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Prandtl-Tietjens intermittency in transitional pipe flows
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Pipe flow often traverses a regime where laminar and turbulent flow coexist. Prandtl
and Tietjens explained this intermittency as a feedback between the fluctuations of the
internal flow resistance and the constant pressure drop driving the flow. However, because
the focus has moved towards studying intermittency without flow fluctuations near the
universal critical Reynolds number, their explanation has largely disappeared. Here, we
refine the mechanism, and put it to a quantitative test, to develop a model that agrees
with experiments at higher Reynolds numbers, enabling us to demonstrate that Prandtl and
Tietjens’ mechanism is, in fact, intrinsic to flows where both the pressure gradient and
perturbation are constant.
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In 1839, while investigating the friction in pipe flow, Hagen [1] observed that the jet of water
exiting the pipe resembled a glassy rod at low flow speeds, which then began to pulse as the flow
speed increased. The jet reflects the state of the flow inside the pipe. It is in one place glassy [1] and
smooth [2], “laminar,” while frosty [2] and sinuous [3], “turbulent,” elsewhere. Hagen’s pulses were
a manifestation of this intermingling of laminar and turbulent flow, which we now call intermittency,
a basic feature of the transition to turbulence in pipe flow and other shear flows [4–8]. The turbulent
patches, which can also die, split, or grow, are carried downstream so that the whole pattern of
intermittency changes continuously in space and in time. The phenomenon of intermittency was
unexpected, given that the flow conditions were kept as constant as practical, and its origin was at
first unclear [1–3,9]. In their famous fluid mechanics textbook, Prandtl and Tietjens [10], hereafter
referred to as PT, qualitatively explained intermittency as the result of a feedback between the larger
friction in the turbulent patches and the constant total pressure drop driving the flow [11]. With
a larger friction, the flow speed decreases until it is reduced below the critical speed, so that no
new turbulence is created. When the increased friction of the patch leaves the pipe, the flow speed
increases. The critical speed is again exceeded, a new patch is created, and the cycle repeats. In the
PT mechanism, intermittency not only creates but requires fluctuations in flow speed, both of which
oscillate. In keeping with common practice, we will hereafter use the nondimensional flow speed or
Reynolds number, Re = UD/ν, where U is the flow speed, D is the diameter, and ν is the kinematic
viscosity.

The qualitative PT mechanism remained the prevalent explanation until the seminal study of
transitional pipe flow by Rotta [12]. Rotta accepted the general validity of the PT mechanism but
sought to determine if it was the only source of intermittency by taking great pains to maintain an
approximately constant Re in his constant pressure drop and constant perturbation experiments [12].
He introduced a large external resistance into his pipe system so that the pressure drop over
this resistance would damp out oscillations. Restricting attention to Re � 3000, he found that
the intermittency persisted, despite no obvious fluctuations in Re, thus demonstrating that the PT
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narrative does not explain the origin of intermittency everywhere. More recent experiments also
use a large resistance [13], and experiments with a constant mass flux [14] have demonstrated
convincingly that intermittency can also exist apart from PT’s mechanism, although the typical
method of instantaneously perturbing the flow renders the experimental initial conditions themselves
intermittent. Rotta’s insight laid the foundation for studying the patchy, localized turbulence, now
believed to originate from special exact solutions of the governing Navier-Stokes equations such as
nonlinear traveling waves [4,5]. Most recent work has focused as Rotta did on the vicinity of the
critical Re where nonexpanding patches called “puffs” dominate, or considered only instantaneous
perturbations at higher Re [13]. Thus, with a few exceptions [11,15,16], the PT mechanism has
largely disappeared from any discussion of the transition [4,5,17]. However, this leaves neglected
an important regime of transitional flow, a flow that transitions at Re � 3000, and for which the
pressure gradient and perturbation are constant.

