rigid (rectangular) channel, satisfying ∇·v̂ = 0, ∇·σ̂ f = 0
with σ̂ f = −p̂I + μ[∇v̂ + (∇v̂)T]. To exploit the reciprocal theorem, we first expand the velocity,
pressure, and stress fields into perturbation series in the dimensionless parameter β = uc/h0 � 1
controlling the compliance of the top wall,

v = v̂ + βv1 + O(β2), (5a)

p = p̂ + βp1 + O(β2), (5b)

σ f = σ̂ f + βσ f ,1 + O(β2), (5c)

where v1, p1, and σ f ,1 are the first-order corrections to the velocity, pressure, and hydrodynamic
stress in the rectangular domain due to the deformation of the top wall. From (1) and (5), it follows
that the corresponding governing equations are the Stokes equations ∇·v1 = 0, ∇·σ f ,1 = 0. The
Lorentz reciprocal theorem states that the two sets of velocity and stress fields (v̂, σ̂ f ) and (v1, σ f ,1)
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satisfy [21] ∫
S0

n · σ f ,1 · v̂ dS +
∫

S�

n · σ f ,1 · v̂ dS +
∫

Stop

n · σ f ,1 · v̂ dS︸ ︷︷ ︸
=0

=
∫

S0

n · σ̂ f · v1 dS +
∫

S�

n · σ̂ f · v1 dS +
∫

Stop

n · σ̂ f · v1 dS, (6)

where Stop is the lower surface of the top wall in the undeformed state, S0 and S� are the surfaces at
the inlet (z = 0) and outlet (z = �), respectively, and n is the unit outward normal on a respective
surface. Note that the integrals over the bottom and side walls of the channel vanish because v̂ =
v1 = 0 there. Also, the last term on the left-hand side of (6) vanishes because v̂ = 0 on Stop.

Using the asymptotic expansion (5) and nondimensionalization (3), we obtain

n · σ f ,1 · v̂|z=0,� = ∓μv2
c �

h2
0

[−P1V̂z + O(β )]Z=0,1, (7a)

n · σ̂ f · v1|z=0,� = ∓μv2
c �

h2
0

[−P̂Vz,1 + O(β )]Z=0,1, (7b)

where the minus sign in (7) corresponds to S0 and the plus sign corresponds to S� (see Refs. [34,35]).
Similarly, the integrand in the last term of (6), evaluated at y = h0 (i.e., on Stop) with n = ey and

n · σ̂ f = μ(∂ v̂z/∂y)ez − p̂ey is

n · σ̂ f · v1|y=h0 = μv2
c

h0

[
∂V̂z

∂Y
Vz,1

]
Y =1

. (8)

Note that the pressure term in n · σ̂ f does not contribute to (8) because the leading-order flow
is purely axial so that v1 · ey|y=h0 = 0 due to no penetration. We determine Vz,1(X,Y = 1, Z )
by applying the no-slip boundary condition, Vz(X,Y = H (X, Z ), Z ) = 0, and using (4) and (5a),
together with the domain perturbation expansion in β introduced above, to obtain

Vz(X, H (X, Z ), Z ) = V̂z(X, 1, Z ) + β

(
Vz,1(X, 1, Z ) + U (X, Z )

∂V̂z

∂Y

∣∣∣∣∣
Y =1

)
+ O(β2) = 0. (9)

It follows that Vz,1(X, 1, Z ) = −U (X, Z )∂V̂z/∂Y |Y =1. Thus, (8) reduces to

n · σ̂ f · v1|y=h0 = μv2
c

h0

[
∂V̂z

∂Y
Vz,1

]
Y =1

= −μv2
c

h0
U (X, Z )

(
∂V̂z

∂Y

∣∣∣∣∣
Y =1

)2

+ O(β ). (10)

Substituting (7) and (10) into (6), and using the outlet boundary condition P1(Z = 1) = P̂(Z = 1) =
0, we obtain∫ 1

0

∫ 1/2

−1/2
[P1V̂z − P̂Vz,1]Z=0dXdY = −

∫ 1

0

∫ 1/2

−1/2

[
U (X, Z )

