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Local-flux vectors of conserved quantities in the wavenumber space are proposed to
investigate their directional properties in anisotropic turbulence. The proposed vectors
are validated in statistically steady states of Charney-Hasegawa-Mima turbulence, which
consists of anisotropic wave turbulence with zonal flow and isotropic vortex turbulence.
The directions of the local-flux vectors are consistent with the energy-enstrophy double
cascade in two-dimensional isotropic turbulence. The flux vectors of energy, furthermore,
successfully show an anisotropic structure below the Rhines wavenumber, corresponding
to the large-scale zonal flow, while those of enstrophy show almost isotropic structure. A
couple of expressions of the critical balance are compared with the energy spectra and the
flux vectors. The results confirm that the proposed method can quantitatively characterize
the anisotropically directed flows of conserved quantities in the wavenumber space.
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Simultaneous existence of more than one inviscid invariant is one of the most intriguing
properties of two-dimensional (2D) fluid turbulence [1]. For three-dimensional (3D) homogeneous
isotropic turbulence (HIT), the cascade theory initiated by Kolmogorov [2], which is based on
Richardson’s idea of cascading vortices from large to small scales, successfully reveals the statistical
properties. Energy conservation results in the constant energy flux owing to the local equilibrium
state within the inertial subrange of scales. For 2D HIT, Kraichnan has shown in his seminal
work [3] that energy cascades to larger scales during counterintuitive turbulent self-organization,
called inverse cascade, while enstrophy cascades to smaller scales. The idea of such double cascade
was first suggested by Fjørtoft [4] based on the conservation of the two quadratic positive-definite
invariants. The confirmation of the double cascade has been a longstanding source of controversy
(see, e.g., Ref. [5] and references therein). The emergence of large coherent structures in 2D
turbulence has become the subject of intense research recently by using high-resolution long-time
simulations, for instance [6]. Extension of the cascade theory to anisotropic turbulence has been
attempted and is still considered as an open problem (see Ref. [7] and references therein). The
quantification of energy fluxes is eagerly anticipated to validate such extension and especially the
idea of critical balance, which is supposed to have some universality [8,9].
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Energy flux in the wavenumber space (k space) plays a pivotal role in elucidating turbulence
properties. Although anisotropic turbulence is ubiquitously observed at least in large scales, little is
known about its energy flux in contrast to the well-formulated cascade theory in HIT. One of the
essential difficulties comes from the indefiniteness of the intermode transfers in nonlinear interaction
as discussed in Ref. [10] and later in this Letter. Even recently, alternative expressions to uniquely
determine intermode transfers have been actively proposed by decomposing the triad interaction
of the nonlinear term [11]. In Ref. [12], the authors proposed the minimal-norm energy-flux
vectors in anisotropic turbulence by employing the idea of least-action principle in the system
where the Euclidean norm of the energy-flux vector is considered as an action. The energy flux
in heterogeneous coexistence turbulence (HCT), where anisotropic wave turbulence and isotropic
vortex turbulence coexist, is a major unresolved issue. We here propose more generalized practical
formulation of the flux vectors and quantify fluxes in HCT including transition wavenumber range.

Inspired by Ref. [13], Charney–Hasegawa–Mima (CHM) turbulence, which describes the com-
mon physics in both the Rossby waves in the quasigeostrophic flow and the drift waves in a
magnetically confined plasma, is adopted as a representative test field. The governing equation in
the present direct numerical simulation (DNS) is written in k space as:

∂ζ̂

∂t
(k, t ) =

∑

k=k1+k2

(k1 × k2)z ζ̂ (k1, t )ψ̂ (k2, t ) − ikxβψ̂ (k, t ) − D̂(k, t ) + F̂ (k, t ), (1)

where ζ̂ and ψ̂ are, respectively, the Fourier coefficients of the vorticity ζ and the stream function
ψ , which have the relation ζ̂ = (k2

x + k2
y )ψ̂ , and D̂ and F̂ are, respectively, those of the dissipation

D and the external forcing F , which are added to achieve statistically steady state.
The CHM equation has two quadratic invariants, energy

