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We report on the experimental study of axisymmetric gravity-capillary standing waves
generated by a vertically vibrating ring partially immersed into a fluid. Different regimes
of standing waves are highlighted at the basin center depending on the forcing parameters:
linear, nonlinear, and ejection regimes. For weak forcing, the standing waves display a
resonant response, close to a natural frequency of the circular basin, predicted by the linear
theory. For stronger forcing, we observed that the experimental spatial profile of standing
waves breaks the up-down symmetry, and is well described by a third-order nonlinear
theory. When the forcing is further increased, the maximum height of the axisymmetric
wave crest at the basin center is found to increase linearly with its wavelength, due to the
saturation of its steepness, a result well captured by a proposed model.
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I. INTRODUCTION

One of the most common wave observations in everyday life is the propagation of concentric
waves after a stone has disturbed the interface between water and air [1]. Looking at this pattern,
one could wonder what happens when the waves converge instead of diverging. This phenomenon,
characterized by the concentration of a finite amount of energy in an infinitely small area, is
called wave focusing. Wave focusing has been studied in optics since the 19th century, in the
neighborhood of a caustic [2], or a Huygens cusp of light [3]. In particular, diffraction theory
states that (in a homogeneous medium with no source) the diffraction limit, i.e., the shortest spatial
wave-field fluctuations, is precisely one-half wavelength, λ/2 [4], and focusing is known to shift the
phase of the wave [5]. In acoustics, wave focusing has been used to develop tools for trapping or
tweezers [6,7], whereas time-reversal techniques overcome the diffraction limit and reduce the size
of the focal spot as narrow as λ/14 [8]. Although hydrodynamic systems have several advantages
compared to optics or acoustics (macroscopic, slow dynamics, and direct space-and-time resolved
wave-field measurement), hydrodynamic focusing has not been studied in detail except for spatial
focusing with a parabolic-shaped wave maker [9], wave control by time-reversal and holography
methods [10], or three-dimensional wave breakings [11]. Nevertheless, directional focusing has also
been suggested as a candidate for the formation of rogue waves [12] and amplification of tsunamis
[13] in the ocean.

Axisymmetric surface waves have been routinely studied in the past. Indeed, the behavior of
standing waves in a circular basin is of primary interest, in particular to the study of sloshing in
cylindrical tanks or harbor oscillations [14,15]. Experiments in large-scale basins were also reported
in which converging axisymmetric gravity waves are generated by several wave makers, driven in
unison, surrounding the tank [16–18]. These studies mainly focus on the transient phenomenon
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FIG. 1. Experimental setup of axisymmetric gravity-capillary wave focusing. The surface elevation η(r, t )
is measured using a capacitive probe mounted on a translation stage, and a side camera.

of jetting occurring at the center of the tank. Such hyperbolic-shape jet eruptions on a fluid
surface have also been investigated, within more feasible setups, either by drop or projectile impact
[19–22], bubble bursting at a free surface [23], or parametric forcing (Faraday instability) of
cylindrical containers [24,25]. These observations are usually compared to gravity-wave profiles
from linear [26] or nonlinear [27–29] theories. Recently, numerical simulations investigated the
decay of axisymmetric gravity-capillary waves initially generated by a zeroth-order Bessel-function
deformation [30,31]. All these experimental studies mainly concern the transient regimes, and
axisymmetric gravity-capillary standing waves have been much less experimentally investigated.

Here, we propose an original model experiment to study axisymmetric gravity-capillary standing
waves generated by a vertically vibrating ring on a fluid surface. Under weak sinusoidal forcing,
the spatial pattern of the waves is found to agree with linear predictions [26]. For high enough
forcing, the up-and-down symmetry of the spatial profile is broken as predicted by a nonlinear
theory [27–29], and a divergence of the wave amplitude occurs at the basin center, sometimes with
the ejection of a drop. We show in particular that the maximum height reached by the axisymmetric
gravity-wave crest, at the basin center, increases linearly with its wavelength, due to the saturation
of its steepness to 5/(2π ). To the best of our knowledge, this saturation has not been previously
reported. It should not be confused with the stability limit of a periodic sharp-crested wave derived
for unidimensional [32–34] or axisymmetric [27] standing waves of finite amplitude, and tested
experimentally [18,24,35,36].

