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Fall of a large sphere in a suspension of small fluidized particles
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The investigation of the fall of a sphere at finite Reynolds number in a concentrated
suspension of small fluidized particles leads to unexpected results. By analyzing the drag
force, it is shown that the average surface stress on the sphere is independent of the size of
the sphere. It is proportional to an effective viscosity determined from the sedimentation
velocity of the particles multiplied by the velocity of the sphere and divided by the size of
the particles. These results question the role of concentration inhomogeneities that occur
on a large scale in the overall flow around a moving obstacle and on a small scale near its
surface.
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Suspensions, consisting of small particles dispersed in a fluid, are very common in nature
(turbidity currents, pyroclastic flows, blood, etc.) as well as in industry (food and cosmetic, fluidized
beds, etc.). A suspension is a complex two-phase mixture that is desirable to model as an equivalent
fluid of effective density ρm and viscosity μm. The mixture density ρm is simply the average
density of both phases weighted by their respective volume fraction. However, defining an effective
viscosity μm for the mixture, always larger than the suspending-fluid viscosity μf , remains a
challenge. Since the first attempt of Einstein [1,2], numerous works have been devoted to this
issue, mainly focused on sheared suspensions of neutrally buoyant solid particles with negligible
inertia. This case has been thoroughly reviewed in Ref. [3] for non-Brownian suspensions. Under
these conditions, the stress τ within the mixture is linear with the shear rate γ̇ and, for a given
fluid-particle system, μm/μf is only a function of the particle volume fraction �. This result may
not hold with deformable particles, such as droplets in emulsions [4] or red cells in blood [5], since
their deformation is affected by the shear rate γ̇ and thus μm/μf may depend on it. As well, when
inertia is no longer negligible, μm/μf may depend on the local Reynolds number and vary with γ̇ .

The flow around an obstacle is known as a reference case from which the rheology of a fluid
can be analyzed. However, it has rarely been applied to the investigation of the effective behavior
of suspensions, with the notable exception of [6], where the rise of a bubble through a dispersion of
neutrally buoyant particles was studied. The present work investigates the fall of a large solid sphere
through a suspension of small beads in a liquid. The beads, heavier than the liquid, are maintained
in suspension by imposing a weak upward flow. Using a fluidized bed makes it possible to deal with
buoyant particles and to easily control the volume fraction � by changing the fluidization velocity
Uf . Here, Uf is taken in the range of the stable homogeneous fluidization regime, in which the
particle distribution remains steady and uniform. The terminal velocity Vt of three large spheres of
different diameters D is measured within four suspensions of different beads of diameters d � D,
at concentrations � from 0.3 to 0.85. As shown later, Vt is much larger than Uf and the inertia of
the suspension is not negligible as its flows around the large sphere. On the other hand, the inertia
of the small beads is low compared to viscous effect.
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FIG. 1. Scheme of the experimental setup.

The experimental setup is depicted in Fig. 1. The fluidization column has a rectangular cross
section of sides w1 = 0.2 m and w2 = 0.3 m. It is filled with a mixture of water and particles. In
the absence of flow, the particles form a loose packed bed of height h0 at a concentration �pack

between 0.58 and 0.60. Then, water is injected from the bottom at a flow rate Q through a porous
media, which ensures a uniform flow, and a mesh filter, which prevents the passage of particles.
For a given fluidization velocity, Uf = Q/(w1w2), the suspension expands up to reach a height h,
corresponding to a concentration �/�pack = h0/h. The properties of the suspensions are given in
Table I. We used three sets of spherical glass beads of different sizes (GB1, GB2, GB3) and one set
of natural sand grains. Following [7,8], we introduce an effective viscosity of the suspension μmd

determined from the fluidization velocity. Let us consider a spherical bead of diameter d and density
ρd falling at velocity Uf into a fluid of viscosity μmd and density ρm. Balancing the Stokes’ drag,
3πμmd dUf , by the reduced weight of the bead, πd3/6(ρd − ρm )g, where g is the gravity acceleration

TABLE I. Physical properties of the suspensions.