In this Letter we revisit PT’s argument and look at the intermittency of transitional pipe flow un-
der essentially constant conditions. It is driven by a constant pressure drop, disturbed continuously,
and when not in the transition regime, the variation in Re, δ Re, is small (δ Re/Re < 0.01). We
demonstrate the validity of the PT mechanism by developing a simple model based on their argu-
ments that quantitatively reproduces the essential features of the intermittency in our experiments.
Key to the success of our model is accounting for the external resistance, which we systematically
vary, as well as accurately incorporating the growth of turbulent patches. The experiments and
model together suggest a startling conclusion: Under constant conditions and for Re � 3000, there
is always a regime of intermittency consistent with the PT argument.

For our experiments we carry out measurements of the flow rate, velocity, and the friction
in a 2020-cm-long, smooth, cylindrical glass pipe of diameter D = 1 cm ± 10 μm. The working
fluid is water. Driven by gravity, the flow remains laminar up to Re ≈ 10 000. We restrict our
attention to 3000 � Re � 7000, for which the turbulent patches, called “slugs” [4], grow, an
essential ingredient in the PT mechanism. We perturb the flow � 404D downstream [see Fig. 1(a)]
either continuously with an obstacle (a small � 0.63-mm-diameter rod oriented perpendicular to
the flow) or instantaneously with a syringe pump which injects a small amount of fluid from a
1-mm hole in the pipe wall. We denote by L the distance from the perturbation to the end of the
pipe. We can set a natural transition Re when the flow becomes unstable, ReC , by adjusting the rod
protrusion. (This ReC should not be confused with the lower and universal critical ReC investigated
by experiments of puff lifetimes [8].) We determine the instantaneous flow rate using a magnetic
flowmeter (Yokogawa) and the total pressure drop �Ptot by measuring the difference between the
height of the water surface in the source reservoir from the height of the water at the exit of the pipe,
�h. We also measure the instantaneous pressure drop in a 505D section that is 101D from the end
of the pipe [see Fig. 1(a)]. Two laser Doppler velocimeters (LDV, MSE) were also used to probe the
flow [see Fig. 1(a)]. More experimental details can be found in the Supplemental Material (SM [18],
Sec. II) and in Ref. [19].

We begin by revisiting PT’s mechanism through an examination of our experimental data for
Re and the nondimensional friction factor f = D�P/�L/(ρU 2/2), where ρ is the density, and �P
is the pressure drop over a length �L. We refer to Fig. 1(b), a traditional plot of 〈 f 〉 vs 〈Re〉, to
investigate the state of the system, where 〈 〉 refers to the time-averaged value. As �Ptot slowly
increases (via �h), the data (◦) initially conform to the lower laminar curve, but the flow becomes
unstable due to the finite disturbance for Re > ReC ≈ 4000 (set by the obstacle) and the position of
〈 f 〉-〈Re〉 deviates from the laminar curve thereafter. The first slugs appear stochastically (×) [20],
but this behavior spans only a narrow range of �Ptot. Thereafter the flow displays periodic behavior
(+), which was the original focus of PT and thus ours as well.

In Fig. 1(b) we plot the instantaneous f (t )-Re(t ) curve corresponding to one periodic data point
(�). To understand this curve, consider the point A where the flow is laminar. Because Re(t ) >

ReC � 4000, a slug is created by the perturbation and begins to invade the flow, as indicated by
a thick black line in Fig. 1(c) [see also Fig. 1(a)], and it expands aggressively as it is convected
downstream [4]. The increased friction with �Ptot = const requires Re(t ) to decrease. The slug

L011901-2



PRANDTL-TIETJENS INTERMITTENCY IN …

A

B

C

D

FIG. 1. (a) Schematic of the pipe experiment modeled after that appearing in Reynolds [3], with a contract-
ing entrance section and a final narrow pipe section for added resistance. Flow is from left to right. Straight
horizontal lines indicate laminar flow, and jagged flow indicates a slug. The pressure measurement section for
determining �P/�L and thus f in (b) is shown, as well as the two positions for measuring the velocity with
LDVs in (c). The flow is disturbed continuously with an obstacle to set a transition ReC . The flow state at
points A → D from (b) and (c) are represented schematically. (b) Plot of average friction 〈 f 〉 vs average 〈Re〉.
The lower and upper curves are the laminar and turbulent friction curves, respectively. The transitional data
are either periodic (+) or stochastic (×). Overlaid on the mean data (◦) we plot the instantaneous f (t )-Re(t )
curve for one periodic transitional data point (�). This curve cycles clockwise through the points A, B, C, and
D. (c) The normalized streamwise velocity u(t )/〈U 〉 at the centerline vs the normalized time t〈U 〉/L for �,
with A → D also denoted. The velocity was measured 100D downstream (−) and 10D upstream (−−) from
the perturbation. The shape of both curves is the same as Re(t ) but for the slugs (solid black line superimposed
over −).

