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Cascade of circulicity in compressible turbulence
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The purpose of this work is to investigate whether a cascading process can be associated
with the rotational motions of compressible three-dimensional turbulence. This question
is examined through the lens of circulicity, a concept related to the angular momentum
carried by large turbulent scales. By deriving a Monin-Yaglom relation for circulicity, we
show that an “effective” cascade of this quantity exists, provided the flow is stirred with
a force having a solenoidal component. This outcome is obtained independently from the
expression of the equation of state. To supplement these results, a coarse-graining analysis
of the flow is performed. This approach allows us to separate the contributions of the
transfer and production terms of circulicity and to discuss their respective effects in the
inertial range.
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I. INTRODUCTION

In incompressible turbulence, the behavior of small inertial scales is commonly described by
invoking the physical image of the Richardson cascade [1–3]: under the stirring action of velocity
gradients, inertial eddies break down into smaller and less energetic ones, that break down into
even smaller and less energetic ones, and so on until viscous dissipation occurs. This phenomeno-
logical description is intimately linked with two sets of formal results stemming respectively from
Kolmogorov’s [4,5] and Onsager’s [6,7] works.

The first approach focuses on the statistical properties of the velocity field taken at different
points, a technique sometimes called “point splitting.” Kolmogorov showed that, in the inertial
range of homogeneous turbulence, kinetic energy flows on average from large to small scales
with a constant flux given by its mean dissipation rate ε. When turbulence is isotropic, this result
takes the form of Kolmogorov’s 4/5th law, while in anisotropic turbulence, it is expressed with the
Monin-Yaglom relation [8]. Both expressions relate the third-order structure function of the velocity
field to ε. They are both derived from the incompressible Navier-Stokes equations under a crucial
assumption: the mean dissipation ε must remain finite when the Reynolds number Ret tends to
infinity. This hypothesis is sometimes referred to as the zeroth law of turbulence and is related to
the notion of dissipative anomalies [4,6,9–11].

Dissipative anomalies are also at the heart of the second set of formal results, the one originating
from Onsager’s work. The concept of anomaly arises from the observation that, when the Reynolds
number Ret increases, dissipative events take place in thinner and thinner structures while becoming
more and more intense, in such a way that their average ε is finite. In the limit Ret → ∞,
several authors, starting with Onsager [6,7,12,13], conjectured that this phenomenology could be
described in the form of a weak singular (“anomalous”) solution of Euler equations. As opposed
to Kolmogorov’s approach, Onsager’s does not necessarily require statistical averages of two-point
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quantities. Instead, it can be expressed with the local properties of a regularized “coarse-grained”
velocity field. Despite their inherent differences, Onsager’s coarse-graining and Kolmogorov’s
point-splitting visions share the same core phenomelogical ideas. Accordingly, the coarse-graining
approach has given rise to a series of predictions closely related to Kolmogorov’s 4/5th law and to
the idea that energy is transferred from scale to scale at a constant rate [7]. Both the “point-splitting”
and “coarse-graining” approaches sustain the idea that an energy cascade takes place in the inertial
range of incompressible turbulence.

When density inhomogeneities or compressible effects are present, the physical image of the
Richardson cascade is harder to uphold. In that case, eddies are not only stirred and broken by
velocity gradients, they are also affected by baroclinic production and by local dilatations and
compressions. In principle, these additional processes may very well lead to an inverse transfer
of energy, at the very least locally and transiently. These processes also cast their shadow on the
point-splitting and coarse-graining approaches. Their adaptations to compressible turbulence face
several hurdles, some of which have only been recently overcome. In particular, Aluie [14–16] and
Eyink and Drivas [17,18] have produced two seminal works based on the coarse-graining approach.
They have shown that in compressible turbulence, an inertial range exists where a local conservative
cascade of kinetic energy takes place, despite the fact that kinetic energy is no longer an inviscid
invariant of the flow. This result is conditioned on the presence of dissipative anomalies and on the
sufficient roughness of the turbulent fields.