II. EXPERIMENTAL SETUP

The experiment consists of a cubic transparent tank (L = 19 cm wide) filled with distilled water
(density ρ = 1000 kg m−3) up to a depth h = 7 cm (see Fig. 1). We add surfactants to fix its surface
tension γ to a constant value of 37 mN m−1 by using trimethyl(tetradecyl)ammonium bromide at
a concentration higher than the critical micelle concentration [37,38]. Axisymmetric convergent
waves are generated by the vertical oscillations of a solid ring made of plexiglass (internal radius
R = 8.25 cm, vertical thickness 2 cm) half immersed into the fluid at rest. The ring is mechanically
connected to an electromagnetic shaker (Dynamic Solution VTS-100) driven by a sinusoidal voltage
from a power supply (Kepco 36V/6A) leading to a vertical ring motion z(t ) = a sin(2π f t )/2
where f and a are the forcing frequency and amplitude, respectively ( f ∈ [5, 9.3] Hz, i.e., λ ∈
[2.3, 6.5] cm and a ∈ [0, 1] cm). A point of the free surface is referred to by its polar coordinates
(O, r, θ ). Nevertheless, θ is not considered hereafter as the phenomenon is mainly axisymmetric.
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FIG. 2. Typical regimes of axisymmetric standing waves for increasing forcing amplitudes (side views).
(a) Linear regime (ε � 0.07, a = 0.04 cm). (b) Nonlinear regime (ε � 0.2, a = 0.18 cm). (c) Ejection regime
(ε � 0.7, a = 0.36 cm). The white bar corresponds to 1 cm. Sinusoidal forcing f = 6.75 Hz. Part of the
transparent solid ring is visible at the back.

Indeed, special attention is paid to adjusting the horizontality of the ring, and limiting the transverse
vibrations, that break this symmetry. After a few forcing periods, the transient regime vanishes. The
surface elevation η(r, t ) of the stationary wave field is then measured at a single location over time t ,
thanks to a homemade capacitive probe (10 µm in vertical resolution) [39]. We iterate this temporal
measurement for every r along the ring diameter (with a 1 mm step) using a translation stage with
a stepper motor driven by a computer. Moving the probe along a diameter, therefore, gives access
to the wave profile resolved in time and the wave envelope resolved both in space and time. The
corresponding vertical resolution is 100 µm. The nonlinear parameter, namely, the wave steepness,
is ε ≡ ηmax/λ where λ is the wavelength and ηmax is the maximum elevation at the container center
r = 0. ε is varied by almost two decades in the range ε ∈ [0.01, 1].

III. PATTERNS

Different typical axisymmetric patterns of the free surface are observed depending on the control
parameters a and f . We show in Fig. 2 the qualitative influence of increasing the forcing amplitude
a (from left to right), for a fixed forcing frequency f (see also movies in the Supplemental
Material [40]). At low a (ε � 0.07), standing axisymmetric oscillations are gentle in particular near
the center [see Fig. 2(a)]. Below, we call this regime the linear regime. For high enough a (ε > 0.1),
nonlinearities arise and the up-and-down central deformation is more prominent and much higher
than the periphery ones [see Fig. 2(b)]. Afterwards, this regime is called the nonlinear regime. When
the forcing amplitude a is further increased (ε � 0.7), we observe an ejection regime characterized
by the formation of a thin and intense jet at the center, with the ejection of at least one droplet.