∫
(1/2)(k2

x + k2
y )|ψ̂ |2dk and enstrophy∫

(1/2)|ζ̂ |2dk, and shows rich turbulence states: zonal flows, and wave turbulence above the Rhines
scale [14] and the 2D NS turbulence below it. In k space, they correspond to the dumbbell spectrum,
will be seen in Fig. 4 later, in lower-wavenumber range [15], and the isotropic energy-enstrophy
double cascade in higher-wavenumber range [3,4]. Although a predicted scenario of the energy flux
based on the idea of the critical balance is illustrated in Ref. [9], such energy flux has never been
quantitatively evaluated as far as the authors know.

Recently, Fjørtoft’s argument is generalized to find the anisotropic directions of triple cascade
including zonostrophy, which is a quadratic quasiconserved quantity [16], in the CHM turbulence
[13]. The motions of centroids of these three (quasi)conserved quantities are employed to visualize
the directions of the fluxes in developing turbulence. Although the idea of centroid is intuitive and
acceptable, it works only for a localized spectrum in a developing state. We here take an alternative
approach to quantify fluxes, which works both in developing and statistically steady states regardless
of spectral distributions.

In isotropic systems, transfers of conserved quantities can be described as scalar functions of
k = |k| and obtained by their spectrum equations derived from governing equations. The flux P(k, t )
of a conserved quantity I (k, t ) at time t through a constant-|k| circle (a sphere in three dimensions)
is related to its transfer function via nonlinear interactions T (k, t ) = [∂I (k, t )/∂t]NL as T (k, t ) +
[∂P(k, t )/∂k] = 0. The fluxes in anisotropic turbulence should be considered as a vector field to
describe a flow in k space to have directional properties. Drawing fluxes as a vector field implicitly
assumes the dominance of local interaction as a net transfer as in the cascade theory and diffusion
models [17]. Cancellation of nonlocal interactions is reported in HIT [10]. Let us define a flux vector
P(k, t ) of an invariant I (k, t ) as the flow by using its transfer function T (k, t ) = [∂I (k, t )/∂t]NL

similarly to isotropic one. Since I (k, t ) is conserved while flowing in k space, P(k, t ) satisfies a
continuity equation:

T (k, t ) + divkP(k, t ) = 0, (2)

where divk is the divergence operator in k space. It is impossible to uniquely determine P(k, t ) only
from this scalar equation (2), although reported is a singular exception of a weak-turbulence system
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FIG. 1. Conceptual diagram of intermode transfers in triad interactions: (a) a symmetric-type example,
(b), (c) catalytic-type examples, and (d) an example of circulation indefiniteness. Curved arrows represent
intermode transfers.

where the dispersion law and the interaction coefficient in the kinetic equation are hypothetical
bihomogeneous functions [18], which does not hold in general, especially in HCT. In the limit of
weak nonlinearity, a kinetic equation for condensation, e.g., turbulence pileup and zonal flows, of
turbulent spectrum at large scales predicts nonlocal interactions due to resonance in weak-turbulence
theory [9,18,19]. However for HCT, the prediction based on a kinetic equation cannot be applied
because of the strong nonlinearity. Moreover, for a statistically steady turbulence, which implies
time scale is much longer than a resonance time scale, one may expect all modes are connected
directly or indirectly [20].