From the point-splitting side, no equivalent predictions have so far been derived. Still, several
adaptations of the Monin-Yaglom relation to compressible turbulence have been proposed [19–30].
But as opposed to the coarse-graining approach, most of these efforts were not aimed at proving the
existence of a cascading process. Instead, they were mostly driven by a practical goal: being able
to evaluate the dissipation and large-scale injection of energy knowing two-point correlations. This
information is indeed useful for interpreting several astrophysical phenomena [28,30]. As it turns
out, one of the main difficulties for establishing Monin-Yaglom relations in compressible flows
comes from the pressure field and the way it is coupled with other thermodynamical variables. To
alleviate this difficulty, most of the mentioned works [19–30] make a simplifying assumption on
the thermodynamical state of the flow: it is either isothermal [20–23,25–29], polytropic [19,24], or
isentropic [30]. These assumptions are physically sound: depending on the astrophysical application
considered [19–33], they do provide an accurate thermodynamical approximation of the flow.
However, their use is not completely innocuous either. In particular, they de facto prevent the
existence of several physical phenomena. For instance, the first two assumptions suppress the
baroclinic torque and the development of convective instabilities such as the Rayleigh-Taylor and
Richtmyer-Meshkov ones [34–37]. Besides, the third one is not compatible with the entropy cascade
predicted in [17]. Therefore, despite their great practical use, the Monin-Yaglom relations derived
so far are in principle restricted to particular flows. In this regard, it is worth highlighting that all
the mentioned Monin-Yaglom relations are coupled to the energetic and mixing content of the flow,
either through the presence of the pressure field, either because they purposely consider the inertial
transfer of the total energy. None of them is purely dynamical, in the sense of involving only velocity
and density correlations. Whether such a relation exists remains an open question. But its answer
is tightly linked with the possibility of finding a Monin-Yaglom equation that is not restricted to
a particular thermodynamical assumption. Besides, it can already be stressed that, if it exists, this
answer would require finding a cascading quantity different from the energy: as shown with the
coarse-graining approach in [14–17], the pressure is indeed one of the components acting in the
interscale transfer of kinetic energy.

Before exploring further these issues, let us briefly return to the incompressible case. In this
context, the velocity field is purely solenoidal. For the infinite domains considered in homogeneous
turbulence, this entails the existence of a one-to-one correspondence between the velocity and
vorticity fields: vorticity is given by the curl of velocity, while velocity is retrieved from vorticity
using a Biot and Savart integral expression [38]. As a result of this one-to-one relation, the kinetic
energy spectrum becomes equal to the circulicity spectrum in homogeneous turbulence. Circulicity
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is a term coined by Kassinos et al. [39] in order to refer to a tensor describing the “large-scale”
structure of the vorticity field. In this work, we will slightly tweak this definition and use circulicity
to refer to the “large-scale” structure of the angular momentum. Indeed, when density is constant,
vorticity becomes a proxy for measuring the angular momentum of a Eulerian control volume,
so that the two notions become indistinguishable (see Appendix A). Piecing these statements
together, one arrives at the conclusion that the energy cascade predicted by the point-splitting and
coarse-graining approaches also coincides with a cascade of circulicity. This co-occurrence agrees
with the physical picture of the Richardson cascade in which energy is transferred to smaller scales
by the motion of turbulent eddies, which can be thought of as coherent regions of angular momentum
(see [40,41] and references therein).

Coming back to compressible flows, the velocity field now possesses a dilatational component
and is not solely representative of vortical motions. But most importantly, vorticity itself loses one of
its key physical meaning. It is not connected to the angular momentum of Eulerian control volumes
any longer. Indeed, angular momentum is defined with respect to the curl of the linear momentum
and is only related to vorticity when density is constant (see [42,43] and Appendix A). Therefore,
contrary to the incompressible case, the spectral properties of kinetic energy and circulicity dissoci-
ate in compressible turbulence. In particular, in homogeneous turbulence, the identity between the
circulicity and kinetic energy spectra ceases to be valid. Instead, the circulicity spectrum becomes
equal to the spectrum of the solenoidal component of the linear momentum. The latter is indeed
the Helmholtz dual of the angular momentum, just as the solenoidal velocity is with respect to
vorticity. As a consequence of this dissociation, the existence of the energy cascade predicted with
the coarse-graining approach in [14,17] does not automatically extend to circulicity: even if energy
cascades to small scales, it is not known whether this transfer goes along with the apparition of
smaller whirls. Thus, the question arises as to whether a circulicity cascade exists in compressible
turbulence. This question sends us back to the issues we already raised when commenting existing
Monin-Yaglom relations. Indeed, as shown in [42,43], the evolution of the angular momentum and
of the solenoidal linear momentum are not directly impacted by the pressure field. Hence, the study
of their properties opens a door for deriving a Monin-Yaglom relation that is not bound by the
equation of state and that is decoupled from the thermodynamics and mixing content of the flow.