IV. PHASE DIAGRAM

We now explore in more detail the phase diagram of the three regimes found in Sec. III as a
function of the control parameters. We report in Fig. 3 the measured values of the wave steepness
ε for each accessible pair ( f , a) of the forcing parameters. Following a virtually vertical line (from
bottom to top) in Fig. 3, ε is found to increase with a from very weak values (�10−2, in blue)
to values close to unity (in red). The ejection regime occurs when crossing the black-dotted line.
The influence of the forcing frequency is highlighted by following the black solid line, which links
data with the same value of ε (namely, ε � 0.1). The curve minima point out frequencies for which
the central deformation reaches this specific steepness although the forcing amplitude is weak, and
thus correspond to resonances of the system. Moreover, these resonance frequencies appear to be
in good agreement with the main theoretical eigenmodes of the ring marked by vertical dash-dotted
lines. Indeed, the axisymmetric eigenmodes of a circular basin are obtained by considering an
inviscid, irrotational, and incompressible fluid whose velocity potential ϕ satisfies the Laplace
equation 
ϕ = 0. The solution implies the Bessel function of the first kind of order α, Jα (kr),
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FIG. 3. Wave steepness, ε = ηmax/λ, of the central deformation as a function of the forcing amplitude a and
frequency f . Logarithmic scale colorbar. Vertical lines: circular basin eigenfrequencies fn from J ′

0(knR) = 0
(see text) where fn and kn are related by Eq. (1). Solid line corresponds to the same value of ε � 0.1 as a
function of f . (�) Maximum amplitude of the central deformation before ejection as a function of f .

where k is the wave vector k = 2π/λ [41]. Moreover, imposing that the fluid cannot penetrate the
solid boundary at r = R over t leads, in the linear approximation, to J ′

0(x)|knR = 0, where the prime
stands for the spatial derivative of J0(x) [26]. This quantifies the modes of the system to discrete
wave vectors kn. Using the linear dispersion relation of inviscid deep-water gravity-capillary waves
[26] (as kh > 8 for λ < 5 cm),

ω =
√

gk + γ

ρ
k3, (1)

the corresponding axisymmetric eigenfrequencies fn read 5.70, 6.64, 7.55, 8.47, and 9.39 Hz for
n = 3, 4, 5, 6, and 7, respectively (g = 9.81 m s−2 is the acceleration of gravity). Note that the
linearized kinematic condition at the interface z = η(r, t ) leads to ∂ϕ/∂z = ∂η/∂t , where ϕ is the
velocity potential, and implies that ϕ and η have the same dependence on r. Moreover, experiments
show that the fundamental angular frequency ω of waves coincides with the forcing pulsation, 2π f ,
leading thus to the same notation. Note that the vertical thickness of the ring is finite and the no-
penetration condition is not fully verified below the ring (see Sec. V). However, we have verified that
the initial immersed depth of the ring into the water does not qualitatively impact the wave shape
(see Appendix A), but could explain slight departures between the resonances and eigenfrequencies
in Fig. 3. We have also verified, using a ring of smaller diameter, that the resonances correspond to
the eigenfrequencies, although the latter change (see Appendix B). The ejection threshold is hardly
visible in Fig. 3 outside the range f ∈ [5, 9] Hz mainly because, for smaller f , the wavelength
becomes comparable to the system size [e.g., λ|5 Hz = 6.5 cm from Eq. (1)], so that the standing-
wave pattern is modified by finite-size effects of the container. For f > 9 Hz, the ejection regime
cannot be reached due to the mechanical limitations of the wave maker.
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FIG. 4. Dimensionless wave envelope along a basin diameter. All curves have been rescaled by the
asymmetry coefficient N = (ηmax − ηmin)/2. Red dotted line: experimental wave envelope showing both
ηmax(r) > 0 and ηmin(r) < 0 ( f = 6.9 Hz, a = 0.38 cm, ε = 0.36). (a) Blue solid line: Linear prediction from
[26]. (b) Black solid line: Third-order nonlinear prediction computed numerically from [27]. Inset: N vs the
nonlinear parameter ε for a fixed f = 6.9 Hz. Red dots correspond to data, the black dotted line to the linear
prediction, and the black solid line to the nonlinear theory [27].