Briefly reviewing the circulation indefiniteness of the intermode transfers, we propose an idea
to uniquely determine P(k, t ). As known from Eq. (1), the intermode transfer of a quadratic
invariant I , for example, is represented by the triad interaction among k1, k2, and k3, satisfying
k1 + k2 + k3 = 0. A symmetric type is commonly acceptable example to uniquely determine the
transfer: considering the case that both I (k1) and I (k2) obtain 3, while I (k3) loses 6, the intermode
transfers are naturally determined as drawn in Fig. 1(a) owing to its symmetry. On the other hand,
catalytic type of the interaction may evoke a variety of intermode transfers. Considering the case
that I (k1) obtains 6, I (k2) does not change and I (k3) loses 6, one may simply draw as in Fig. 1(b).
However, since k2 plays a part of the triad and its obtained value 0 is the midvalue between the
obtained values 6 and −6, another may draw as in Fig. 1(c). In Fig. 1(d), circulation indefiniteness
is illustrated: consider the case that k1, k2, and k3 obtain 7, 1, and −8, respectively. The intermode
transfer TA in Fig. 1(d) gives equivalent transfers with TB, for example, owing to the indefiniteness
of a circulation transfer TC. We here introduce an ansatz that the intermode transfer is proportionate
to the difference between the obtained value of the two modes, which uniquely determine the
transfers as TA in Fig. 1(d), i.e., 3 = [1 − (−8)]/3, 2 = (7 − 1)/3, and 5 = [7 − (−8)]/3 where the
proportionality factor is 1/n for n-mode interaction. Detailed balance leads that intermode transfers
have no circulation, i.e., irrotational. For P(k, t ), the flux across a closed curve or a line (a closed
surface or a plane in three dimensions) also has the indefiniteness of circulating flow. A conservative
vector field, also called a path-independent vector field, may be the first candidate for removal of
such indefiniteness. We here define P(k, t ) as a conservative vector that satisfies Eq. (2) and give
the name of local-flux vector.

In Ref. [12], Eq. (2) for energy is evaluated using a coarse-grained finite difference approximation
in k space, which yields a noninvertible matrix and vector problem for P. The minimal-norm energy-
flux vectors was proposed by employing a special solution owing to the Moore-Penrose inverse.
Since a conservative vector is irrotational and can be represented by a scalar potential, the local-flux
vector proposed here can be obtained by the inverse Laplacian in k space instead of the Moore-
Penrose inverse. The local-flux vector of energy should be the same as that in Ref. [12], because
rotational flow belongs to the null space of the divergence operator in Eq. (2). As known from the
derivation, the proposed vector is a natural generalization of conventional flux; by integrating over
constant |k| (or constant kx, ky and so on) it agrees with the conventional one.

HIT of 2D Navier–Stokes (NS) equation is adopted as a preliminary test because of the double
cascade [3,4], although the energy and the enstrophy flow only in radial direction. The standard
2/3-dealiased spectral method was employed on 20482 grid points in the periodic square [0, 2π ]2. A
fourth-order Runge–Kutta scheme with linear terms treated implicitly was used for time marching.
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FIG. 2. In HIT, (a) energy spectra, where E o(k), Eyr (kx ), Exr (ky ), E (kx, 0), and E (0, ky ), respectively
represent, omnidirectional, unidirectionally reduced, and on-axis energy spectra. (b) Fluxes of energy and
enstrophy, which are defined similarly to omnidirectional and unidirectionally reduced spectra. The symbols
are plotted at only representative wavenumbers in the high-wavenumber range. (c) 2D energy spectrum in the
right half plane, and (d) its low-wavenumber enlargement, where they are colored in the logarithmic scale by
adjusting the color range to show the structure clearly.

The high-wavenumber forcing, whose amplitude is set for the energy density to be of order unity,
was added at |k| ≈ 256 =: k f to investigate the dumbbell spectrum in the inverse cascade. The
hypodrag and hyperviscosity are set, respectively, as μm|k|−2m and ν|k|2 + νn|k|2n [21]. We adopted
the values of m = 0.3, n = 8, μm = 1.0 × 10−1 and νn = 1.0 × 10−42, and ν as νk2

s = νnk2n
s at

ks = 512.
For HIT, conventional 1D spectra and fluxes are plotted in Figs. 2(a) and 2(b). The omnidirec-