eventually reaches the pressure measurement section and partially fills it, raising the value of f (t )
to point B, until the flow there is fully turbulent at point C on the upper curve. As the turbulent patch
leaves the pipe, Re(t ) increases and the flow’s intermittency decreases, taking us through point D
[Fig. 1(a)], until finally the flow is fully laminar again and we return to point A to begin the cycle
again. We now attempt to gain further insight by constructing a model to reproduce quantitative
features.

We identify four essential ingredients, which we update and refine as necessary. The flow is
driven by a constant pressure drop �Ptot (I1), the pressure drop in a turbulent region is higher
than a laminar one of the same length (I2), slugs are convected and grow (I3), and finally, a
critical ReC is set by disturbing the flow continuously (I4). We first combine I1 and I2 by
distributing the constant �Ptot between the laminar �Plam and slug �Pturb portions of the flow.
In addition, we also include the pressure drop of the system external to the experimental section,
�Pext, contributed by, for example, the entrance section. This gives the pressure drop balance
�Ptot = �Plam + �Pturb + �Pext. As Fig. 1(b) already indicates, when the pressure measurement
region is laminar, f (t ) obeys the Hagen-Poiseuille law, flam = 64/Re, whereas when this region is
turbulent, even during transition [19], it obeys the empirical Blasius law, fturb = 0.3164 Re−1/4.
[This allows us to probe intermittency in a straightforward manner: The flow is intermittent if
flam < f (t ) < fturb]. We determine �Pext empirically in a series of experiments when the pipe is
fully laminar, �Pext = �Ptot − �Plam (see SM [18], Sec. I). Introducing the parameter l , the length
of the pipe that is turbulent, results in (see SM [18], Sec. I)

D3�Ptot

32ρν2L
=

(
1 − l

L

)
Re + B

l

L
Re7/4 + R(Re), (1)
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FIG. 2. (a) Schematic of transitional pipe flow as in Fig. 1. A single slug is engendered at t = 0 by a
perturbation, which grows to its maximum size when it reaches the end of the pipe at t = T . (b) Plot of
deviation in Re, �Re, vs the initial Re0 for several resistances R. Increasing R or decreasing L reduces �Re.
A dependence on L is to be expected and is also seen in work on pulsatile flow [21]. The predicted �Re (open
symbols) are in excellent accord with the experimental data (solid symbols).

where B = 0.3164/64 is a constant combining the constants from the Hagen-Poiseuille and Blasius
laws and R = D3�Pext

32ρν2L is the normalized external resistance. The terms on the right-hand side are the
pressure drop contributions from the laminar (∝1 − l/L), turbulent (∝l/L), and external portions of
the pipe, respectively. Previous work that split �Ptot between a laminar and turbulent contribution
also predicted oscillations, but they were unable to show quantitative agreement between model and
experiment [15,16]. This highlights the importance of accounting for the external resistance R and
accurately incorporating slug growth rates, both of which were not included in these approaches.

