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Pinch-off of liquid jets at the finite scale of an interface
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We derive self-similar continuum equations that govern the rupture of liquid threads at
scales within the influence of interfacial dynamical effects. This regime and the obtained
power-law solution for the evolution of the minimum neck radius, hmin = 0.001 07(tb −
t )2.34, fill a void in the literature in between the classical inertial-viscous regime and
the stochastic formulation and reconcile flow features such as asymptotic slow boundary
conditions far away from the singularity and symmetric profiles, respectively. Due to its
inherent ties to the production of monosized droplets from jetting, this work can be utilized
to approach, for example, the study of electrosprays or flow focusing at these critical
scales for aerospace nano-thruster technology or single-biomolecule imaging with x-ray
free-electron lasers.

DOI: 10.1103/PhysRevFluids.7.L012201

The ubiquity of liquid jets in nature and their generation, stability, and controlled rupture have
motivated not only fundamental research [1] but also their use in multidisciplinary endeavors in
analytical chemistry [2], structural biology [3], and aerospace nanopropulsion [4] among others.
Eggers [5] established the self-similar equations for the pinching process where inertia, surface
tension, and viscous terms are balanced: the inertial-viscous regime (IV). The evolution of the
minimum neck radius hmin was found to be h(IV)

min = 0.03(σ/μ)(tb − t ), where σ , μ, and tb are the
surface tension, viscosity, and time of breakup, respectively. However, its range of validity is not
universal as the pinch-off can be triggered upstream under a pure dominance of inertia or viscosity,
although after an intermediate regime [6–8] the thread dynamics behaves according to the IV regime
[5].

However, Moseler and Landman [9] demonstrated via molecular simulations how the breakup
of a liquid propane jet forced through a hole with a diameter of 6 nm does not obey the exponent
and predictions based on the IV analysis. To address this limitation, a stochastic force was added
to the slender jet model in order to identify a regime where thermal fluctuations from the bulk can
control the pinching process (the bT regime). This approach was later exploited by Eggers [10] who
derived numerically h(bT)

min ∝ (tb − t )0.418. Subsequently, researchers have studied the inclusion of
vapor-pressure effects in molecular dynamic simulations [11], ultralow surface tension experiments
at much larger scales [12–14], and further numerical explorations regarding the validity of the 0.418
power law for ultralow surface tension [15].

Whether the power-law exponent is determined by the balance of inertia, viscous and surface
tension stresses, or stochastic forces, these works share a common assumption no matter the length
scale that is under study: an interface thickness δ such that δ/hmin � 1. This simplicity has a
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FIG. 1. Sketch about the minimum thickness of the pinching of a liquid thread. A detailed view in the
vicinity of the minimum radius hmin and at a scale comparable in size to the interface thickness δ (in gray color
gradient).

profound implication for the interface dynamics, which is a frozen sharp layer that affects the jet
behavior through the Laplace-Young stress with a certain value for σ .

However, the interface cannot be considered infinitely narrow under the following scenarios: (i)
during the pinch-off of jets where eventually δ/hmin ∼ 1 or (ii) for thin enough steady liquid jets
with a radius h∞ such as h∞ −→ δ. It is then natural to ask: (i) does a finite interface produce
intermediate spatiotemporal scales in between the IV and bT regimes? and, if so, (ii) would these
novel scales lead to self-similar properties within the breakup of a liquid jet and, consequently, to a
new power-law exponent for the dynamics of the minimum neck radius? In this work, we shed light
on this matter by deriving an extended but analytically approachable slender model for a liquid jet
that is affected by the finite thickness of the interface.

