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An efficient approach for extracting three-dimensional local averages in spherical subdo-
mains is proposed and applied to study the intermittency of small-scale velocity and scalar
fields in direct numerical simulations of isotropic turbulence. We focus on the inertial-range
scaling exponents of locally averaged energy dissipation rate, enstrophy, and scalar dissi-
pation rate corresponding to the mixing of a passive scalar θ in the presence of a uniform
mean gradient. The Taylor-scale Reynolds number Rλ goes up to 1300, and the Schmidt
number Sc up to 512 (albeit at smaller Rλ). The intermittency exponent of the energy
dissipation rate is μ ≈ 0.23 ± 0.02, whereas that of enstrophy is slightly larger; trends with
Rλ suggest that this will be the case even at extremely large Rλ. The intermittency exponent
of the scalar dissipation rate is μθ ≈ 0.35 for Sc = 1. These findings are in essential
agreement with previously reported results in the literature. We additionally obtain results
for high Schmidt numbers and show that μθ decreases monotonically with Sc, either as
1/ log Sc or a weak power law, suggesting that μθ → 0 as Sc → ∞, reaffirming recent
results on the breakdown of scalar dissipation anomaly in this limit.
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I. INTRODUCTION

A key characteristic of fully developed fluid turbulence is small-scale intermittency, referring to
the sporadic generation of intense fluctuations of velocity gradients or velocity increments, which
result in strong deviations from Gaussianity and necessitate anomalous corrections to the seminal
mean-field description by Kolmogorov (1941) [1,2]. Given its practical importance in numerous
physical processes [3–8], and its fundamental connection to the energy cascade [9], a quantitative
characterization of intermittency is at the heart of turbulence theory [1,2] and modeling [10]. A
key concept in understanding intermittency is the introduction of local averaging which allows a
quantification of anomalous corrections to the mean-field description in some pertinent manner
[11,12]. In general, for a fluctuating quantity A(x, t ), its local average Ar (x, t ) over a scale r can be
defined as

Ar (x, t ) = 3

4πr3

∫
|x′|�r

A(x + x′, t ) dx′. (1)
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Evidently, local averages are defined over a spherical volume to ensure isotropy with respect to
the averaging scale size. However, such an averaging has not been possible until now because the full
three-dimensional (3D) field is rarely available in experiments. So they have predominantly relied on
surrogates, which are usually in the form of averages along a line or in a plane [2]. These methods are
sometimes known to give different results compared to 3D local averages [13–16]. Even when the
full 3D field is available in experiments, the data are restricted to low Reynolds numbers [17], where
a plausible inertial range is not available. In contrast, direct numerical simulations (DNS) provide
access to full 3D field at sufficiently large Reynolds numbers, but accurate spherical averaging needs
some extra work, since the data are available on a Cartesian grid. Consequently, recent works have
relied on 3D averages over cubical domains [16,18] which, while convenient, could retain some
anisotropies.

In this work, we present a simple approach to efficiently and accurately obtain 3D local averages
in spherical domains from the DNS data and apply it to study the intermittency of velocity and scalar
fields. For the velocity field, we revisit inertial-range scaling of locally averaged energy dissipation
rate and enstrophy [18,19]. For the scalar field, we consider the scaling of locally averaged scalar
dissipation rate, and compare it to that of the energy dissipation rate. A key novelty is that we focus
on mixing of low-diffusivity scalars (or high Schmidt numbers), which are notoriously difficult
to obtain due to additional resolution constraints, and have been available only very recently at
sufficiently high Reynolds numbers [20,21].

Our work confirms the past results obtained primarily in experiments using one or two-
dimensional surrogates. Some important trends with Reynolds numbers are also highlighted. We
also show that the intermittent character of the scalar dissipation disappears at high Schmidt
numbers, consistent with Refs. [20,21].

II. BACKGROUND

The energy dissipation rate ε and the enstrophy �, defined, respectively, as

ε = 2νSi jSi j, � = ωiωi, (2)

capturing the local straining and rotational motions, are central to our understanding of the small-
scale structure of turbulence [22–26]. Here, ν is the kinematic viscosity, Si j is the strain-rate tensor,
and ωi is the vorticity (and repeated indices imply summation). At high Reynolds numbers, these
quantities become highly intermittent, so a means to characterizing them, following Kolmogorov
(1962) [11], is to average them locally over a scale r and study these averages for a wide range of r.
In particular, it is postulated that for the locally averaged energy dissipation εr , its second moment
will scale as 〈

ε2
r

〉 ∼ r−μ, (3)

for r in the inertial range, where the constant μ is termed as the “intermittency exponent.” Note,
other definitions of intermittency exponent are also possible, but they are mostly equivalent and
give essentially the same value [27]; also see Sec. IV A. Based on theoretical grounds [23], a similar
result is also anticipated for the locally averaged enstrophy �r , with the same numerical value of the
intermittency exponent. However, previous DNS data have suggested a slightly larger intermittency
exponent for enstrophy [18,19].