V. STATIONARY SPATIAL PROFILE

We denote ηmax(r) the maximum of the wave elevation, η(r, t ), over time t at position r, and
the maximum central elevation ηmax ≡ ηmax(0). In the same way, we define the quantities ηmin(r)
and ηmin ≡ ηmin(0) for the minimum of η(r, t ). We plot in Fig. 4 the experimental wave envelope
[i.e., ηmax(r) and ηmin(r)] rescaled by N = (ηmax − ηmin)/2 as a function of r along a diameter
[see the red-dotted line in Figs. 4(a) and 4(b)]. We superimposed in Fig. 4(a) the prediction from
the linear theory (blue solid line) when imposing two boundary conditions: (i) ∂η/∂r|r=0 = 0 to
ensure continuity at the basin center r = 0, and (ii) η(±R, t ) = b cos(2π f t )/2 as the fluid must
follow the ring oscillations at r = ±R, and the fluid elevation b may differ from the ring amplitude
a. This leads to the envelope equation η(r) = ηmaxJ0(kr) where J0 is the Bessel function of the
first kind and k is computed from Eq. (1) for fixed f , whereas ηmax is not needed thanks to
the rescaling by N . We first notice that the linear theoretical profile in Fig. 4(a) does not show
a zero slope at r = ±R indicating that the no penetrability condition used in Sec. IV is indeed
debatable. Moreover, several differences are visible between the experiment and the linear model.
First, the amplitude of the central deformation is measured to be asymmetric which is not captured
by the linear theory. Second, the shift of the zeros suggests that the dispersion relation does not
hold as is for nonlinear waves. Third, the linear prediction shows local minima with strictly zero
vibration whereas the experiment shows nonzero minima of the envelope. These differences are
significantly reduced when using a third-order nonlinear theory of axisymmetric gravity standing
waves [27]. Indeed, Fig. 4(b) shows that the experimental and theoretical local minima occur at
the same positions evidencing the relevance of using this nonlinear theory. The latter also confirms
that the wave elevation at these nodes does not have to go to zero (although getting closer than in
the experiment), in particular near the basin center. Indeed, the nonlinear theory predicts a slight
horizontal oscillation of the locations of the zeros over a period so that the surface never goes flat
and the water level in any location r is nonzero at least for a fraction of time. Moreover, close to the
focus, i.e., r → 0, the up-and-down asymmetry (which is a classical signature of the nonlinearity
[32]) is well fitted by the nonlinear theory [27] (see black solid line). More precisely, the inset of
Fig. 4(b) shows the asymmetry, N = (ηmax − ηmin)/2, as a function of ε = ηmax/λ. From the linear
theory, one should have ηmax = −ηmin leading to N = ηmax = ελ as displayed by the dotted line in
the inset of Fig. 4(b). The nonlinear theory computed numerically from Ref. [27] is also shown (solid
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FIG. 5. Rescaled central maximum height, ηmax/λ, as a function of the forcing acceleration, aω2/g (i.e.,
various forcing amplitudes), for three different forcing frequencies f = (♦) 5.70, (�) 6.64, and (◦) 7.55 Hz.
Horizontal dot-dashed lines correspond to εmax = 0.3 and 5/(2π ). Inset: Same in log-log scales. Solid line has
a unit slope. Best fit has a 1.13 slope.

line) and is found to be in good agreement with the experiments. Note that the departure between
linear and nonlinear theories reaches 10% for ε = 0.064 which is close to the arbitrary criterion
ε = 0.1 used in Sec. III to distinguish the linear and nonlinear regimes. Finally, Fig. 4 shows that
the experimental profile near r = ±R does not satisfy the condition ∂η/∂r|r=±R = 0 as imposed
to the system when computing its eigenmodes in Sec. IV. This effect is experimentally confirmed
for other forcing frequencies and could contribute to small departures between the resonances and
eigenfrequencies observed on the phase diagram in Fig. 3.