(
∂V̂z

∂Y

∣∣∣∣∣
Y =1

)2]
dX dZ + O(β ). (11)

Noting that P1 = P1(Z ) and P̂ = P̂(Z ) to the leading order in ε, consistent with the classical lubri-
cation approximation [42], and

∫ 1
0

∫ 1/2
−1/2 V̂zdX dY = 1 and

∫ 1
0

∫ 1/2
−1/2 Vz,1dX dY = 0, (11) yields the

first-order correction to the pressure drop, defined as �P1 = P1(Z = 0) for the weakly deformable
channel (β � 1),

�P1 = −
∫ 1

0

∫ 1/2

−1/2

[
U (X, Z )

(
∂V̂z

∂Y

∣∣∣∣∣
Y =1

)2]
dX dZ. (12)
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Equation (12) is the first key result of this Letter, which allows the determination of the first-order
correction to the pressure drop of the deformable channel, provided the top wall deformation
U (X, Z ) is known. Therefore, in fact, (12) is not restricted to deformable channels and provides
the first-order correction to the pressure drop for the three-dimensional rigid channel, whose top
wall is nonuniform and has any prescribed shape variation expressed as H (X, Z ) = 1 + βU (X, Z ).

B. Elastic reciprocal theorem

Let ũ and σ̃s denote, respectively, the displacement and stress fields corresponding to the solution
of the elastic problem in the same domain but with different boundary conditions on the stress
or displacement fields. The corresponding governing equation is ∇·σ̃s = 0, with σ̃s = λ(∇·ũ)I +
2GD̃. The Maxwell-Betti reciprocal theorem [36–38] states that the solutions (u, σs) and (ũ, σ̃s) to
the two elastostatic problems satisfy∫

S
n · σs · ũ dS =

∫
S

n · σ̃s · u dS, (13)

where n is the unit outward normal to the bounding surfaces S of the elastic solid.
Before applying the elastic reciprocal theorem (13) to our elastohydrodynamic problem, recall a

few assumptions we have made. First, in this problem, u = uy(x, z)ey and ũ = ũy(x, z)ey. Second,
there is no displacement on the lateral walls of the solid. Third, the continuity of tractions n · σs =
n · σ f holds at the fluid-solid interface y = h(x, z). Lastly, we have assumed a stress-free condition
at the upper surface of the top wall. Based on these assumptions, the terms n · σs · ũ and n · σ̃s · u
appearing in (13) are calculated as

n · σs · ũ|y=h(x,z) = n · σ f · ũ|y=h(x,z) = pcuc[−PŨ + O(ε)] = pcuc[−P̂Ũ + O(ε, β )], (14a)

n · σ̃s · u|y=h(x,z) = n · σ̃ f · u|y=h(x,z) = pcuc[−P̃U + O(ε)] = pcuc[− ˆ̃PU + O(ε, β )], (14b)

where to obtain the last equality we used the domain perturbation expansion introduced above, i.e.,
P = P̂ + O(β ) and P̃ = ˆ̃P + O(β ). Substituting (14) into (13) leads to∫ 1

0

∫ 1/2

−1/2

ˆ̃PU dX dZ =
∫ 1

0

∫ 1/2

−1/2
P̂Ũ dX dZ. (15)

Next, we utilize the convolution principle to obtain an explicit expression for the deformation
U (X, Z ) from (15). Choosing ˆ̃P as a point load, i.e., ˆ̃P = δD(X − X )δD(Z − Z ), applied on the
fluid-solid interface at the point (X ,Z ), where δD is the Dirac-delta distribution, we obtain

U (X, Z ) =
∫ 1

0

∫ 1/2

−1/2
P̂(X ,Z )Ũ (X, Z;X ,Z )dX dZ. (16)

Here, Ũ (X, Z;X ,Z ) is the point-load solution (or Green’s function) of the elastic problem with
appropriate boundary conditions under the aforementioned assumptions.