Given these considerations, the purpose of this work is to study the transfer of circulicity in the
inertial range of a compressible flow. More particularly, we aim to discuss whether a circulicity
cascade exists and, if it does, what it implies for inertial scales. This study is amenable to both the
point-splitting and coarse-graining approaches. For the sake of completeness, we will use the two
techniques. To begin with, we will derive a Monin-Yaglom relation for the solenoidal component
of the linear momentum, an appellation hereafter abridged to solenoidal momentum. We will then
discuss how this relation depends on the different variables describing the flow. We will also discuss
how it may potentially provide information about the scaling of the turbulent spectra. These different
elements will also be examined through the lens of the coarse-graining approach. To this end, spatial
filtering will be applied to the solenoidal momentum equation.

Before closing this introduction, we would like to emphasize that the word “cascade” has been
used throughout this introduction in order to refer to physical processes occurring at asymptotically
small scales and characterized by point-splitting and coarse-graining relationships. This implicit
meaning will also be kept in the remaining of this paper. Establishing the existence of a cascading
process over a finite range of scales is beyond the scope of this work.

II. GOVERNING EQUATIONS

A. Compressible Navier-Stokes equations

We consider a flow which state is defined by its density ρ, velocity v, internal energy e and
species mass fractions {cα, α = 1, . . . , Ns}. These variables evolve according to the compressible
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multicomponent Navier-Stokes equations [44–46]:

∂tρ + ∂ j (ρv j ) = 0, (1a)

∂t (ρvi ) + ∂ j (ρviv j ) = −∂ j (pδi j + σi j ) + fi, (1b)

∂t (ρe) + ∂ j (ρv je) = ρε − p∂ jv j − ∂ jσ
(e)
j , (1c)

∂t (ρcα ) + ∂ j (ρv jcα ) = −∂ jσ
(α)
j , (1d)

where p is the pressure, f a volumetric force, σ the viscosity tensor, σ (e) the molecular heat flux,
σ (α) the molecular diffusion flux of species α and ρε = −σi j∂ jvi the dissipation rate of the kinetic
energy. For simplicity, we assume that the viscosity tensor is defined by

σi j = −μSi j − η∂kvkδi j with Si j = ∂ jvi + ∂iv j − 2
3∂kvkδi j, (1e)

where the shear viscosity μ and the bulk viscosity η are chosen to be constant. This hypothesis is
only made for the sake of simplicity. In the general case, μ and η would depend on the density,
temperature and concentration fields. The molecular heat and diffusion fluxes, σ (e) and σ (α), will
not be used in the remainder of this text and do not need to be detailed here. Their expressions are
briefly recalled in Appendix E and we refer the reader to Refs. [44–46] for more information on the
subject.

To close the flow description, two equations of states must be added, a thermal and a caloric one.
We assume that they can be expressed as functions of density, temperature, and mass fractions:

p ≡ p(ρ, T, c) and e ≡ e(ρ, T, c), (1f)

where T is the temperature. These functions can be general and are not constrained by an isothermal,
polytropic, or isentropic assumption. Similar to σ (e) and σ (α), the equations of state do not play any
role in the forthcoming analysis and do not need to be made explicit.

B. Helmholtz decomposition of the momentum

Using an Helmholtz decomposition, along with the fact that the domain considered in this study
is unbounded, the momentum j = ρv can be split into a solenoidal and a dilatational component
respectively denoted by s and d [42,43]:

j = ρv = s + d with di = −∂i	 and si = εi jk∂ j�k, (2)

where εi jk is the Levi-Civita tensor. The scalar potential 	 and the divergence-free vector potential
� are given by

∂2
j j	 = −� and ∂2

j j�i = −i, (3)

where � is divergence of the momentum and � is the angular momentum of a Eulerian control
volume (see Appendix A):

� = ∂ j (ρv j ) = −∂tρ and i = εi jk∂ j (ρvk ). (4)

It is important to stress that the angular momentum � does not carry the same information as the
vorticity ω. The latter is defined by

ωi = εi jk∂ jvk = i/ρ − εi jkvk∂ jρ/ρ.