VI. CENTRAL DEFORMATION AMPLITUDE

The maximum elevation at the center (r = 0) is now investigated. We measure it either by the
capacitive probe for weak and moderate forcing amplitude, a, or by using a side camera (Basler
2048 × 1536 px2, 120 fps) for higher a. Error bars are the statistical average of data from a few
similar jets, as the jet eruption often deviates from the vertical. Figure 5 then shows the maximum
height, ηmax, reached by the fluid at the center rescaled by λ as a function of the dimensionless
forcing acceleration, aω2/g, when varying the forcing amplitude a. The three different curves
correspond to three different forcing frequencies f ≡ ω/(2π ). In the linear and weakly nonlinear
regimes (ε < 0.3), ηmax/λ grows linearly with aω2/g regardless of f as confirmed by the inset of
Fig. 5. In the ejection regime (ε � 0.5), the rescaled maximal height of the jet (not taking into
account possible drop ejection) increases strongly with aω2/g, then is found to saturate to a value
denoted by εsat = ηsat/λ, roughly independent of the acceleration, but depending on f . A model
described below will explain this saturation.

VII. SATURATION MODEL

To explain the vertical saturation of the jet steepness, we approximate the jet surface at any time
t , by a cone of height η(t ) and radius λ/4 as shown in the top right-hand corner of Fig. 6 (λ/2
is the natural diameter of the central deformation). First, we estimate the dominant forces of the
problem. Given ρ, γ , g, μ = 10−3 Pa s the dynamic viscosity of water, L the typical size of the
cone, and v its typical vertical velocity, we compute the Weber (We), Reynolds (Re), and Bond (Bo)
numbers. Taking L = ηmax ≈ 2 cm and v = 2π f ηmax ≈ 0.8 m s−1, one obtains We = ρv2L/γ ≈
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FIG. 6. Saturation wave height at the basin center, ηsat, as a function of the rescaled wavelength, λ/λc.
Red circle (◦): experimental data for various forcing frequencies f ∈ [5.5, 8.5] Hz. Blue solid line: prediction
from the model of Eq. (4) with α = √

2. Blue dashed line: asymptotic trend of Eq. (4) with α = √
2, i.e.,

η
g
sat = 5/(2π )λ, valid in the pure gravity regime (λ 
 λc). Inset: Corresponding wave steepness at the basin

center, εsat ≡ ηsat/λ, vs the dimensionless wavelength, λ/λc. For large enough λ, the saturation steepness εsat

tends to 5/(2π ). Same curves as in the main figure. Right: Schemes and quantities used in the model: (top)
crude jet-shape approximation as a cone in its final state; (bottom) initial state with a flat surface and an upwards
underwater-conical flow.

350, Re = ρvL/μ ≈ 1.6 × 104, and Bo = ρgL2/γ ≈ 100. The Weber number is defined as the
ratio between the inertial and surface tension forces and shows that inertia dominates surface tension
effects. The Reynolds number (comparing inertia forces to viscous ones) shows that viscosity can be
neglected here. The Bond number shows that gravitational forces are two orders of magnitude larger
than surface tension ones. Since We, Re, and Bo 
 1, viscous and surface tension forces can be
neglected. The following model thus takes into account only inertial and gravitational forces through
kinetic and potential energies. We now consider the energy balance between a final state where the
jet of height ηmax has a finite conical volume V , a positive potential energy and is motionless, and an
initial state where the surface is flat and the same volume of the fluid is enclosed within a downwards
cone of same dimensions located under the free surface (see bottom right-hand corner of Fig. 6).
Leaving out the t notation for clarity, the cone edge equation thus reads

z(r) = ±ηmax ∓ 4ηmax

λ
r, i.e., r(z) = (ηmax ∓ z)

λ

4ηmax
, (2)

where the upper (respectively, lower) signs describe the top (respectively, bottom) cone and z is
the vertical coordinate. The volume of such a cone reads V = πλ2ηmax/48. The fluid velocity in
the bottom cone is unknown, but we keep only its vertical component u(z) and approximate it by a
linear dependence on z between u(0) = 0 and u(−ηmax) = U (upward velocity at its lowest depth),
as proposed and proven sufficient in Ref. [21]. This yields

u(z) = − z

ηmax
U, for z ∈ [−ηmax, 0], (3)