tional spectrum Eo(k) was obtained by integrating over azimuthal direction with |k| fixed. Two
other kinds of 1D spectra are introduced: the one, here called unidirectionally reduced spectrum,
Eyr (kx ) [Exr (ky)], is obtained by integrating over the other independent variable ky (kx), and the
other, on-axis spectrum, E (kx, 0) [E (0, ky)], is the spectrum on each axis. The fluxes of energy and
enstrophy defined in the similar way to the spectra are plotted in Fig. 2(b): omnidirectional flux of
energy Po(k) and enstrophy Qo(k), and unidirectionally reduced ones Pyr (kx ) [Pxr (ky)] and Qyr (kx )
[Qxr (ky)]. The unidirectionally reduced spectra, Eyr (kx ) [Exr (ky)], and fluxes, Pyr (kx ) etc., include
all turbulence information in |k| > kx (ky). Comparison of Po(k) and Pyr (kx ) [Pxr (ky)] in the range of
50 � k � k f in Fig. 2(b) provides an example for this fact, since the difference between the convex
upward and downward comes from |k| > k f especially where the flux has the opposite sign. Note
that the Newtonian viscosity is also effective slightly below the forcing wavenumber. Although the
periodic boundary condition does not meet invariance under arbitrary rotation for isotropy, it is not
evident in these 1D spectra and fluxes. Therefore 2D spectra and local-flux vectors are indispensable
to reveal this fact.

In Fig. 2(a), while the predicted power law of k−5/3 can be seen in the inverse-cascade range,
much steeper spectra than the enstrophy-cascade spectrum with k−3 are observed in the forward-
cascade range. The double-cascade spectrum cannot be produced by band-limited forcing, and the
slope of the forward-cascade energy spectra cannot be shallower than −5 [22]. While the constant
energy flux is achieved approximately in the inverse-cascade range, the constant enstrophy flux is
not in the forward-cascade range, as shown in Fig. 2(b). It also appears in a different way that the
inverse cascade of enstrophy is negligible, while the forward cascade of energy is not. Although
the latter range is too narrow to achieve pure enstrophy cascade, the energy flux should be smaller
for wider forward-cascade range [23]. It is, however, sufficient for the present purpose that most
of the energy and the enstrophy cascade in backward and forward directions, respectively. The
2D energy distribution in HIT has 2D axisymmetry as shown in Fig. 2(c) and its enlargement in
low-wavenumber range in Fig. 2(d). They are shown only in the right half of (kx, ky) plane because
of the conjugate symmetry of the Fourier coefficients.
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FIG. 3. In HIT, local-flux vectors of (a), (b) energy and (c), (d) enstrophy. See also the caption to Figs. 2(c)
and 2(d). The vectors are shown by equal-length arrows to make their direction visible and colored to represent
their magnitudes in logarithmic scale. The color range is adjusted to show the magnitudes clearly. The magenta
semicircle represents forced wavenumbers.

Figures 3(a) and 3(b) display the local-flux vectors of energy in the region corresponding to
Figs. 2(c) and 2(d), respectively. These vectors are shown at a periodic sampling of grid points
to improve visibility, although they are determined at every grid points. The vectors point radially
inward (outward) inside (outside) the semicircle of the forced wavenumbers as seen in Fig. 3(a).
However, owing to the rectangular shape of outer boundary the directions of the vectors deviate
from radial ones near the highest wavenumber where their magnitudes are negligibly small as
noticed from their colors. Although there exist outward vectors in the lower-wavenumber range,
where they are remarkably enhanced by k−1 factor due to arc length of the circle, they are very
small as confirmed by Fig. 2(b). The sink on the semicircle |k| ≈ 3 is consistent with the existence
of strong dissipation by the hypodrag as recognized from Fig. 2(d). The local-flux vectors of
enstrophy are shown in Figs. 3(c) and 3(d). Although the flux vectors are directed as if the forcing
region is a dividing ridge as observed in the energy-flux vectors, the enstrophy-flux vectors have
large magnitude just outside the forcing wavenumber and precipitously drops beyond |k| ≈ 400 as
seen in Fig. 3(c). Directional reversal and anisotropy around |k| ≈ 450 are, respectively, due to the
artificially added hyperviscosity and the square boundary condition, and its magnitude is small to
be neglected even in the integrated flux, as implied by the omnidirectional flux [Fig. 2(b)]. The
appearance of large values around the origin in Fig. 3(d) is again due to the k−1 factor. These
results show that the proposed flux vectors are consistent with the energy-enstrophy double-cascade
scenario [3,4].

