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Connecting wall modes and boundary zonal flows in rotating
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Using direct numerical simulations, we study rotating Rayleigh-Bénard convection in
a cylindrical cell with aspect ratio � = 1/2, for Prandtl number 0.8, Ekman number
10−6, and Rayleigh numbers from the onset of wall modes to the geostrophic regime,
an extremely important one in geophysical and astrophysical contexts. We connect linear
wall-mode states that occur prior to the onset of bulk convection with the boundary zonal
flow that coexists with turbulent bulk convection in the geostrophic regime through the
continuity of length and timescales and of convective heat transport. We quantitatively
collapse drift frequency, boundary length, and heat transport data from numerous sources
over many orders of magnitude in Rayleigh and Ekman numbers. Elucidating the heat
transport contributions of wall modes and of the boundary zonal flow are critical for
characterizing the properties of the geostrophic regime of rotating convection in finite,
physical containers and is crucial for connecting the geostrophic regime of laboratory
convection with geophysical and astrophysical systems.

DOI: 10.1103/PhysRevFluids.7.L011501

Rayleigh–Bénard convection with rotation (RRBC) about a vertical axis is a prototypical lab-
oratory realization of geophysical and astrophysical systems that combines buoyancy forcing and
rotation [1–10]. Much recent experimental [8,11–14] and theoretical/numerical interest [15–17] on
rotating convection has focused on the geostrophic regime where rotation dominates. In particular,
one is interested in the scaling of local and global characteristics of the convecting state. An
accessible and important global parameter is the normalized heat transport Nu for which there
are theoretical predictions of asymptotic models [15–17] that provide insight into broader geo- and
astrophysical situations. There are significant experimental challenges [18] for making a compelling
comparison including reaching small Ek number with correspondingly large Ra. Consequently, the
geometry of experimental convection cells have tended toward small aspect ratio � = D/H < 1,
where D and H are the cell diameter and height, respectively. Recently several investigations
[19–22] have revealed a boundary zonal flow (BZF) where an azimuthally-periodic, wall-localized
flow coexists, on average, with a turbulent bulk mode (here we define the BZF as the wall-localized
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state in the presence of any bulk mode when rotation dominates or influences the convective state)
that contributes strongly to total heat transport. The BZF has features reminiscent of wall mode
states in RRBC that arise from a linear instability at smaller critical Raw than Rac of the bulk
mode and are characterized by an integer mode number (in periodic geometry), an anticyclonic
precession frequency, and a homogeneous time-independent (in the precessing frame) state [4,7,23–
26]. A recent numerical study [22] provided evidence that the BZF was the nonlinear remnant
of wall modes. Here we establish unambiguously through direct numerical simulation (DNS) and
comparison among disparate data sets for the drift frequency that characterizes the average angular
precession frequency ωd of the modal pattern in the rotating frame, the radial length scale δ0 defined
by the closest to the sidewall first zero crossing of the azimuthal velocity at the midplane, and the
heat transport Nu, that there is a continuous evolution of the wall mode states into the BZF which
coexists with the bulk convection modes. We also find that the wall mode contribution to the heat
transport plays an important role in determining the scaling of Nu in the geostrophic regime, a
crucial element in a proper comparison among experiment, DNS, and theory.

The dimensionless control parameters in RRBC are the Rayleigh number Ra = αg�H3/(κν),
Prandtl number Pr = ν/κ , Ekman number Ek = ν/(2	H2), and cell aspect ratio � where α is iso-
baric thermal expansion coefficient, ν kinematic viscosity, κ fluid thermal diffusivity, g acceleration
of gravity, 	 angular rotation rate, and � the temperature difference between horizontal confining
plates. The global response of the system is the normalized heat transport Nu, and the time and
length scales of the wall modes and of the BZF are the normalized precession frequency ωd = ω/	

and radial localization length scale δ0/H . We present data for Ek = 10−6, Pr = 0.8, � = 1/2, and
2 × 107 � Ra � 5 × 109 that spans the wall mode onset at Raw = 2.8 × 107 through the onset of
bulk convection at Rac ≈ 9 × 108. We use our results on this system over wider ranges of Ek and Ra
[19,20] with data from other experiments and DNS [4,5,7,13,21,22] to test our proposed power-law
scalings.