Model formulation. We distinguish two domains, a liquid bulk and a finite phase-graded interface,
which are separated by a nonmaterial contact line as the axisymmetric surface function r = h(z, t )
(Fig. 1). The classical idea [1] that we utilize is that for a sufficiently slender jet (i.e., characteristic
radial � and axial L length scales are such as their ratio ε = �/L � 1) higher-order terms are negligi-
ble and can be removed from the set of nondimensional incompressible axisymmetric Navier-Stokes
equations for the liquid bulk,

ut + uur + vuz = − pr

ε2
+ urr

ε2
+ uzz + ur

rε2
− u

r2ε2
, (1a)

vt + uvr + vvz = −pz + vrr

ε2
+ vzz + vr

rε2
, (1b)

where subscripts denote partial derivatives. The axial z and radial r lengths and time t have been,
respectively, made dimensionless by the axial L = μ2/(ρσ ) and radial � = εL scales and the
characteristic time τ = ε2μ3/(ρσ 2). Note that p, u, and v are measured in terms of �, L, τ , and
the density ρ, with the units ρL2/τ 2, �/τ , and L/τ , respectively. Additionally, μ/ρ is implicitly
related to L and τ as τ ∼ L2ρ/μ. Given the radial er and longitudinal ez cylindrical unit vectors, we
radially expand in the bulk [r < h(z, t )] the dimensionless pressure p(r, z, t ) and the velocity fields
v(r, z, t ) = u(r, z, t )er + v(r, z, t )ez by using the aforementioned parameter ε = �/L � 1; below
we link with the finite interface as a matching condition in terms of its thickness δ and mobility M
from the Cahn-Hilliard description.
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We next take advantage of these previous standard ideas by the classical variable expansion,

p(r, z, t ) = p0(z, t ) + p2(z, t )(εr)2 + · · · , (2a)

v(r, z, t ) = v0(z, t ) + v2(z, t )(εr)2 + · · · , (2b)

u(r, z, t ) = −v0z(z, t )εr/2 − v2z(z, t )(εr)3/4 + · · · , (2c)

which simultaneously satisfies mass conservation and the symmetry of the problem.
Once the Navier-Stokes equations are simplified with the variable expansion and after retaining

the leading terms [1], the classical axial momentum equation is

v0t + v0v0z + p0z = 4v2 + v0zz. (3)

Both the bulk and the finite-thickness interface flow together through a quiescent outer fluid with
a density ρo and a viscosity μo that does not exert any external stress over the entire jet (Fig. 1).
Thus, there is an inner balance of stresses between both domains through the boundary line that
enables us to add the resulting net normal f (n) and shear f (s) stresses from the interface to the
bulk at r = h(z, t ), leading to two dimensionless equations along the normal n and tangential s
coordinates (see Fig. 1):

p − 2[ur + ε2vzh2
z − (vr + ε2uz )hz]

1 + ε2h2
z

= f (n), (4a)

2ε2hz(ur − vz ) + (vr + ε2uz )(1 − ε2h2
z )

ε(1 + ε2h2
z )

= ε f (s). (4b)

For the evaluation of f (n) and f (s) we utilize the Cahn-Hilliard formulation [16–18] for the fluid
fraction φ, which is based on the behavior of the chemical potential θ = φ3 − φ − δ2∇2φ that is
formed by the competition between the phase separation, φ3 − φ, and interface penalizing, −δ2∇2φ,
terms:

φt + (v(i) − v(s) ) · ∇φ = 3Mσ

2
√

2δ
∇2(φ3 − φ − δ2∇2φ). (5)

The difference of velocity components along n and s, respectively, from the inner interface
v(i) = u(i)n + v(i)s to the boundary streamline v(s) = u(s)n + v(s)s, is assumed to be of O(ε) due
to the departures of the interface from a sort of frozen state. Next, we take advantage of the
slenderness of the interface as δ ∼ � � L and ∂/∂s ∼ 1/L � ∂/∂n ∼ 1/δ ∼ 1/�. Thus, we neglect
shear derivatives for terms that involve ∇φ (i.e., ∇ ≈ n∂/∂n). In addition, our expansion parameter
can be scaled as ε ∼ (3Mρ/2

√
2τ )1/2 in order to enable compatibility of capillary waves along

with the interface [18] as φt cannot be neglected. This scaling for ε should be seen as an equivalent
squared Cahn number, also estimated in Ref. [18]. Subsequently, this matching condition comes
from the spatiotemporal coupling between both the interface and the bulk within the earliest stages
of this pinch-off regime after leaving the equilibrium. Thus, we can utilize the viscous-capillary
dimensional group to express interfacial parameters, where σ/� ∼ ρL2/τ 2. Then, φ(n, s, t ) varies
from the boundary line r = h(z, t ) (where φ = −1) to the outer fluid (φ = 1). With these simpli-
fications, Eq. (5) then relates the second-order derivative of the chemical potential to the temporal
evolution of φ:

φt = (φ3 − φ − φnn)nn. (6)

The reader should notice that δ is not present in the previous equation and hereafter as a result of
our aforementioned simplifications and strategy of nondimensionalization. In this way, the chemical
potential θ turns out to be θ = φ3 − φ − φnn.