As a first step in validating our refined model, we use Eq. (1) to predict the maximum change
in Re when a single slug is created, utilizing I1–I3. We perform experiments in which we
systematically vary R by adding short sections of smaller diameter pipes [see Fig. 2(a)], a “resistor,”
to the pipe system [22,23] and determine the Re dependence of R empirically (see SM [18], Sec. I).
We then perturb the flow instantaneously at a distance L from the end of the pipe where the laminar
flow is fully developed. We adjust �Ptot via �h to set an initial Re = Re0 and seek the maximum
deviation from Re0, �Re = Re0 − Remin, where Remin is the minimum Re. For each �h and R(Re)
we perform the experiment at least three times to determine averages and uncertainties. For constant
�Ptot, we can write Eq. (1) at both Re0 and Remin and equate them to show that

Re0 + R(Re0) = D3�Ptot

32ρν2L
=

(
1 − l

L

)
Remin + B

l

L
Re7/4

min + R(Remin), (2)

where for Re = Re0, l = 0 by definition. The l/L, which we next estimate, also depends on Re.
We suppose that the minimum value Remin occurs when l/L is at its maximum as the growing slug
reaches the end of the pipe. The maximum l/L can be estimated using the slug front speed uF and
back speed uB. If T is the time it takes the slug front to reach the end of the pipe, then L = uF T and
L − l = uBT , which can be rearranged to find l/L = (uF − uB)/uF . We made our own estimates of
uF and uB (see SM [18], Sec. II) because the literature values are for practically constant Re [13,24–
26]. Because the external resistance in these experiments is deliberately smaller, the Re here is not
constant. We then solve Eq. (2) numerically, and Fig. 2(b) shows that its predictions are in excellent
accord with the experimental results. The variation in the Re as the slug grows also leads to a subtle
dependence on the pipe length L, as the growing slug has more time to slow down the flow if L is
larger. Thus as Fig. 2(b) shows, for the same external resistance but smaller L/D, �Re is smaller.

We now proceed to develop a time-dependent version of the model to reproduce the oscillations,
now incorporating a critical ReC (I4). We take the time derivative of Eq. (1) (I1, I2), subject to the
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FIG. 3. (a) Experiments (solid symbols) and model predictions (open symbols) for 〈 f 〉 vs 〈Re〉. The model
data closely follow the experimental data. For each series of data, A–D, we plot in (c) below the normalized
time series of Re(t ) vs t〈U 〉/L, choosing the point of minimum 〈Re〉 in the periodic intermittent regime.
The amplitudes and normalized periods τ 〈U 〉/L closely match the experiments. (b) τ 〈U 〉/L determined from
experiments, the model, and from the previous �Re experiments (Fig. 2, τ 〈U 〉/L � 〈U 〉/uB). The normalized
periods differ by � 5% in most cases. (d) Nondimensional intermittency span vs transition ReC for experiments
and model simulations (R as in Fig. 2). We also include model simulations using an extremely large R estimated
from Barkley et al.’s experiments [13] (see SM [18], Sec. V for details). The ratio of smallest to largest
resistance is � 500 and the L/D varied up to � 24%. We also probed the effect of external noise by adding
normally distributed noise with zero mean and a standard deviation of 0.1 to Re(t ) at each step in the integration
of Eq. (3). Despite these differences, all data collapse onto a common curve and exhibit a non-negligible span
of intermittency that increases with ReC (∝Re2

C , −−).

constraint �Ptot = const (I1), which yields

d Re

dt
=

d (l/L)
dt (Re − B Re7/4)(

1 − l
L

) + 7
4 B Re3/4

(
l
L

) + dR
dRe

. (3)

To determine the time dependence of l/L we use a recent model which has had significant success
in reproducing the growth rates (I3) of slugs [13]. The complexity of slug growth is reduced to two
coupled partial differential equations for a variable representing the turbulence intensity q and the
pipe centerline velocity u. Now together with Eq. (3) we have a set of coupled partial and ordinary
differential equations. Since the l/L in Eq. (3) is simply the total turbulent fraction, we do not use
the spatial information of the partial differential equations in Eq. (3). This system of equations is
similar to, but simpler than, the systems of coupled differential equations used to model arterial
flow [27].