The pertinent small-scale quantity when considering turbulent mixing of a passive scalar θ (x, t )
is the scalar dissipation rate

χ = 2D|∇θ |2, (4)

where D is the scalar diffusivity. It is well established that the scalar gradients and scalar increments
also exhibit intermittency [2], and so, similar to εr and �r , we can consider the scaling of χr [28].
The mixing process is controlled additionally by the Schmidt number Sc = ν/D. Obtaining data at
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high Sc, while also keeping the Reynolds numbers acceptably high, is extremely challenging due to
additional resolution constraints, and has only been possible very recently [20,21].

III. NUMERICAL APPROACH

A. Direct numerical simulations and database

The velocity data examined in this work are obtained by solving the incompressible Navier-
Stokes equations:

∂u/∂t + u · ∇u = −∇P + ν∇2u + f, (5)

where u is the divergence free velocity field (∇ · u = 0), P is the kinematic pressure and f is
the large-scale forcing term to maintain statistical stationarity. Both deterministic and stochastic
forcing schemes have been used, essentially giving identical results for small-scale statistics. The
DNS corresponds to the canonical setup of isotropic turbulence in a periodic domain [29], allowing
the use of highly accurate Fourier pseudospectral methods, with aliasing errors controlled using a
combination of grid-shifting and truncation [30]. The database for the present work corresponds
to recent works [31–34], with the Taylor-scale Reynolds number Rλ in the range 140–1300.
Convergence with respect to resolution and statistical sampling has also been thoroughly established
in all these previous works.

The passive scalar is obtained by simultaneously solving the advection-diffusion equation in the
presence of a uniform mean-gradient:

∂θ/∂t + u · ∇θ = −u · ∇� + D∇2θ. (6)

The uniform mean-gradient is set along the first Cartesian direction: ∇� = (G, 0, 0), and provides
the forcing needed to achieve statistical stationarity for the scalar [35]. The database for scalars
utilized here is the same as in our recent papers [20,21], and corresponds to Rλ in the range 140–650,
and Sc in the range 1–512. As noted in Ref. [20], the data were generated using conventional Fourier
pseudospectral methods for Sc = 1, and a hybrid approach for higher Sc [36–38]. This approach
consisted of solving for the velocity field using standard pseudospectral approach with spatial
resolutions of the order of the Kolmogorov length scale ηK ; solving for the scalar field included
using compact finite differences on a finer grid, so as to resolve the Batchelor scale ηB = ηK Sc−1/2

[39].

B. Local averaging procedure

To implement the 3D local averaging efficiently, Eq. (1) is rewritten as

Ar (x, t ) =
∫

x′
G(x′)A(x + x′, t ) dx′, (7)

where G(x′) =
{

3/4πr3 for |x′| � r,
0 for |x′| > r,

(8)

satisfying
∫

x′ G(x′)dx′ = 1, represents an isotropic box filter [40]. We have essentially rewritten the
local averaging procedure as a convolution. Following recent works in refs. [41,42], it can be shown
that this convolution can be efficiently computed in the Fourier-space for any chosen value of r, as

Âr (k, t ) = f (kr)Â(k, t ), where f (kr) = 3[sin(kr) − kr cos(kr)]

(kr)3
. (9)

Here, ˆ(·) denotes the Fourier transform, k is the wave vector, with |k| = k, and f (kr) is the transfer
function corresponding to G(r). Unlike in previous works [16,18], this local averaging is evaluated
exactly in an isotropic spherical volume. It can also be easily shown that this isotropic box filter also
satisfies the consistency condition: 〈Ar〉 = 〈A〉.
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FIG. 1. (a) Second moment of locally averaged dissipation and enstrophy at Rλ = 1300. The intermittency
exponent for dissipation is about μ = 0.23 and that for enstrophy is slightly larger. (b) The variance of local
averages as defined by Eq. (10).