We are interested in the expressions of the resulting net stresses across the interface, f (n) and
f (s), which result from the momentum equations due to the φ-phase variations. This identification
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is realistic as we focus on a liquid jet flowing through a quiescent surrounding medium with a low-
viscosity μo as μ 
 μo and without any extra external force over the whole fluid system (i.e., finite
interface and bulk). First, we write the coupled set of nondimensional Cahn-Hilliard Navier-Stokes
momentum equations, retaining each side’s dominant contribution [18], as

u(i)
t + ε(u(i) − u(s) )u(i)

n + ε(v(i) − v(s) )u(i)
s + ρpn

ρi
− ρμiunn

ρiμ
= −3ρκφ2

n

2
√

2ρi

, (7a)

v
(i)
t + ε(u(i) − u(s) )v(i)

n + ε(v(i) − v(s) )v(i)
s + ρps

ρi
− ρμivnn

ε2ρiμ
= 3ρθφs

2
√

2ρi

, (7b)

where ρi, μi, and κ = 1/h + O(ε2) are the inner density, the viscosity of the interface, and its
first-order curvature, respectively, where μi is classically assumed to vary linearly with φ. Note that
we take advantage of our previous scaling where ε and the squared Cahn number are linked. The
interface’s slenderness also leads to having a dominant shear speed component (i.e., this statement
can be better understood if we think in absolute coordinates) as we have u(s) = 0 at both the liquid-
interface boundary line and the outer streamline between the interface and the environment. From
the integration of Eqs. (7) along the normal direction as analogously was performed for a single
outer length scale by Magaletti and coworkers [18], we obtain the first-order expressions of f (n) and
f (s), being stresses that are ultimately transferred to the bulk through the boundary line in Eqs. (4):

f (n) = �(pn) = 3κ

2
√

2

∫ δ

0
φ2

ndn, (8a)

ε f (s) = −�(vnn) = 3ε2μ

2
√

2

∫ δ

0

θφs

μi
dn. (8b)

We observe that the classical balances at the interface f (n) = κ and f (s) = 0 are special cases of
our more general approach towards an infinitely-narrow interface where φss = tanh(n/

√
2) is the

solution for the steady version of Eq. (6). In contrast, as we depart from the tanh solution, we have
a φ-dependent Laplace-Young expression and a nonzero, but much weaker than the latter, O(ε2)
shear stress in Eq. (8). Now we substitute the set of radially expanded variables of the bulk, Eq. (2)
into Eq. (4), leading to the bulk-interface boundary equations in terms of stresses along normal and
shear coordinates, respectively:

p0z + v0z = f (n), (9a)

−3v0zhz − v0zzh + 2v2h = f (s). (9b)

We substitute the variable expansion from Eq. (2) into the equation of motion for the streamline of
the bulk boundary ht + vhz = u along with the expressions for pz and v2 from Eqs. (9) and f (n) and
f (s) from Eqs. (8). Subsequently, from the evaluation of Eq. (3), we find a slender model for the
liquid jet at the scale of the interface:

ht + v0hz = −1

2
v0zh, (10a)

v0t + v0v0z = 3(v0zh2)z

h2
+ 3

2
√

2

hz

h2

∫
φ2

ndn + 3εμ

2
√

2h

∫
θφs

μi
dn + v0zz, (10b)

which corresponds to two equations for the unknowns h(z, t ) and v0(z, t ) and a parametric de-
pendence on φ(n, s, t ) because φt �= 0 in Eq. (6). Note how the second, third, and fourth terms
on the right-hand side of Eq. (10b) respectively correspond to a diffusive surface tension stress,
a nonzero interface shear stress, and the retainment of vozz from the classical expansion where it
is systematically neglected. Indeed, this extra term vozz appears as we relax the zero free-shear
stress boundary conditions of the classical slender model [19] towards a subdominant role in our
formulation. The reader should notice how the set of the derived governing equations, although
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corresponding to two well-defined and separated regions of the fluid domain, are inherently linked
through a spatiotemporal coupling within the pinching of the whole fluid system as the temporal
dependence of φ creates a transient dynamics that prevents the stability of the classical steady-state
solution in the finite-thickness interface.