In the CHM turbulence, the inverse energy cascade would be altered and redirected toward zonal
modes below a transition wavenumber between the ranges of isotropic turbulence and Rossby-wave
turbulence [14]. Equating the magnitudes of the linear and nonlinear terms in Eq. (1), term balancing
for brevity, one obtains the Rhines wavenumber kR = √

β/U 1: equating the linear term (∼|βkx�|)
and the nonlinear term (∼|kxkyZ�|) leads β ∼ |kyZ| = |kyk2�| ∼ k2U , where �, Z , and U are,
respectively, the characteristic values of ψ̂ , ζ̂ , and the x component of the velocity û = ikyψ̂ . On
the other hand, balancing the linear and nonlinear time scales, time balancing, one also obtains the
dumbbell spectrum: equating the Rossby wave period k2/(β|kx|) as the linear time scale and the
eddy turnover time (εk2)−1/3, owing to a Kolmogorov-type estimate, as the nonlinear time scale,

1Rhines originally obtained kR = √
β/(2U ) by setting the orientation averaged phase speed of the Rossby

wave as β/(2k2) with the assumption of a narrow spectrum.
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FIG. 4. In CHM turbulence, (a) 2D energy spectrum in the right half-plane, (b) its low-wavenumber
enlargement, (c) energy spectra, and (d) fluxes of energy and enstrophy. The blue and green curves, respectively,
represent |k| = k


R and k8 = (k

β )5|kx|3 with k


R = k

β = 14. See also the caption to Fig. 2.

leads k8 = k5
β |kx|3 where kβ = (β3/ε)1/5 and ε is the energy transfer rate. Other nonlinear time

scales yields other functional forms of dumbbell spectrum [15].
The 2D energy spectra of the CHM turbulence with β = 103, which leads kR ≈ 25 and kβ ≈

1.1 × 102, are drawn in Figs. 4(a) and 4(b) as in Figs. 2(c) and 2(d). While the 2D spectrum shows
isotropy in the higher-wavenumber range [Fig. 4(a)], the dumbbell spectrum [15] is observed in the
lower-wavenumber range [Fig. 4(b)]. Note that symmetric structures on ky axis, dumbbell lobes,
appear in the whole k space, as known from conjugate symmetry. The energy spectral peaks in
the vicinity of (kx, ky ) = (0,±14) correspond to the emergence of the zonal flow. This result is
consistent with large energy dissipation observed in Ref. [24]. The energy spectrum has large values
between the semicircle |k| ≈ k


R, and the dumbbell spectrum k8 ≈ (k

β )5|kx|3 with k


R = k

β = 14.

To see the relation of this anisotropy to the energy flux, conventionally used 1D spectra and fluxes
of energy and enstrophy are plotted in Figs. 4(c) and 4(d). In Fig. 4(c), anisotropy of the energy
spectra is observed in low-wavenumber range, while isotropy as seen in Figs. 2(a) is in |k| � 100.
Note that Eyr (kx ) and E (kx, 0) are sufficiently smooth, whereas Exr (ky) and E (0, ky) contain discrete
peaks at harmonics of fundamental wavenumber ky = 14, which suppress the nonlinear interaction
of the Jacobian type. The energy spectrum tends to have an equilibrium spectrum Eo(k) = Cβ2k−5

owing to Rossby wave radiation [14,25]. Note that anisotropic wavenumber range varies depending
on the types of the spectra; it starts roughly at 100 in on-axis spectrum, at 50 in unidirectionally
reduced spectrum, and at 15 in 2D spectrum. As mentioned above, heterogeneous spectra are
mixed by the omnidirectional ones at low wavenumbers and unidirectionally reduced ones at all
wavenumbers.