Similarly, the momentum divergence � is different from the velocity divergence � defined as

� = ∂ jv j = �/ρ − v j∂ jρ/ρ.

Accordingly, the Helmholtz decomposition of the momentum ρv is also different from the
Helmholtz decomposition of the velocity field v, which can be written as

v = vs + vd with vd
i = −∂iϕ

v, vs
i = εi jk∂ jψ

v
k and ∂2

j jϕ
v = −�, ∂2

j jψ
v
i = −ωi. (5)
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Except when density is constant, one generally has

� �= ρω, � �= ρ�, 	 �= ρϕv, and � �= ρψv.

C. Circulicity

Given the Helmholtz decomposition (2) and (3), the solenoidal momentum s characterizes the
rotational motions of the flow, “rotational” being used here as a reference to angular momentum
and not vorticity. This link between s and � can be formalized further with the notion of circulicity.
More precisely, in this work, we define the local value of the circulicity field C by

C = 1
2 sisi. (6)

The quantity C/ρ can be interpreted as the contribution to the kinetic energy coming exclusively
from rotational motions. More precisely, one has ρvivi/2 = C/ρ + sidi/ρ + didi/(2ρ), so that two
other contributions must be accounted for in addition to C/ρ: a purely dilatational one and a cross-
rotational-dilatational one. But C also has another interpretation that is not linked to energy and that
is more easily discussed in homogeneous turbulence. In this context, the mean of C, which is half
the variance of s, is equal to the integral of the solenoidal momentum spectrum Ess:

Homogeneous turbulence: C = 1

2
sisi =

∫
Ess dk, (7)

where · denotes the ensemble mean and where k is the wave number. Besides, given the Poisson
equations (3), the spectrum Ess of s is linked to the spectrum E of � by

Homogeneous turbulence: Ess = E

k2
. (8)

Equation (8) indicates that the solenoidal momentum carries the same two-point information as
the angular momentum, with the difference that a greater weight is given to large scales. When
combined with Eq. (7), this result shows that the mean circulicity C accounts for the large-scale
content of the angular momentum. This conclusion has been illustrated for homogeneous turbulence,
but the overall correspondence between circulicity and large-scale angular momentum extends to the
inhomogeneneous case.

Note also that in a constant-density flow, one would simply have C = ρ2vivi/2. Hence, circulicity
would be redundant with kinetic energy and there would be no need to study its properties, nor
those of the solenoidal momentum two-point correlations. However, this is no longer the case
when density is variable. As mentioned in the introduction, the concepts of circulicity and energy
dissociate in compressible flows. Finally, it is worth stressing that the notion of circulicity used here
is only loosely based on the one proposed by Kassinos et al. [39]. The latter introduced this concept
to measure different contributions of the Reynolds-stress tensor of an incompressible velocity field.
Here we only preserved the idea that circulicity gives access to the large-scale structure of the
angular momentum.

D. Evolution of the solenoidal momentum s

The solenoidal momentum s is the main focus of this work because of its connection to angular
momentum and circulicity. To derive its evolution, we start from the linear momentum equation (1b)
and note that ∂t di = −∂i∂t	. This term can then be added with ∂i p and the dilatational parts of the
forcing and viscous terms in order to form the gradient of a pseudopressure π s. This procedure
yields π s = p − ∂t	 + φ f − (η + 4

3μ)∂ jv j with φ f the scalar potential of the force f (see also
Appendix B). This particular expression is only given for the sake of completeness and serves no
further purpose. Indeed, the value of π s is set in practice by the fact that s is divergence-free, as
detailed below. The evolution of s is given by

∂t si + ∂ j (ρviv j ) = −∂iπ
s − ∂ jσ

s
i j + f s

i , (9a)
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where σs and f s are the solenoidal parts of the forcing and viscous terms:

σ s
i j = −μ(∂ jvi + ∂iv j ) + 2μ∂kvkδi j and f s

i = εi jk∂ jψ
f

k with ∂2
j jψ

f
i = −εi jk∂ j fk. (9b)

The pseudopressure π s enforces the divergence-free constraint of s for the advection term ∂ j (ρviv j ):

∂2
j jπ

s = −∂2
i j (ρviv j ). (9c)

It is worth highlighting that π s is different from the actual pressure p:

π s �= p.