Towards the singularity. Next, we seek the physical behavior of Eqs. (10) close to the pinch-off.
For this reason, we take t∗ = tb − t and z∗ = z − zb as the time t∗ and length z∗ scales before the
breakup. As t∗, z∗ −→ 0, the change of variables

ξ = t∗−1/2z∗, (11a)

η = t∗−1/4n, (11b)

φ = t∗χ�(η), (11c)

h = t∗(2χ+3/4)H (ξ ), (11d)

vo = t∗−1/2V (ξ ) (11e)

enable us to balance the interface penalizing term with the temporal variation of φ along with
the dominance of the stresses with origin in the diffusive surface tension over the interface shear
contribution. Subsequently, both the bulk and the finite interface are spatiotemporally tied, and from
Eqs. (6) and (10) we find similarity equations:

−χ� + η�η

4
= −�ηηηη, (12a)

−
(

2χ + 3

4

)
H + ξH ′

2
= −1

2
HV ′ − V H ′, (12b)

V

2
+ ξV ′

2
= −VV ′ + 4V ′′ + 6V ′H ′

H
+ 3H ′

2
√

2H2

∫
�2

ηdη, (12c)

where ′ = d/dξ . The three ordinary differential equations (12) describe two subspaces: the interface
with Eq. (12a), where � depends on η and parametrically on χ ; and the bulk with ξ as the
independent variable in the Eqs. (12b) and (12c) that govern H and V , which are affected by the
value of χ through both the prefactor of H in Eq. (12b) and the resulting varying surface tension
stress. From Eq. (12b), we observe

H ′ = H

(
2χ+ 3

4

)
−V ′

2

V + ξ

2

(13)

and, consequently, the existence of a certain value ξ0 that makes H singular unless we also impose
analytical properties to require V1 = V ′(ξ0) = (4χ + 3/2).

Results. We construct a solution around ξ0 as a Taylor series expansion for H = ∑∞
i=0 Hi(ξ − ξ0)i

and V = ∑∞
i=0 Vi(ξ − ξ0)i. Substituting them into Eqs. (12b) and (12c) and after algebraic manipu-

lations, we obtain the terms of order ξ 1 and ξ 2 for H and V , respectively,

H1 = 9ξ0H2
0

H0(9 − 8χ ) + 3
2
√

2
N

, (14a)

V2 = 9ξ0H0(3 − 4χ )

H0(9 − 8χ ) + 3
2
√

2
N

, (14b)

where N = ∫
�2

ηdη. Note that Eqs. (14) only depends on ξ0, H0, and N , which are to be determined
later. In addition, we derive a set of boundary conditions where the solution has to match the outer
spatiotemporal scale at η, ξ −→ ±∞, making the left-hand terms of Eqs. (12) vanish due to their
slow temporal origin and leading to the asymptotic behaviors � ∝ η4χ , H ∝ ξ (4χ+ 3

2 ), and V ∝ ξ−1.
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FIG. 2. Inner interfacial solutions of �η for χ ∈ [0.625, 1.125]. The inset shows the relation between N
and χ , with a divergent behavior of N for χ < χmin = 0.745 that corresponds to quasivertical blue curves in
the main figure.