The regimes of rotating convection in finite containers are wall-mode states at the lowest Ra �
Raw, a transition at Rac to a bulk state of rotating convection [1] in which rotation dominates over
buoyancy in geostrophic balance [27], a state with Ra > Rag where rotation and buoyancy are of
equal importance, and the buoyancy dominated state where rotation becomes unimportant at the
highest Ra > Rat . The first instability from the no-convection base state is to wall modes with
critical Rayleigh number Raw ≈ 31.8Ek−1 + 46.5Ek−2/3 [28].

To emphasize the role of these wall modes, we plot the boundaries of rotating convection regimes
in Fig. 1 in a parameter space of Ra/Raw and Ek. The transition to bulk rotating convection would
occur in an infinite system via linear instability at Rac ≈ (8.7–9.6Ek1/6)Ek−4/3 [1,29,30]. In the
presence of sidewalls, however, the transition to a bulk convection state depends on � and on the
nonlinear state of the wall modes because of the non-zero base state [4] with Nu > 1.

Whereas at modest Ek � 10−5 the onset of bulk convection Rac/Raw � 10, for smaller Ek there
is an expanding and more nonlinear range of wall modes. For large enough Ra at fixed Ek, buoyancy
dominates over rotation, and the transition to this regime for Ek � 10−6 and Pr < 1 is identified
empirically as Rat ∼ Ek−2 [10,13,20]. In the region Rac < Ra < Rat , a BZF has been identified in
both experimental and numerical studies [13,19–21]. Near Rac, Nu rises rapidly [2,4,8,14,17] over
a range Rac < Rag = cRac, 3 � c � 6 before a transition region where Nu increases less rapidly
with Ra, finally approaching the buoyancy dominated approximate scaling Nu ∼ Ra1/3 beginning
at Rat . Given the paucity of data and the unknown influences of wall-mode contributions to the
heat transport in most cases, the dependence of Rag on Ek is fairly uncertain and the line we
draw in Fig. 1 is a suggestive one based on Refs. [4,14,17]. To understand experiments and DNS
in realistic, confined convection cells, it is crucial to characterize the role of wall modes on the
nonlinear evolution from no convection into the geostrophic regime and to connect the wall modes
with the BZF that exists in the turbulent geostrophic regime [19,21,22]. That is our task here.

A qualitative understanding of the evolution of the state of rotating convection can be gained by
considering instantaneous midplane horizontal cross sections of temperature fields and associated
streamlines and corresponding vertical temperature fields at the sidewall boundary (r = 0.98R).
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FIG. 1. Phase diagram of states of rotating Rayleigh–Bénard convection: Ra/Raw vs Ek. Boundaries are
for Raw , Rac, Rag, and Rat defined in the text.

Figure 2 shows these fields for several Ra [32]; also labeled is the reduced Ra defined as ε =
Ra/Raw − 1 taking the experimental value Raw = 2.8 × 107. Very close to onset (ε ≈ 0.07), the
flow is organized as a mode-1 state with symmetric upwelling warmer (red) and downwelling cooler
regions (blue), an overall anticyclonic rotation at the midplane, and a sinusoidal mean-temperature
isotherm in the vertical field as shown in Fig. 2(a). The confined geometry of � = 1/2 means that
the wall-mode temperature amplitude is not localised near the sidewall as in larger � [5,7] but has
an almost linear variation across the diameter as in Fig. 2(a). Thus, when the bulk mode appears at
higher Ra, it grows from a nonzero base state.