IV. RESULTS

A. Energy dissipation rate and enstrophy

We first consider the intermittency of dissipation and enstrophy, a topic that has received consid-
erable attention in the literature [18,19,22,25,43]. Figure 1(a) shows the second moments of locally
averaged dissipation and enstrophy at Rλ = 1300 (the highest in the current work). As anticipated,
for small r, the moments of local averages simply tend to those of instantaneous quantities, those
for enstrophy being larger (as is known); whereas at large r, the moments tend to the same value of
unity (as they should). In the inertial range, dissipation exhibits the power-law r−0.23 (with an error
bar of 0.02) for a reasonable range of r, implying μ ≈ 0.23 ± 0.02, in very good agreement with
previous works [27]. At the same time, within the same range of r, the enstrophy curve suggests
a slightly larger intermittency exponent, consistent with previous works [18,19]; see later for more
details.

An alternative means of extracting the intermittency exponent is to consider the variance of εr

(and �r), computed after subtracting the respective means for each r; for instance,

σ (εr ) = 〈(εr − 〈εr〉)2〉/〈εr〉2 = 〈
ε2

r

〉
/〈ε〉2 − 1; (10)

note that 〈εr〉 = 〈ε〉. The expectation is that σ (εr ) ∼ r−μ in the inertial range [27]. Figure 1(b) shows
the variance of εr and �r , and indeed the nature of their scaling follow expectations—although the
scaling ranges are somewhat different from Fig. 1(a).

B. Effect of Reynolds number

To be stringent about the power law exponents, it is helpful to take the log-log derivatives (or the
local slope) of the curves in Fig. 1(a). Figure 2(a) shows the local slope of second moments of εr

and �r for various Rλ. It can be seen that the quality of results in the inertial range depend on Rλ

and, in fact, a constant local slope (corresponding to a true power-law) is clear only at the highest
Rλ = 1300. However, guided by this feature, one can look for signs of approximate power laws at
lower Rλ, and find slightly large exponent values.

It is worth noting that in Fig. 2(a), the local slope of enstrophy (in the inertial range) is always
larger than that of dissipation for every Rλ. To better document this behavior, Fig. 2(b) shows the
ratio of the local slope of enstrophy with respect to that of dissipation (in the spirit of extended
self-similarity). Remarkably, the curves are always above unity in the inertial range. Further, there
is a weak but clear tendency for this ratio to approach unity with increasing Rλ, but the rate of
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FIG. 2. (a) Local slopes of the second moment of locally averaged dissipation and enstrophy at different
Reynolds numbers. The constancy of slopes improves as the inertial range enlarges with increasing Reynolds
numbers. (b) Ratio of the two local slopes as a function of r. It is evident that the intermittency exponent for
enstrophy is slightly larger and the approach towards unity as Reynolds number increases is extremely slow.
Log denotes natural logarithm.

approach is so slow that the difference remains in place at all finite Reynolds numbers of interest.
That is, enstrophy in the inertial range is slightly more intermittent than dissipation.

C. Scalar dissipation rate

We first consider locally averaged scalar dissipation rate for Sc = 1. Figure 3(a) shows the second
moments of locally averaged energy dissipation, enstrophy and scalar dissipation (at Rλ = 650),
with the corresponding local slopes shown in Fig. 3(b). The intermittency exponent of the scalar μθ

is larger than those of both dissipation and enstrophy, reaffirming past results that scalar gradients
(at Sc = 1) are more intermittent than velocity gradients [6]. While a clear plateau for dissipation
and enstrophy is not achieved at Rλ = 650 [in Fig. 3(b)] the curve for scalar dissipation shows a very
convincing plateau, giving μθ ≈ 0.35. This result is in excellent agreement with earlier experimental
results of Refs. [14,28].
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FIG. 3. (a) Second moment of locally averaged energy dissipation, enstrophy and scalar dissipation at
Rλ = 650, with scalar at Sc = 1. The intermittency exponent of scalar μ = 0.35 is significantly larger. (b) The
local slopes of quantities shown in panel (a) demonstrates that the inertial range scaling for the scalar is very
robust. Log denotes natural logarithm.
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FIG. 4. (a) Local slopes of the second moment of locally averaged scalar dissipation at Rλ = 390 for Sc =
1, 4, 8 and at Rλ = 650 for Sc = 1. (b) The ratio of the local slope of scalar dissipation to that of energy
dissipation for same cases as shown in panel (a). Log denotes natural logarithm.