The pressure p is set by the equation of state (1f). By contrast, π s is the solution of a Poisson
equation and is set by the dynamics of the flow. This remains true whether the flow displays strong
compressibility effects or not. Another significant point is that p does not appear explicitly in
Eq. (9a). Thus, even though the equation of state is important for determining the overall evolution
of the flow, its influence on the solenoidal momentum s is only indirect. This is not the case for all
solenoidal fields. For instance, pressure appears explictly in the evolution equation of the solenoidal
velocity field vs.

E. Evolution of the circulicity C
Starting from the evolution equation (9a) of the solenoidal momentum and using the Poisson

equations (3), the following evolution of the circulicity can be deduced:

∂tC + ∂ jF c
j = Pc − εc + si f s

i , (10)

where F c is the flux of circulicity:

F c
i = 1

2 | j|2vi + π s ji + 	∂ j (ρviv j + π sδi j ) + μs j (∂ jvi − ∂iv j ), (11)

where Pc and εc are terms associated with the local production and dissipation of circulicity:

Pc = − 1
2 | j|2� + π s� and εc = μiωi, (12)

where we recall that j = ρv, � = ∂ivi and � = ∂i(ρvi ).
This formulation of the circulicity equation allows us to highlight the role played by the

dilatational components of the velocity and momentum: it is the divergences of these fields that
control the circulicity production term Pc. The other interest of this formulation is to allow for a
direct comparison with the evolution of the total momentum norm. Indeed, one has

∂t
(

1
2 | j|2) + ∂ j

[
1
2 | j|2v j + p j j + σi j ji

] = − 1
2 | j|2� + p� + σi j∂ j ji + ji fi. (13)

The right-hand sides of Eqs. (10) and (13) share the same structure, with similar source, dissipation
and forcing terms. The main differences are that, in Eq. (10), the dynamic pressure π s replaces the
actual pressure p and that the solenoidal force replaces the total one. Besides, the dissipation term
εc only accounts for shear viscosity effects and not bulk ones. It is worth stressing that εc is not
necessarily positive. The angular momentum and vorticity fields can indeed be misaligned. This
misalignment is linked to the density and velocity gradients as follows:

εc = μρωiωi + μ vi(∂ jvi − ∂iv j )∂ jρ.

However, if we assume that the density and velocity fields decorrelate at small scales, the mean of
εc will be dominated by the mean of the first term. In that case, the mean of εc remains positive,
even though local values of εc can be negative. In the remaining of this work, we will assume that
such an hypothesis holds and that

εc > 0.
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III. MONIN-YAGLOM RELATION AND TRANSFER OF CIRCULICITY IN HOMOGENEOUS
TURBULENCE

Our purpose in this section is to study how circulicity is transferred from scale to scale in the
inertial range of a homogeneous compressible flow. Given the relation between circulicity and
solenoidal momentum (see Sec. II C), we start by deriving a Kármán-Howarth equation for the
solenoidal momentum s. Then we use this equation to express a Monin-Yaglom relation describing
the interscale transfer of this quantity and by extension of circulicity. This relation is compared
against existing ones [19–30] and is also used to discuss inertial range scalings. This section only
makes use of the point-splitting approach. The coarse-graining method will be discussed in the next
section.

A. Kármán-Howarth equation for the solenoidal momentum

The first step in our study consists in deriving a Kármán-Howarth equation for the solenoidal
momentum, or, in other words, an evolution equation for the second-order structure function of the
solenoidal momentum. The latter is defined by

�si�si(r, t ) = 2sisi − 2si(x)si(x + r),

where for any quantity X , �X refers to the difference between the values of X taken at two different
points x and x′, separated by the vector r = x′ − x. For later purposes, it will also be useful to
introduce the median value {X } 1

2
of X at these two points. These two-point difference and median

values are defined by

�X (x, r, t ) = X (x′, t ) − X (x, t ) and {X } 1
2
(x, r, t ) = [X (x′, t ) + X (x, t )]/2 with r = x′ − x.