Suspension properties GB1 GB2 GB3 Sand

Particle diameter d (μm) 160 240 335 310
Particle density ρd (kg m−3) 2.50 × 103 2.50 × 103 2.50 × 103 2.66 × 103

Fluid density ρf (kg m−3) 1.0 × 103 1.0 × 103 1.0 × 103 1.0 × 103

Fluid viscosity μf (Pa s) 1.15 × 10−3 1.11 × 10−3 1.11 × 10−3 1.10 × 10−3

St0 = (ρd−ρf )(ρd+ 1
2 ρf )gd3

18 μ2
f

7.6 28 76 80
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FIG. 2. Mixture effective viscosity defined from the fluidization velocity of the suspension. Symbols:

measurements. Line: model from [7], taking F ( �s
�pack

) = 1
(e−3+0.08)

[e
−3(1− �s

�pack
) + 0.08(1 − �s

�pack
)−2/3].

and (ρd − ρm ) = (1 − �)(ρd − ρf ), yields

μmd

μf
= g(ρd − ρf )(1 − �)d2

18μ f Uf
. (1)

From the analysis of many fluid-particle systems, it has been shown in [7] that, provided that the
fluid inertia is negligible, the fluidization velocity of a suspension can be modeled as

μmd

μf
= F

(
�

�pack

)
K(St0). (2)

F is only a function of �/�pack, which tends towards unity as �/�pack tends to zero, and
towards infinity when �/�pack tends to unity. K only depends on the Stokes number defined as

St0 = (ρd−ρf )(ρd+ 1
2 ρf )gd3

18 μ2
f

and accounts for the role played by the inertia of the dispersed particles
through their fluctuating motion. It is constant for a given fluid-particle system and increases from 1
to 3 as St0 increases from zero to infinity. Figure 2 shows that the experimental results obtained with
the present suspensions collapse on the master curve proposed by [7], which validates the relevance
of the viscosity μmd determined from Eq. (1). However, μmd characterizes the viscous stresses at the
scale of the dispersed beads. It is therefore not expected to be relevant to describe the macroscopic
behavior of the mixture when the suspension is subjected to a shear at a scale that is large compared
to d [9], as it was confirmed in [8] from comparisons with classic correlations for the effective
viscosity of a sheared suspension. This motivated us to study the fall of a large sphere of diameter
D � d through such fluidized suspensions.

The characteristics of the falling spheres are given in Table II. They are made of glass and have a
density close to that of the dispersed particles (±6%) and approximately 2.5 times that of the liquid.
Their diameter ranges between 12.2 and 22.4 mm, corresponding to diameter ratios D/d from 36

TABLE II. Physical properties of the falling spheres.

Sphere properties S1 S2 S3

Diameter D (mm) 12.2 15.7 22.4
Density ρD (kg m−3) 2.64 × 103 2.60 × 103 2.50 × 103
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to 140. The sphere falling experiments are conducted as follows. Since the suspension is opaque,
we needed to find an alternative to optical methods. A thread of nylon with a diameter of 0.4 mm
is attached to a support above the column, at one extremity, and glued to the sphere, at the other
one. The thread length is adjusted so that the sphere can be suspended within the column without
touching the bottom. A mark is made on the thread at a location that coincides with the top of the
suspension while the sphere is hanging from the support. At the beginning of a test, the sphere is
fully immersed in the suspension and positioned just below the top of the fluidized bed. Then, the
sphere is released and falls through the suspension until the thread is taut. A high-speed Phantom
VEO 340L camera with LED lighting is used to record the process at a rate of 1000 frames per
second. The release of the sphere is visible on the movie and the end of the fall corresponds to the
instant when the mark on the thread reaches the top of the bed. The uncertainties on the detection of
the times of release and fall end are of ±3 images. Depending on the system under consideration,
the fall time T lies between 500 and 1300 ms and is measured with an accuracy of ±6 ms. The fall
length L is known from the thread length and varies from 20 to 60 cm, depending on the suspension
height.

Because the sphere velocity V (t ) takes a certain time to reach its terminal value Vt , the average
velocity 〈V 〉 = L/T is not equal to Vt . A better approximation of Vt is obtained by assuming that the
sphere motion includes a stage of constant acceleration V̇0 followed by a stage of constant velocity
Ṽt . Considering that the fall length is given by L = ∫ T

0 V (t )dt , one gets that Ṽt is a solution of the
following second-degree equation:

Ṽ 2
t − (2TV̇0)Ṽt + (2LV̇0) = 0, (3)

the initial acceleration being obtained from the balance between the inertial forces and the reduced
weight acting on the sphere,

V̇0 = (ρd − ρm )g

ρd + 1
2ρm

, (4)

where 1
2ρm accounts for the added mass. With this model, the terminal velocity is reached at time

tt = Ṽt/V̇0. Thus Ṽt tends towards Vt when tt/T becomes small, i.e., when the acceleration stage
is short compared to the whole fall duration. We have determined 〈V 〉, Ṽt , and tt/T for all the tests
made. In the following, only the tests with tt/T � 0.3 have been retained. In this case, the difference
between 〈V 〉 and Ṽt is less than 15% and we estimate that the discrepancy between Ṽt and Vt is less
than 5%. All the subsequent analysis is thus done by using Ṽt as the terminal velocity of the spheres.
Note that the experimental data have also been processed by considering a less demanding criterion
tt/T � 0.5, which does not change the present conclusions and proves the robustness of the results
regarding the determination of Ṽt .