We perform several experiments without an external resistor, although R 	= 0, systematically
changing the transition ReC by adjusting the amplitude of the perturbation (I2). For each ReC , set
by adjusting the obstacle, we repeated the experiment of Fig. 1(b), slowly increasing �Ptot to take
the system from laminar, to intermittent, to turbulent [see Fig. 3(a)]. For our model, we integrate
Eq. (3) along with the coupled partial differential equations from Barkley et al.’s model [13], which
we transformed into laboratory units (see SM [18], Sec. III). To reproduce the behavior in our
experiments we add a constant perturbation to the Barkley model, the amplitude of which we varied
to set a different transition ReC as in the experiments (I4). This deterministic model is not able
to reproduce the initial region of intermittency, in which slugs appear stochastically, but it both
quantitatively reproduces the oscillations and the shapes of the 〈 f 〉 vs 〈Re〉 curves [see Fig. 3(c)].
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As Figs. 2 and 3(a)–3(c) show, our model, based on the PT mechanism, is in excellent accord with
the experimental data. We now use this result to demonstrate the generality of the PT mechanism. As
already noted, Rotta tested the PT mechanism by restricting attention near the universal critical point
(Re � 3000) and by increasing the external resistance. The former invalidates the PT mechanism
because it removes slug growth, an essential ingredient (I3). As Fig. 2(b) demonstrates, the latter
approach of increasing R unsurprisingly reduces deviations in Re (�Re). Indeed, this principle is
broadly used to maintain a nearly constant Re in constant pressure gradient transitional pipe flow
experiments. If fluctuations can be completely eliminated, one would expect no intermittency and
thus in our 〈 f 〉-〈Re〉 curves there would be a discontinuous jump from the laminar to turbulent
friction curves at ReC � 3000. To test the hypothesis that the regime of intermittency shrinks as
R increases, we plot versus ReC in Fig. 3(d) the normalized difference between the pressure drop
at the end of the intermittent regime �Ptot,max and at the beginning �Ptot,min. Despite spanning
over two orders of magnitude in R, and even in the presence of noise, all data collapse onto a
single curve that inexplicably increases with ReC . When expressed in terms of the true control
variable, the normalized pressure gradient, the intermittency span is independent of R. Moreover,
the attendant intermittency is not negligible, since the fraction of flow filled by patches necessarily
advances continuously from zero to unity as the pressure drop is increased from �Ptot,min to
�Ptot,max. However, we note that while the intermittency is substantial, the relative magnitude of
the fluctuations in Re can be substantially reduced by increasing R, as shown in Fig. 2(b). Near the
natural transition point ReC the finite-amplitude threshold is very sharp and thus very sensitive for
Re � 3000 [7,28], so that even these small variations in Re are sufficient for the PT mechanism to
function. Prandtl-Tietjens intermittency is thus an intrinsic feature of continuously perturbed and
constant pressure driven flows, for which substantial intermittency and tunable fluctuations in Re
are unavoidable if Re > ReC > 3000.

In conclusion, we have developed a model inspired by Prandtl and Tietjens’ classic argument
that is in excellent quantitative agreement with experiments. Essential to the model’s success was
accurately accounting for the external resistance and slug growth rates. We began our inquiry by
noting that, beginning with Rotta [12], the Prandtl-Tietjens argument has been considered irrelevant.
Together, our experiments and model suggest that intermittency engendered by the Prandtl-Tietjen
mechanism is in fact an intrinsic feature of constant pressure driven pipe flow for constant con-
ditions, and for Re � 3000. Rotta did not avoid it by increasing the resistance in his pipe, which
ultimately cannot remove the intermittency engendered by the PT mechanism [Fig. 3(d)], but by
restricting attention to Re � 3000 [12], just as many other laboratory experiments restrict attention
to Re < ReC [8,13,26] in order to consider the effect of instantaneous perturbations. Thus while the
PT mechanism elucidated here does not apply to those important studies, neither do they directly
address the intermittency in the early experiments of Hagen [1], Brillouin [29], and others [6], or
those conducted here. Most pipes will have a natural transition ReC set by imperfections such as
wall roughness [30,31], and here it is the Prandtl-Tietjens mechanism which provides the route to
turbulence. Fusing old insights [10] and new [13,19] has broadened the impact of both, yielding
new and practical understandings of transitional pipe flow.
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2020 program under the Marie Skłodowska-Curie Action Individual Fellowship (MSCAIF) No.
793507, and the support of the Okinawa Institute of Science and Technology (OIST) Graduate
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