We would like to stress again that �si�si is related to circulicity and that, as such, it accounts for the
large-scale content of the angular momentum. Indeed, one has �si�si(r, t ) = 4C − 4

∫
eık·r E

2πk4 dk.
Therefore, studying the inertial range transfer of �si�si is equivalent to studying the transfer of
circulicity.

Starting from Eq. (9a) and using some of the relations detailed in Appendix C, we find after some
algebra that

∂t�si�si(r, t ) = −∂r j F j (r, t ) − 4Einj(t ) + 2μ∂2
r j r j

�vi�si(r, t ) + 2�si� f s
i (r, t ), (14a)

where the circulicity flux F and injection rate Einj are defined by

F j (r, t ) = �v j� ji� ji(r, t ) − 2�vd
j { ji ji} 1

2
(r, t ) − 4�di{ρviv j} 1

2
(r, t ) (14b)

and Einj(t ) = si f s
i − ∂tC = εc(t ) − Pc(t ). (14c)

The first term in the right-hand side of Eq. (14a) describes the nonlinear transfer of circulicity
from scale to scale. It is expressed as the divergence of a flux. The second term accounts for
the unforced evolution of the mean circulicity C = sisi/2 and is scale-independent. The third one
expresses the transfer of circulicity induced by viscous effects. The last one corresponds to the
correlation between s and the external force f or more precisely its solenoidal component f s.
Overall, the evolution equation of �si�si retains the same form as the equation of the second-order
structure function of the velocity field classically derived in incompressible flows [5,8]. However,
the flux and dissipation terms of Eq. (14a) are affected by the presence of density inhomogeneities
and by compressibility.

More precisely, the nonlinear transfer of circulicity involves three different components. The first
one, �v j� ji� ji, is linked to the advection of s by the velocity field v. It takes the form of a third-
order structure function. As shown in Appendix D, its expression is identical to the one appearing
in the transfer flux of � ji� ji. Hence, this first component is representative of the transfer between
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scales not only of the solenoidal momentum, but also of the total momentum. The remaining two
contributions involve the increments of dilatational components of the momentum and velocity
fields. Their presence is due to the fact that circulicity is driven by a production term Pc and is not
a conserved quantity. However, Eq. (14a) shows that the effects of this nonconservative production
can still be cast in the form of a conservative flux as far as the interscale transfer of circulicity is
concerned. Note that both of these contributions vanish in constant-density turbulence. In that case,
one is left with F j = ρ2�v j�vi�vi, which is the flux obtained in the incompressible case weighted
by ρ2.

Concerning Einj, it has two components. The first one is the mean dissipation of circulicity εc,
the second its mean production rate Pc [see Eq. (10)]. The latter has the same origin as the two
dilatational contributions of the nonlinear transfer flux. In this regard, a balance between these two
dilatational terms and Pc would exist in the limit r → 0 if the turbulent fields were smooth. For
rough fields, this is not case. Note also that for constant-density turbulence, Pc vanishes and one is
left with Einj(t ) = μρωiωi, which is the solenoidal dissipation weighted by the density. We would
also like to emphasize that the definition of Einj stems from the unforced evolution of C, as given by
the first equality of Eq. (14c). This origin is important because in forced stationary turbulence, one
gets

Einj = si f s
i . (15)

In that case, the value of Einj corresponds to the injection rate of circulicity. It is then set by the
solenoidal component of the force and not by the total force. The implications of the latter property
will be commented further in Sec. III C.