Then, we can express in a general way the kinetic energy Ek = ∫ 0
−ηmax

ρπr(z)2u(z)2dz/2 and the

potential energy Ep = ∫ 0
−ηmax

ρπr(z)2gz dz of the bottom cone. Substituting Eqs. (2) and (3) in these

expressions, we end up with Ek = ρVU 2/20 and Ep = −ρgηmaxV/4. For the final state (top cone),
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Ek = 0 as U = 0 and Ep = +ρgηmaxV/4. Neglecting as justified above, viscous dissipation and
surface tension, the conservation of energy between the final state and the initial state yields ηmax =
10g/U 2. To find the dependence of ηmax on the wavelength λ, we assume that the dispersion relation
for linear waves of Eq. (1) makes a first approximation even for these nonlinear and nonsinusoidal
deformations. Taking U of order αωηmax with α a fitting parameter, this yields

ηmax = 5

α2π

λ

[1 + (λc/λ)2]
, (4)

where λc/(2π ) ≡ √
γ /ρg = 1.9 mm is the capillary length separating the capillary (λ � λc) and

gravity (λ 
 λc) wave regimes, the gravity-capillary regime occurring in between. Note that, in
the capillary-wave regime, the surface tension cannot be neglected anymore and a different model
must be applied when Bo � 1, i.e., λ � 2 cm. We plot ηmax(λ) from Eq. (4) in Fig. 6 together
with the experimental maximum heights reached at the basin center for our gravity-capillary range
(λ ∈ [2.5, 4.5] cm). As in Sec. VI, error bars come from the statistical average of data from a
few similar jets. Figure 6 then shows that our model well captures the experimental saturation
heights using α = √

2. α > 1 means that the linear approximation U = ωηmax underestimates the
cone velocity at saturation and that nonlinear effects tend to increase it. However, the saturation of
the jet height indicates that beyond a certain forcing amplitude the energy injected in the system
does not contribute to the central jet velocity, which should be directly converted into potential
energy, but is mainly dissipated by the meniscus at the ring boundaries and/or transferred within
the fluid bulk in the form of flows. Equation (4) with α = √

2 then tends asymptotically in the pure
gravity regime to η

g
sat = 5λ/(2π ), corresponding thus to a saturation of the wave steepness towards

ε
g
sat ≡ η

g
sat/λ = 5/(2π ). The inset indeed shows that this predicted saturation of the wave steepness

occurs experimentally for large enough wavelengths. Beyond the good agreement, the comparison
is experimentally limited by viscous dissipation and mechanical limitation of the shaker for smaller
wavelengths, and by the system size for larger wavelengths.

Finally, note that for existing large-scale axisymmetric tanks (from 1.6 to 25 m diameter)
surrounded by several wave makers, driven in unison [16–18], Eq. (4) would give an upper bound of
the height of the central wave crest, which would be either larger than the size of the tank building,
or not reachable due to wave maker limitations. Furthermore, Eq. (4) should not be confused
with another limit commonly discussed in the literature concerning the stability of a periodic
sharp-crested wave. Indeed, for unidimensional progressive gravity waves of finite amplitude, this
limiting angle β of the crest was first derived by Stokes to be 120◦ assuming a steady crest profile
[32], and to be 90◦ for the standing-wave case [33], the latter value being confirmed experimentally
[35]. For axisymmetric standing gravity waves of finite amplitude, a limiting angle of 109.47◦

was derived analytically [26] and tested experimentally [18,36], corresponding thus to a rescaled
maximum height ηmax/λ = 1/(4 tan β/2) = 0.25. As expected, this value is much smaller than 0.8
as it corresponds to a stability limit (and not to a maximum height).