The effect of increasing Sc is considered next. Since increasing Sc imposes a stricter constraint
on small-scale resolution, we consider data at slightly lower Rλ = 390, but still large enough to
display inertial range characteristics. Figure 4(a) shows the local slope of second moment of scalar
dissipation at Rλ = 390 and Sc = 1–8. The curve corresponding to Rλ = 650 and Sc = 1 is also
shown for comparison. The scalar intermittency exponent monotonically decreases with increasing
Sc (also displaying a weak Rλ dependence).

Because of this possible Rλ-dependence, it is difficult to extract precisely the intermittency
exponents at higher Sc. Instead, if we were to compare the ratio of μθ to μ, then a trend can be
established; this should shed light on the asymptotic limit of Sc → ∞. To this end, Fig. 4(b) shows
the local slope of scalar dissipation with respect to that of energy dissipation. The Rλ-dependence
is somewhat more prominent than in Fig. 4(a), likely because μθ seemingly has a stronger Rλ-
dependence than μ. Nevertheless, it is evident that the ratio μθ/μ monotonically decreases with
Sc.

For a definitive answer on the high Sc limit, one obviously needs to obtain data at substantially
higher Sc at Rλ = 390 (and also at higher Rλ). But these are unlikely to be attained anytime soon.
Instead, we analyze data at lower Rλ = 140, for which inertial range characteristics just begin to
manifest [16,29]. Figure 5(a) shows the local slope of second moment of scalar dissipation with
respect to that of energy dissipation up to Sc as high as 512. The curve corresponding to Rλ = 390
and Sc = 8 is also shown for comparison.

Two main conclusions can be drawn from this figure. First, the effect of Rλ is weaker at higher Sc
[in comparison to that at Sc = 1, as evident from Fig. 4(b)]. Second, the ratio μθ/μ keeps decreasing
further, possibly suggesting that μθ → 0 as Sc → ∞. We extract the ratio μθ/μ from Fig. 5(a) and
plot its inverse as a function of Sc in Fig. 5(b). The data show a weak power-law dependence (with
an exponent of about 0.16), though a log Sc-behavior is equally appropriate. The log Sc-behavior of
μ/μθ is loosely based on how the mean scalar dissipation rate scales with Sc [21]. From a physical
viewpoint, the result that μθ → 0 implies that the locally averaged scalar dissipation rate becomes
homogeneous and independent of r in the limit Sc → ∞. This inference is consistent with recent
results which demonstrate a lack of scalar dissipation anomaly as Sc → ∞ (or D → 0) [21].

V. CONCLUSIONS

In this work, we have performed local averaging of turbulent intermittent variables as they should
be done: spherical averaging of three-dimensional quantities without using surrogates from one- or
two-dimensional cuts, without the use of Taylor’s frozen-flow hypothesis, or relying on cubical
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FIG. 5. (a) Ratio of local slopes of the second moments of locally averaged scalar dissipation and energy
dissipation at Rλ = 140 for Sc = 8, 32, 128, 512 and at Rλ = 390 for Sc = 8. (b) Inverse of the inertial range
exponents extracted from (a) as a function of Sc. Both power-law and log fits are shown. Log denotes natural
logarithm.

subdomains. For the energy dissipation and enstrophy, we mostly recover past results with greater
assurance; we feel more confident than ever that intermittency exponents do exist. Our results
additionally suggest that enstrophy will always remain somewhat more intermittent than energy
dissipation even at extremely large Rλ, reaffirming recent results of Ref. [26].

For the scalar dissipation, no previous studies existed on its scaling at high Schmidt numbers
with large enough Reynolds number to obtain inertial range characteristics. In our simulations, the
maximum allowable computational capacity has necessitated decreasing Sc with increasing Rλ. For
Sc = 1, we were able to maintain Rλ as high as 650, whereas Rλ = 140 for the highest Sc = 512.
It is unlikely that one can get much higher Rλ for such high Sc anytime soon. For these conditions,
we have been able to extract the intermittency exponent for the scalar dissipation. For Sc = 1, it is
very close to what had been deduced from earlier measurements of the full scalar dissipation using
Taylor’s hypothesis [14], and some surrogate quantities in planar cuts [28]. An important result is
that the intermittency exponent for the scalar dissipation decreases either as a weak power of Sc
or logarithmically, apparently to zero in the limit Sc → ∞. This decrease is consistent with our
recent results [20,21] that turbulence loses its ability to effectively mix passive scalars with very
low diffusivity.
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