B. Monin-Yaglom relation

We now assume that the flow is stationary and consider the limit μ → 0 and r → 0 of the
Kármán-Howarth equation (14a). The notation μ → 0 is used as a shorthand for referring to the
high Reynolds number limit. Then, provided the correlation of the force f falls off exponentially,
the only two terms that do not vanish in this limit are the nonlinear flux divergence and Einj. Thus,
for a stationary flow, in the limit μ → 0, r → 0, we obtain

∂r j

(
�v j� ji� ji − 2�vd

j { ji ji} 1
2
− 4�di{ρviv j} 1

2

) = −4Einj. (16)

This equation is one of the main results of this work. It constitutes the Monin-Yaglom relation
derived from the solenoidal momentum evolution equation (9). Interestingly, this relation can be
written in several alternative forms that may help shed light on different aspects of the transfer
of circulicity. For instance, using the Helmholtz decomposition (2) and (3) and the Poisson equa-
tion (9c), one may get rid of the dilatational components vd

i and di. Equation (16) can indeed be
rewritten as

∂r j

(
�v j� ji� ji − 2�v j{ ji ji} 1

2
+ 4� j j{π s} 1

2

) = −4Einj. (17)

In agreement with this formulation, one may also rewrite Einj as Einj = εc + 1
2 ji ji∂ jv j − π s∂ j (ρv j ).

Another possibility is to forgo the flux divergence formulation and allow for the presence of a source
term. In particular, one may reformulate Eq. (16) as

∂r j (�v j� ji� ji ) + ���( ji ji ) − 2���π s = −4εc, (18)

where we recall that � = ∂ jv j and � = ∂ j (ρv j ). This formulation is closer to the ones derived for
instance in [20,24]. As in these references, the source terms can be associated with the dissipation
term to provide a scale dependent effective dissipation εeff .
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C. Effective circulicity cascade

The main physical interpretation of Eq. (16), and its variants Eqs. (17) and (18), is similar to
the one put forward in the classical incompressible case, except for two important points. First,
it applies to circulicity and not energy, and second, the flux F in Eq. (16) is an “effective” flux
that accounts not only for the scale-to-scale transfer of circulicity but also for its production by
the dilatational source term Pc. The two processes are actually intertwined and setting a precise
separation between the two bears some degree of arbitrariness. For this reason, the fact that these
two effects can be collected within a single flux entity allows us to get rid of this distinction and to
put forward a simple interpretation of the Monin-Yaglom equation (16). More precisely, the global
flux � of circulicity flowing from scales larger than r to scales smaller than r is defined by [47]

� = − 1

4Vr

∫
|r′|�r

∂r j F j (r′) dr′ = − 3

4r
〈F‖〉4π (r),

where the subscript ‖ denotes the coordinate of a vector in the direction r̂ = r/r and where 〈·〉4π

refers to the average over the surface of the unit sphere: F‖ = F j r̂ j and 〈·〉4π = 1
4π

∮ · d r̂. From
the definition of F , one can express this flux as

� = − 3

4r

〈
�v‖� ji� ji − 2�vd

‖ { ji ji} 1
2
− 4�di{ρviv‖} 1

2

〉
4π

. (19)

In isotropic turbulence, the brackets 〈·〉4π can be dropped from this expression. Integrating the
Monin-Yaglom relation Eq. (16) over the sphere of radius r, one deduces that � is constant and
equal to Einj:

� = Einj. (20)

Alternatively, one can write that

〈F‖〉4π = 〈
�v‖� ji� ji − 2�vd

‖ { ji ji} 1
2
− 4�di{ρviv‖} 1

2

〉
4π

= − 4
3Einjr.

Now, let us assume that the flow is forced and stationary. Then the value of Einj is determined
by the injection of solenoidal momentum: equation (15) is valid and one has Einj = si f s

i � 0. From
there, two situations can be distinguished:

The first one occurs when the solenoidal component of the force is not null. Then, we have

� = Einj > 0.

This condition indicates the existence of an effective circulicity cascade: keeping in mind the
comments made at the beginning of this section, circulicity may be thought to be transferred on
average from large to small scales at a rate Einj independent from the scale r. If we leave aside the
composite nature of the effective flux �, this description is similar to the forward energy cascade
associated with the Kolmogorov-Obukhov theory in incompressible turbulence.

The second situation arises when f s = 0 and turbulence is only forced on dilatational modes.
Then the flux of circulicity becomes null:

� = Einj = 0.

In that case, there is no effective circulicity cascade in the inertial range. Instead, an effective
nonlinear equilibrium [3] takes place in the inertial range, set by an exchange between the variances
of the dilatational and solenoidal components of the momentum and constrained by the condition
� = 0.