VIII. CONCLUSION

We reported on the experimental study of the focusing of axisymmetric gravity-capillary waves
generated by a vertically vibrating ring partially immersed in a fluid. Different regimes of standing
waves are observed at the basin center depending on the forcing parameters: linear, nonlinear, and
ejection regimes. For weak forcing, and close to a natural frequency of the circular basin predicted
by the linear theory [26], the standing waves display a resonant response. For stronger forcing,
we observed that the spatial profile of standing waves breaks the up-down symmetry, and exhibits
nonzero local minima, which are both well taken into account by a nonlinear theory of axisymmetric
standing waves up to third order in amplitude [27]. Finally, for an even stronger forcing, we observed
a jet together with possible drop ejections. The maximum elevation reached experimentally by the
wave at the center of the basin is found to saturate at ηsat, even for stronger forcing amplitudes. For
gravity waves, ηsat increases linearly with the wavelength, due to the saturation of its steepness to
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FIG. 7. (Top) Sectional schemes defining d as the ring distance to the water surface at rest (horizontal blue
line). The ring thickness (gray area) is 20 mm. (Bottom) Maximum water elevation, ηmax, measured at the
center when increasing d for fixed sinusoidal forcing parameters ( f = 6.9 Hz and a = 0.13 cm), and plotted
as a percentage of the initial value.

5/(2π ). This maximum wave height is well captured using a crude model, based on an energy
balance with strong hypotheses concerning the forces and the shape of the jet. This is a first
step towards a more elaborated one. In the future, we will address the origin of the jet. Does it
arise out of a deep depression of the free surface leading to the collapse of this cavity coupled
to a singularity, or/and the collapse of a bubble entrapped underneath [20,25]? The dynamical
properties of the focusing will be also investigated by tracking the propagation of axisymmetric
gravity-capillary propagating waves converging towards the center to explore open questions, such
as which mechanisms drive their central interaction, and how the power injected by the ring is
dissipated at the central singularity.
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APPENDIX A: ROLE OF THE IMMERSED DEPTH OF THE RING

We quantify the influence of the ring immersion into the fluid on the wave properties. We measure
the maximum water elevation, ηmax, at the center, for different relative positions d of the ring to the
water surface at rest, all other things being equal (especially the forcing parameters f and a). The
experimental data are displayed in Fig. 7 and show that ηmax depends on the fluid volume moved
by the ring. Indeed, ηmax is maximum when the ring is fully immersed into the fluid and flushing to
the surface (d = 20 mm). The water volume moved by the ring oscillation, when the ring is closer
to the free surface, is thus combined with the meniscus movement (same for d ≈ 0 mm). On the
other hand, when the ring is partially immersed (d ≈ 10 mm), ηmax reaches a plateau where only the
meniscus effect plays a role in the wave forcing. ηmax decreases as expected when the ring plunges
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FIG. 8. Wave steepness, ε = ηmax/λ, of the central deformation as a function of the forcing amplitude a
and frequency f . Logscale colorbar. Vertical lines: circular basin eigenfrequencies fn from J ′

0(knR) = 0 (here
R = 5.1 cm, compared to Fig. 3) and fn and kn are related by Eq. (1). Solid line corresponds to the same value
of ε � 0.1 as a function of f . (�), maximum amplitude of the central deformation before ejection vs f .

deeper and deeper (d larger than the ring thickness 20 mm) and the two forcing effects disappear.
Beyond this dependence of the wave amplitude on d , we have furthermore verified that the initial
immersed depth of the ring does not impact other wave properties.

APPENDIX B: EXPERIMENTS WITH A DIFFERENT RING SIZE

We perform the same experiments as in the main text, but with a ring of different radius. We
now use a ring radius of R = 5.1 cm instead of 8.25 cm as in the main text. Figure 8 shows the
corresponding phase diagram as a function of the control parameters. The resonance frequencies
with this smaller ring are f = 4.37, 6.07, 7.59, and 9.11 Hz, which differ from those with the
larger ring in Fig. 3 (i.e., 5.7, 6.66, 7.59, 8.53, and 9.48 Hz), but correspond to the circular basin
eigenmodes. It thus confirms that the system resonance frequencies are indeed given by the ring
eigenfrequencies.
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