Corresponding to the dumbbell spectrum, the energy fluxes shown in Fig. 4(d) demonstrate
remarkable behavior in |k| � 15: Pyr (kx ) remains negative and almost constant, while Pxr (ky) and
Po(k) abruptly change to almost zero around ky and k = 14, respectively. Small anisotropy in the
high-wavenumber range becomes prominent because the vertical axis of Fig. 4(d) is set in linear
scale, while that of Fig. 4(c) is in logarithmic scale. The anisotropy should decrease with increasing
the inertial subranges. The enstrophy fluxes, Qo(k), Qyr (kx ) and Qxr (ky), remain nearly unaffected
by the β effect, since their supports are in the high-wavenumber range. Because anisotropies in these
fluxes are a mixture of different turbulence properties, local-flux vectors of conserved quantities are
indispensable to reveal their roles in HCT.

The local-flux vectors of energy and enstrophy are shown in Fig. 5 as in Fig. 3. The global
directional property of the local-flux vectors of energy shown in Fig. 5(a) is the same as the one
in HIT [Fig. 3(a)], and consistent with the inverse energy cascade. The most remarkable difference
appears in the low-wavenumber range [Fig. 5(b)] especially below the semicircle |k| ≈ 14. The
directions of the inward vectors deviate from isotropic ones to surround the semicircle and outward
direction from the origin in the dumbbell spectrum. The local-flux vectors indicate a new scenario
that the narrow part of the dumbbell spectrum, the two lobes’ point of tangency, is due to energy
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FIG. 5. In CHM turbulence, local-flux vectors of (a), (b) energy and (c), (d) enstrophy. See also the caption
to Fig. 3.

accumulation along the ky axis centered at (kx, ky) ≈ (0,±14), where nonlinearity is suppressed
to sustain the zonal flow. The local-flux vectors of enstrophy in Figs. 5(c) and 5(d) are almost the
same as those of HIT in Figs. 3(c) and 3(d). Corresponding to the anisotropy observed in Fig. 4(d),
Qyr (kx ) and Qxr (ky), directional anisotropy is observed in Fig. 5(c) and becomes conspicuous in the
small-flux region, |k| < k f or |k| � 600, where the enstrophy flows inwardly. On the other hand, the
enstrophy flows inwardly and almost isotropically in |k| � 14, where local-flux vectors of energy
show directional anisotropy.

In this Letter, we have proposed a simple method to uniquely determine flux vectors of conserved
quantities in an anisotropic turbulence, which is a natural extension of conventionally used omni-
directional and unidirectionally reduced fluxes in HIT. The proposed local-flux vector is a special
solution of the continuity equation (2), which connects the vector flux to a scalar transfer as its
generalization in HIT, and is chosen for the vector flux to have a scalar potential.

We have applied the proposed method to the CHM turbulence as anisotropy-controlled study
of 2D NS turbulence. The local-flux vectors successfully reveal the structures deduced from the
cascade theory and critical balance in the whole k space and quantitatively evaluate the critical
balance in HCT. The local-flux vectors show that the energy flows along the semicircle boundary
obtained by term balancing rather than the dumbbell-shape boundary by time balancing, while
enstrophy flows almost only in radial direction even in the dumbbell spectrum range. The local-flux
vectors of energy also indicate the scenario to sustain the dumbbell spectrum. Care should be taken
in investigating results from reduced spectra [Figs. 2(a) and 4(c)] and reduced fluxes [Figs. 2(b) and
4(d)] since they usually mix heterogeneous turbulence properties. Each of these spectra suggests
different wavenumbers as a boundary of anisotropy.

Lastly, the proposed method will work well in general fields, regardless of its spatial dimension,
statistically steadiness, spectral distribution, and so on. To reexamine the situation in Ref. [13] from
a viewpoint of the local-flux vectors, the triple cascade and the generation of zonal flow will be
investigated in a separate paper. Moreover, useful information would be obtained if the method
is applied to anisotropic turbulence such as flows on a rotating sphere, magnetohydrodynamic
turbulence, and wave turbulence subject to anisotropic initial and/or boundary conditions.

This work was supported in part by the Japan Society for the Promotion of Science (JSPS
KAKENHI Grants No. 18K03927, No. 19K03677, and No. 21K03883).
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