C. Flow rate-pressure drop relation for deformable channels using fluidic and elastic reciprocal
theorems

Combining (12) and (16), we obtain the first-order correction to the pressure drop for the weakly
deformable channel, β � 1, expressed using the fluidic and elastic reciprocal theorems,

�P1 = −
∫ 1

0

∫ 1/2

−1/2

[∫ 1

0

∫ 1/2

−1/2
P̂(X ,Z )Ũ (X, Z;X ,Z )dX dZ

(
∂V̂z

∂Y

∣∣∣∣∣
Y =1

)2]
dX dZ. (17)

Equation (17) is the second key result of this Letter, clearly indicating that the first-order correction
to the pressure drop arises due to the interplay between the fluid stresses and the compliance of
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the channel. Furthermore, (17) shows that �P1 depends only on the solution of the pressure-driven
flow in a rigid channel for the fluid problem (hat) and the solution of the elastic deformation for
a point-load (tilde), thus, eliminating the need to a priori solve the coupled elastohydrodynamic
problem.

The dimensionless pressure drop is, thus, �P = �P̂ + β�P1 + O(β2), where the solution of the
corresponding pressure-driven flow in a rigid (rectangular) channel [43] is well known,

P̂(Z ) = 12

1 − κ (δ)
(1 − Z ), �P̂ = 12

1 − κ (δ)
, (18a)

V̂z(X,Y ) = 12

1 − κ (δ)

[
1

2
(1 − Y )Y − 4

π3

∞∑
n=1

1

(2n − 1)3

cosh[(2n − 1)πX/δ]

cosh[(2n − 1)π/(2δ)]
sin[(2n − 1)πY ]

]
,

(18b)

κ (δ) = 192

π5

∞∑
n=1

1

(2n − 1)5
δ tanh

[
(2n − 1)π

2δ

]
. (18c)

IV. ILLUSTRATED EXAMPLE

In this section, we illustrate an application of our results towards calculating the first-order-in-β
correction to the pressure drop in a slender compliant channel. For this example and for simplicity,
we model the compliance of the top wall using the plate-bending theory. Under the assumptions that
the maximum displacement of the top wall is small compared to its thickness b, and the thickness
b is small compared to its width w, maxx,z[uy(x, z)] � b � w, the steady-state displacement
uy(x, y) satisfies the Kirchhoff-Love equation for isotropic bending of a plate under a transverse
load supplied by the fluid pressure, i.e., p = B∇4

‖ uy [40,41,44]. Here, B = Eb3/[12(1 − ν2)] is the
bending stiffness, and ∇4

‖ is the biharmonic operator in the (x, z) plane.
Using (3) and performing an order-of-magnitude analysis, we obtain uc = w4 pc/B =

w3μq�/(h3
0B) and, thus, β = uc/h0 = w4 pc/(Bh0) = w3μq�/(h4

0B). Furthermore, it follows that
P(Z ) = ∂4U/∂X 4 + O(ε2/δ2) [14,39], where 0 � ε � min(1, δ) but δ = h0/w is not necessary
small. The Green’s function corresponding to the point-load solution of the latter equation with
clamped boundary conditions [45], i.e., U |X=±1/2 = ∂U/∂X |X=±1/2 = 0, is

Ũ (X, Z;X ,Z ) = 1

24

(
X − 1

2

)2(
X + 1

2

)2

δD(Z − Z ). (19)

Using (18) and (19), (17) provides the first-order correction to the pressure drop for arbitrary value
of δ = h0/w. We note that it is difficult to obtain a closed-form expression for �P1, which holds for
any δ = h0/w because of the velocity profile (18b) is represented as an infinite series. While the Z
integration can be performed analytically, the X integration is performed numerically. However, for
δ � 1, from (18) it follows that �P̂ = 12, P̂(Z ) = 12(1 − Z ), and V̂z(Y ) = 6(1 − Y )Y , and substi-
tuting theses results and (19) into (17) yields �P1/12 = −3/120 so that �P/12 = 1 − (3/120)β +
O(β2) = 1 − (3/5)β̃ + O(β̃2), where β̃ = β/24 = w4 pc/(24Bh0) = w3μq�/(24h4

0B).
It is instructive to compare the latter result to the solution for the dimensionless pressure drop

previously derived by Christov et al. [14] using lubrication theory. The result from [14], holding for
δ � 1 and β̃ = O(1), is expressed as an implicit relation,