With increasing Ra, the wall-mode state becomes more nonlinear but time-independent (in a
frame corotating with the retrograde traveling wall mode) for Ra � 4 × 108. The state presented
in Fig. 2(b) for Ra = 5 × 108 shows the more complex horizontal temperature field and flow
circulation and the strongly nonlinear square-wave-like vertical profile with forward/backward
(left/right) asymmetry; it is also weakly time dependent indicating a wall-mode transition to an
oscillatory state. For larger Ra, Fig. 2(c), the streamlines are irregular, indicating unsteady flow and
thermal inhomogeneity appears in the interior. One sees vertical striations arising from the influence
of aperiodic time-dependent bulk modes interacting with the wall mode.

The wall mode state is characterized by four main properties that we consider here: the heat
transport Nu, the precession frequency ω, the azimuthal mode number, and the radial distribution of
heat transport or azimuthal velocity uφ . The azimuthal mode number is 1 because of small � = 1/2.
Previously we demonstrated that for the BZF m = 1 for � � 3/4 and m = 2� for � = 1 or 2 [20].
Our data show continuity from wall mode to BZF for this �.

We first consider the heat transport and its contributions from the wall mode, from the bulk
state, and from the BZF. In Fig. 3(a), we show Nu versus Ra that covers the wall mode regime
3 × 107 < Ra < 5 × 108, a transition region 5 × 108 < Ra < 9 × 109, and the onset of strong
bulk modes coexisting with remnant sidewall-localized modes, i.e., a BZF. The inset shows linear
growth of the wall mode heat transport near onset consistent with the expected scaling Nu − 1 = aε

with a ≈ 1.54 and Raw = 2.8 × 107 (compared to the theoretical value 3.2 × 107 for an insulating
sidewall and a planar (as opposed to a curved wall in cylindrical geometry) wall [25,32]). As the wall
modes become more nonlinear, Nu increases less rapidly and approaches an inflection point around
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FIG. 2. Instantaneous temperature fields (left—horizontal at z = H/2 with streamlines; right—vertical at
r = 0.98R) for Ek = 10−6. Corresponding Ra and ε: (a) 3 × 107, 0.071, (b) 5 × 108, 17, (c) 1 × 109, 35.
Directions of rotation and wall mode precession are shown.

Ra ≈ 5 × 108 where a weak signature of time-dependent convection can be detected (vertical bars
denote root-mean-square fluctuations). At slightly higher Ra ≈ 7 × 108, bulk modes begin to grow
as demonstrated in instantaneous horizontal and vertical slices. At Ra ≈ 109, Nu increases rapidly as
bulk convection and wall localized convection act together. In Figs. 3(b) and 3(c), total Nu increases
roughly linearly from an effective Nuoff ≈ 9 and Rac = 8.9 × 108 (compared to linear-stability
prediction Rac ≈ 7.8 × 108 for Ek = 10−6 [29]). Given the nonlinear base state created by the wall
modes, the correspondence for the onset of bulk convection is good.

To further explore the relative contributions of the wall localized states and the bulk state, we
divide up the heat transport according to a radial separation r0 (normalized by cell radius R). We
denote the portion from 0 to r0 as contributing to the bulk state whereas the remaining portion from
r0 to 1 is attributed to wall states. In the language of Ref. [19], the wall portion is the nonlinear
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FIG. 3. Nu vs Ra for Pr = 0.8, Ek = 10−6 and � = 1/2. (a) Time-dependent wall modes Ra < 5 × 108

and onset of bulk convection for Ra � 9 × 108. Vertical bars are standard deviations of Nu fluctuations.
Short-dashed line indicates linear fit to the data near onset (inset Nu − 1 vs ε near onset). Nuoff is the amount
contributed by wall modes at bulk convection onset. [(b), (c)] Larger range of Ra with total Nu (solid, black)
vs Ra/Rac and contributions averaged over regions defined by r/R � r0 (bulk modes) and r/R > r0 (wall
modes/BZF). Black squares are the data from Ref. [20] for fixed Ra = 109. Solid lines are linear fits for
Ra/Rac � 5.