The terminal velocity U of the sphere relative to the fluid-particle mixture is obtained by adding
the fluidization velocity Uf , so that U = Vt + Uf . Figure 3 shows U as a function of �/�pack for the
three spheres and the four types of suspensions. The values of U range between 0.1 and 0.9 m/s
and are much larger than the fluidization velocities, which remain less than 0.01 m/s. In any case,
U is thus almost equal to Vt . It is a decreasing function of �/�pack, since both the density and the
effective viscosity of the suspension increase with the solid volume fraction. For a given type of
bead, U is also observed to decrease with D. However, it is difficult to draw physical conclusions
from these dimensional plots.

As shown by [6], an important dimensionless group is the other Stokes number defined by St =
τd/τD, which compares the response time of the dispersed particles, τd = (ρd + 1

2ρm )d2/18μmd ,
to the time scale of the flow generated by the motion of the large body, τD = D/U . For St < 1,
the particles are expected to follow the stream lines of the suspending fluid, whereas, for St > 1,
they may collide with the large body. In the present case, this Stokes number is much less than unity
(2 × 10−3 < St < 9 × 10−2). However, this analysis is not sufficient to conclude that the suspension
remains homogeneous. First, shear-rate gradients in the flow around the sphere may induce particle
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FIG. 3. Relative sphere velocity versus particle concentration.

migration [10], leading to nonuniform concentration. In addition, a depletion of particles in the wake
behind the obstacle have been reported in previous studies [11,12].

Now, the results are analyzed in terms of the relationship between the drag coefficient and the
Reynolds number of the falling sphere. If the drag coefficient is obtained directly from the balance
between the drag force and the reduced weight of the sphere, Cd = 4

3
(ρD−ρm )gD

ρmU 2 , the Reynolds number
requires the knowledge of the effective viscosity of the suspension. Let us consider the viscosity μmd

defined by Eq. (1) and introduce Rem = ρmUD
μmd

. Figure 4 shows log-log plots of the experimental

values of Cd versus Rem, for all investigated cases. For any given pair of sphere and suspension,
the values of Cd collapse on a Rem

−1 straight line. On these plots, the Reynolds number has been
divided by a constant k, which has been arbitrarily adjusted to make the data of the various systems
coincide with the drag Stokes law, Cd = 24/Re. The values of k vary from one system to another,
but remain constant for a given system, which means that they are independent of Rem. In Fig. 5, k
is plotted against D/d and turns out to be a linear function of the sphere-to-bead diameter ratio: k =
αD/d , with α ≈ 0.58. Therefore, the experimental results lead to the following quite unexpected
expressions of the drag coefficient:

Cd = 24
μmd

ρmUD
α

D

d
= 24α

μmd

ρmUd
(5)

and the drag force

FD = (πD2) μmd

3αU

d
. (6)

Thus it turns out that the drag coefficient Cd, as well as the average stress on the sphere surface
τp = FD/πD2 = (3α) μmd

U
d , are independent of the size D of the falling sphere and proportional to

μmd .
We now discuss possible interpretations of this surprising result. A first naive approach is to

assume that the suspension remains homogeneous and that its behavior is controlled by an effective
viscosity μm that is constant throughout the flow. By equating Eq. (6) to the Stokes’ drag,

FDSt = (πD2) μm
3U

D
, (7)
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FIG. 4. Drag coefficient of the sphere versus the Reynolds number (values of k in Fig. 5).

one finds

μm = αμmd

D

d
. (8)

FIG. 5. Coefficient k against D
d .
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However, this expression is inconsistent. As μmd represents the effective viscosity at the scale d
of the beads, one could expect the effective viscosity at a much larger scale D to be different, but
converge towards a constant value at large D/d , which is not the case here. Otherwise, one can
assume that μm actually varies with D because it would depend on the shear rate γ̇ ∝ U/D, but that
leads to contradictory behaviors according to that γ̇ varies by changing either U or D. Moreover, the
sphere Reynolds number based on μm is too large (5 < ρmUD/μm < 100; see Fig. 4) for the Stokes’
drag law to be valid. Therefore, the effective viscosity of the suspension cannot be determined from
Eq. (8).