12 = �P

[
1 + β̃

20
�P + β̃2

630
(�P)2 + β̃3

48048
(�P)3

]
(lubrication theory for δ � 1), (20)

and it also yields �P/12 = 1 − (3/5)β̃ + (86/175)β̃2 + O(β̃3) for β � 1, upon solving for the
positive real root of (20). Observe that this expression is identical to the present asymptotic solution
for the pressure drop to first order in β̃.
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0/12μq� in a deformable channel modeled using the

plate-bending theory. (a) Contour plot of the dimensionless pressure drop as a function of β̃ = uc/24h0 and δ =
h0/w. (b) Dimensionless pressure drop as a function of δ = h0/w (dotted line) for β̃ = 0.2 and as a function of
β̃ = uc/24h0 (solid and dashed curves) for δ = 0. The solid line represents the first-order asymptotic solution,
and the dashed line represents the solution based on the lubrication theory (also for δ = 0), derived by Christov
et al. [14].

In Fig. 2(a), we present a contour plot of the dimensionless pressure drop accounting for the
first-order correction due to fluid-structure interaction as a function of β̃ = uc/24h0 and δ = h0/w

for a deformable channel modeled using the plate-bending theory. Figure 2(a) clearly indicates the
existence of the trade-off between the effect of compliance of the deforming top wall and the effect
of drag due to the sidewalls on the pressure drop. Whereas the pressure drop decreases with β̃, it
increases with δ. The white (light) solid curve �P/12 = 1 divides the color map into two regions: In
the upper region, the compliance dominates over the sidewall effects and, thus, �P/12 < 1, whereas
in the lower region, the sidewall drag is dominant and �P/12 > 1.

Next, in Fig. 2(b), we show a comparison of our analytical predictions and the lubrication-
theory-based solution (20) for the nondimensional pressure drop as a function of β̃ for δ = 0
(an infinitely wide channel). The black solid line represents our first-order asymptotic solution,
�P/12 = 1 − (3/5)β̃ + O(β̃2), and the gray dashed curve represents the lubrication solution (20).
It is evident from Fig. 2(b) that our first-order asymptotic solution, which is strictly valid for
β̃ � 1, slightly underpredicts the lubrication solution; yet even for β̃ = 0.5, it results in a modest
relative error of approximately 10%. For further clarification, the dotted (red) curve shows the
dimensionless pressure drop as a function of δ = h0/w for β̃ = 0.2, clearly indicating that, whereas
wall compliance decreases the pressure drop, drag due to the sidewalls increases it.

V. CONCLUDING REMARKS

In this Letter, we showed how the reciprocal theorems for Stokes flow and linear elasticity can
be used to derive a closed-form expression for leading-order correction due to deformation to the
flow rate-pressure drop relation for rectangular channels. Using a domain perturbation approach
and considering small deformation, our theory captures the interplay between the fluid stresses
and the compliance of the channel’s top wall, bypassing the need to calculate the solution of the
coupled fluid-structure-interaction problem. Furthermore, unlike previous theoretical studies, which
neglected the presence of lateral sidewalls (and considered shallow geometries of effectively infinite
width within the lubrication approximation), our approach allows the determination of the influence
of confining sidewalls on the q − �p relation.

The present theoretical approach is not limited to the case of a three-dimensional channel of an
initially rectangular cross section, and it could also be applied to calculate the first-order correction
to the pressure drop in axisymmetric deformable tubes for which the leading-order pressure drop is
given by the classical Hagen-Poiseuille law [46]. Finally, while we considered viscous Newtonian

L092201-8



FLOW RATE-PRESSURE DROP RELATION FOR …

fluids, it would be of interest to understand how the rheological response of complex fluids (such
as shear thinning and viscoelasticity) influences the flow rate-pressure drop relation in deformable
channels. One convenient approach to accomplish this task would be to rely on reciprocal theorems
and use a combination of the present approach and the approach recently established by Boyko and
Stone [34,35] for calculating the effect of complex fluid rheology on the flow rate-pressure drop
relation for rigid nonuniform channels. These calculations are left for future investigation.
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