BZF whereas the bulk convection is rotation dominated and in the geostrophic regime (similar
decompositions [20,21] have demonstrated relative wall and bulk contributions to Nu in the BZF
region) . Although the quantitative split between different regions depends on the choice of r0,
the trends are unambiguous. Both the BZF and bulk portions grow roughly linearly for Ra/Rac �
5. Nevertheless, the BZF remains larger throughout the range studied here. The bulk/geostrophic
contribution to Nu over the range Ra/Rac � 5 is comparable to the asymptotic equation prediction
for Pr = 1 [16] whereas the much larger total Nu is similar in magnitude to measurements in the
same Ek range for � = 0.4 and Pr = 4.4 [14]; the contribution of wall-mode and BZF modes to the
heat transport are important for comparisons with theoretical predictions.

We present in Figs. 4(a), 4(b) and 4(c), respectively, the Ra dependence of Nu, ωd , and δ0 in
the wall mode region. We use ε = Ra/Raw − 1 as the abscissa and plot the quantities Nu − 1,
ωd − ωdc (inset shows expected linear ε dependence of ωd ), and (δ0/H )Ek−2/3 (the factor Ek−2/3

nicely collapses the data for Pr = 0.8 and Pr = 6.4 [4,5,7]), respectively. Here we use the asymptotic
linear stability result for a planar wall [28] for the precession frequency at onset ωdc ≈ (132 Ek −
1465 Ek4/3)Pr−1 [25,32]. The trends show the nonlinear evolution of the wall mode states with
increasing Ra.

FIG. 4. (a) Nusselt number vs ε , (b) (ωd − ωdc )Ek−5/3 (inset linear dependence on ε near onset), and
(c) (δ0/H )Ek−2/3 vs ε [31].
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FIG. 5. Scaled (a) boundary mode drift frequency (ωd − ωdc )Ek−5/3Pr4/3 ≈ 0.022(Ra − Raw ) and (b) side-
wall boundary length scale (δ0/H )(Ra − Raw )−1/6 ≈ 1.0Ek2/3.

We now show trends in ωd and δ0 extending over many decades in Ra and Ek that spans the
wall mode region and the geostrophic region coexisting with the BZF using data from our previous
simulations on this system [19,20] as well as from others for which these quantities have been
measured [4,13,21,22]. In Figs. 5(a) and 5(b) we show scaled quantities (ωd − ωdc )Ek−5/3Pr4/3 ≈
0.022(Ra − Raw ) (consistent with [20]) and (δ0/H )(Ra − Raw )−1/6 ≈ 4.7Ek2/3 (the data for Ek =
10−6 are consistent with the scalings determined by us elsewhere [19,20] and with other data
[4,5,7,13,21,22]). The Ra and ωd dependences are corrected for their finite values at the onset of
wall modes using Ra − Raw and ωd − ωdc , respectively. The collapse over almost 10 decades in
Ra − Raw [Fig. 5(a)] showing ωd − ωdc ∼ Ra − Raw and over 4 decades in Ek showing δ0 ∼ Ek2/3,
see Fig. 5(b), establishes the connection between the wall modes and the BZF.

In conclusion, we have demonstrated the continuity of measures of time, length, and heat
transport from the wall mode state through the appearance of bulk modes coexisting with the
BZF, unambigulously connecting the two states. We show that by accounting for the wall mode
contribution Nuoff and by considering the radial distribution of Nu (see also Ref. [21]), the bulk
Nu in the geostrophic regime can be extracted with a scaling consistent with a linear dependence
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for Ra/Rac � 5. Our analysis of Nu data accounting for the wall-mode/BZF contributions seems
essential in considering the Nu scaling of rotating convection in the rapidly rotating regime for finite
geometries.
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