As noted by [13], determining the effective viscosity of a suspension from the measurement of
the force exerted on a wall requires the homogeneity of the suspension everywhere, and in particular
near the wall. The present result is probably associated with the fact that the particle concentration
is not uniform. We think that it is relevant to discuss separately the effect of inhomogeneity at
the scale D of the flow around the large sphere and that of inhomogeneity at the scale d of the
dispersed particles. Regarding large scales, the expected increase of the particle concentration at
the sphere front and the decrease at its rear can significantly influence the drag coefficient [11,12]
and eventually lead to unexpected behaviors. In our opinion, such a mechanism can hardly result in
a drag coefficient that both decreases as the reciprocal of the velocity and does not depend on D.
However, due to the complexity of such flows, the question of its relevance remains open.

At the scale of the particles, the homogeneity of the suspension is never rigorously fulfilled in the
vicinity of a solid surface. Since a particle cannot approach an obstacle at a distance that is closer
than its radius, the volume fraction of the dispersed phase tends to zero at a solid surface [14,15].
In addition, the interactions between a solid surface and the dispersed particles differ from the
interactions between a solid surface and the suspending fluid. A fluid adheres to a solid because of
molecular interactions such as van der Waals forces, whereas dispersed particles can move relative
to a solid. Considering the blood flow for example, the red blood cells may experience a slip velocity
of 40% of the maximum flow velocity relative to the vessel wall [16]. In the framework of two-fluid
approaches, this can be modeled by increasing the viscosity of the plasma near the vessel wall in
order to account for the additional dissipation induced by the slip motion of the cells [17]. However,
it is not relevant to model the whole mixture as a homogeneous fluid satisfying a nonslip condition
at a solid boundary. This suggests another possible interpretation of the experimental result. We
can assume that there is a thin layer of liquid at the surface of the sphere of thickness δ, which is
devoid of particles, and that the particles just outside this layer move at a speed of the order of U with
respect to the surface of the sphere. Within this layer, the liquid is submitted to a stress τp ≈ μf

U
δ

. As
μmd

Uf
d is the average stress submitted by the liquid passing through the fluidized particles, it seems

relevant to assume that τp ≈ μmd
U
d , which corresponds to the experimental result. By considering

that the flow in the near vicinity of the sphere surface is independent of the large-scale flow around
the sphere, this interpretation is naturally consistent with the fact the drag coefficient is proportional
to U −1 and independent of D.

Apart from the blood circulation, a few other studies of dispersed two-phase flows have reported
evidences of such a slip of the dispersed phase near a solid surface. A foam in a pipe was shown to
behave as a rigid body slipping on a lubricated layer at the wall and the authors concluded that “the
flow of such foams is not controlled by foam rheology” [18]. The flow of a concentrated gas-solid
suspension released after a dam break was also observed to flow as an inviscid fluid which slips on
the wall [19]. Regarding an imposed wall shear rate, it is worth mentioning an investigation of the
flow of a homogeneous oil-in-water droplet emulsion in a pipe [4]. While the effective viscosity of
the emulsion μm was found to vary over the pipe cross section and to depend on the bulk velocity
U , the viscosity at the wall μmw was observed to be independent of U and the pressure drop along
the pipe to be proportional to μmwU . This surprising outcome is fully compatible with the present
result, τp = μmd

3αU
d , where μmd is independent of U and implies a pressure drop that is proportional

to μmdU , whatever the nature of the flow or the mixture rheology away from the wall.
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To conclude, the fall of a large sphere in a fluidized suspension of small particles has been
investigated in the regime where the flow inertia is negligible at the scale of the particle but not at
that of the sphere. The drag force [Eq. (6)] is found to be the product of the sphere area πD2, the
viscosity μmd determined from the fluidization velocity of the dispersed particles [Eq. (1)], and the
ratio U/d of the sphere velocity and the particle diameter. The fact that the drag coefficient depends
on the Reynolds number based on the diameter of the dispersed particles rather than that of the
falling sphere is quite unexpected. It is likely associated with the fact that the suspension does not
remain homogeneous. Two interpretations, based on either a large-scale inhomogeneity or a particle
slip velocity at the sphere surface, have been discussed. They are not mutually exclusive. Indeed, the
stress along the sphere surface is probably not constant. The most likely situation is that the stress
near the front stagnation point is mainly normal and rather scales as U/D, and that the pressure
difference between the front and the rear of the sphere are mainly controlled by the large-scale
inhomogeneity. On the other hand, the shear rate near the equator probably scales as τp ≈ μf

U
δ

with
δ � d . We are inclined to think that the magnitude of the latter may be much larger than the former,
so that its contribution dominates the overall friction. However, since the local particle concentration
and velocity have not been measured, no definitive conclusions regarding the physical mechanism
can be reached. Future numerical works should determine whether a large-scale inhomogeneity may
be consistent with the present experimental scaling and future experimental works should assess the
existence of a strong slip velocity at the sphere surface.
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