On the one hand, the family of solutions of Eqs. (12) within the interface is numerically obtained
(Fig. 2) by the shooting method for the derived boundary conditions, where the values N = 2

√
2/3

and χ = 9/8 set the domain that recovers the unity prefactor of the surface tension stress term in
the classical IV’s momentum equation. It is also interesting to note that the length of the self-similar
domain in η is not infinite in a strict sense and has a width of 15.6 (i.e., which was determined by
machine-learning-based numerical strategies) to ensure both odd symmetry and only one inflexion
point as the initial conditions from the base state solution impose when this pinch-off regime is
triggered. However, this is far away enough to consider it as an approximation to ensure convergence
to apply the aforementioned asymptotic boundary condition, with inspiration in classical works [5].
Then, we compute the resulting N by varying the value of χ in Eq. (12a). We observe that the
morphology of the solution varies abruptly (Fig. 2) as χ < χmin ≈ 0.745, where N diverges. Indeed,
the latter cases entail that interfacial velocities would reach infinite values that could not match the
basic physical assumptions of the thinning jet and, consequently, are disregarded. We only consider
the N − χ curve for χ > χmin. Now, we seek a pair (χ , N) that could lead to solutions of Eqs. (12b)
and (12c) that exhibit symmetry with respect to χ for the profiles of H and V , where we recall
the same flow feature that on average takes place at the nanoscale [9] and also in larger-scaled pure
diffusive experiments [12]. This strategy involves two parameters (χ , N) tied to the thermal interface
roughening and the diffusive pinch-off, respectively, as the breakup radius and speed profiles turn
out to be symmetric in the self-similar space of χ . We select the pair (χ , N) that is compatible with
the latter features. To do so, we numerically solve Eqs. (12b) and (12c) by the shooting method.
For each (χ , N), first we assume the values (ξ0, H0) to evaluate the starting integration points for
the branches of the solution on the right and left from ξ0, by the expansion mentioned earlier [Eqs.
(14)]. Then we obtain a curve of candidate values of (ξ0, H0) for both branches that are compatible
with the defined boundary conditions for |ξ | 
 |ξ0|.

The global solution for a given pair (χ , N) is determined as both branches share the same location
of the singularity ξ ∗

0 and its corresponding minimum thickness, H∗
0 . In these solutions, we check the

intended symmetric profiles as a function of χ and its corresponding value of N . In particular,
we observe in Fig. 3 how H profiles become more symmetric as χ decreases. In addition, the
smaller the value of χ is, the smaller the minimum value of H is, and the closer ξ0 is to 0. Similar
features occur with the respective V profiles shown in Fig. 4, although in this case the approach
to symmetry is for an odd function instead of an even function. As χ decreases, V profiles rotate
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FIG. 3. Family of self-similar solutions for H as a function of χ . There is only an even symmetric profile
(blue, solid line) for χ = 0.795 (left vertical axis). The rest of the candidate curves are examples of how the
symmetry is broken as χ varies (right vertical axis).

clockwise as the singularity tends to move to 0. Ultimately, we find that the values χ = 0.795,
N = 0.009 53, and 2χ + 3/4 ∼ 2.34 lead to symmetric self-similar solutions for H and V , even
and odd, respectively, along with ξ0 = −0.01 and H0 = 0.001 07. Hence, we arrive at an expression
of the evolution of the minimum neck radius hmin = 0.001 07(tb − t )2.34. Thus, we have solved an
open fundamental problem and provided keys for approaching a vast number of fluid phenomena
that involve topological changes close to the continuum limit.

Prospects. Using the approach presented in this paper, it should be possible to address other open
questions in jet-related fundamental problems:

FIG. 4. Family of self-similar solutions for V as a function of χ . There is only an odd symmetric profile
(blue solid line) for χ = 0.795. The rest of the candidate curves are examples of how the symmetry is broken
as χ varies.
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(i) the relation between the intact jet length and its instability [20], with a self-destabilizing loop
close to the breakup region [21], to better appreciate the role played by transient pinch-off regimes;

(ii) the relation between pinch-off and recoil dynamics with the absence of satellite droplets in
pure diffusive experiments [12,13];

(iii) the role of interfacial fluctuations close to the continuum limit [9,10] and whether or not they
emerge before those that come from the bulk and, if so, how both energetic levels might compete
within the fragmentation; and

(iv) the extension of this work, together with the above points, to widely studied coflowing
streams [22–29] or electrosprays [30–34], where, probably below a specific scale, the finiteness of
the Debye layer and diverse electrokinetic effects might appear [35].

F.C.-M. acknowledges that this project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie Grant No 838997. We
thank the NSF for support via Grant No. CBET-1804863.
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