Thus, the existence of an effective circulicity cascade is not systematic and depends on the way
turbulence is forced at large scales. A parallel can be drawn between this conclusion and several
observations which have been made in simulations of forced compressible turbulence [11,48–53].
Depending on whether the massic force is solenoidal or dilatational, significant differences were
observed in the statistics of the simulated flows. However, one should not go beyond making a
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parallel since a direct observation of the particular case f s = 0 is not given in these references.
Indeed, in Refs. [11,48–53] the solenoidal-dilatational separation is applied to the massic force f /ρ
and not to the volumetric force f as required in this work. Despite this difference, a link between the
distinct behaviors observed in [11,48–53] and the possible disappearance of the circulicity cascade
would be worth investigating further.

We close this section as we started it, by stressing that circulicity is not a conserved quantity
and that the notions of its cascade and equilibrium state are, to some extent, ill-posed. This is why
we used the term “effective” to qualify them. The flux F and its integral � combine nonlinear
effects coming from conservative and nonconservative processes. In Sec. IV, we will use the coarse-
graining approach to help disentangle the roles of cascading and production effects for circulicity in
the inertial range.

D. Comparison with previous relations and practical use of Eq. (16)

The Monin-Yaglom equation (16), and its variants (17) and (18), are valid for compressible
turbulence, whether in a highly compressible or weakly pseudocompressible regime. As opposed
to other such relations, for instance those derived in [19–30], Eq. (16) does not involve the actual
pressure field and does not make any assumption on the equation of state, i.e. there is no hypothesis
on whether the flow is isothermal, isentropic or polytropic. What is more, all the terms appearing in
Eq. (16) can be evaluated knowing only the density ρ and the velocity field v at a given time. In this
restricted sense, it is entirely decoupled from the energetic and mixing content of the flow. Besides,
it is also worth stressing that, in Eq. (16), the transfer between scales is written as the divergence of
a flux F . By contrast, in the relations proposed in [19–30], source terms are present which might
not be easily recast in the form of a flux.

Compared to previous Monin-Yaglom relations there is also a major difference. Most of these
relations have been derived with a practical goal in mind: estimating the total injection and
dissipation rates of energy. The relation we derive cannot fulfill the same goal. Indeed, it can
provide information about only the injection rate of solenoidal momentum Einj = ji f s

i = si f s
i .

Thus, from a practical point of view, the Monin-Yaglom equation (16) cannot work as a substitute
to the previously derived relations [19–30]. Instead, Eq. (16) should be viewed as providing a
complementary information. When coupled with previous relations, it should help disentangle the
solenoidal and dilatational contributions of the dissipation and energy injection.

E. Approximate Monin-Yaglom relation in the weakly dilatational regime

In the Monin-Yaglom equation (16), the different contributions of the flux F are respectively on
the order of

�v j� ji� ji = O[δv δ(ρv) δ(ρv)], �vd
j { ji ji} 1

2
= O[δvd δ(ρ2v2)],

and �di{ρviv j} 1
2

= O[δd δ(ρv2)],

where the notation δX (r) refers to the order of magnitude of the increment �X . Provided δρ/ρ → 0
when r → 0, one may approximate δ(ρv) by ρδv, δ(ρ2v2) by ρ2δ(v2) and δ(ρv2) by ρδ(v2). There-
fore, the two dilatational contributions �vd

j { ji ji} 1
2

and �di{ρviv j} 1
2

become negligible compared to
the first one whenever

δvd 
 δv
(δv)2

δ(v2)
and δd 
 ρδv

(δv)2

δ(v2)
. (21)

These conditions define a particular regime that we call weakly dilatational. We note that when v

is solenoidal, δ(v2) should be on the order of (δv)2, as discussed in [54]. Therefore, to reach the
weakly dilatational regime, it could possibly be sufficient to verify

δvd 
 δv and δd 
 δ j. (22)
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An important point is that condition (21) or (22) needs to be verified only at small scales: large
scales can still possess large dilatational components. Besides, conditions (21) and (22) are verified
whenever δvd and δd decrease sufficiently fast when r → 0, in particular when they decrease faster
than their total counterparts. In that case, the inertial range may be divided in two ranges by a limit
scale rs: below rs, condition (21) or (22) is satisfied while above rs they are not.

Simulations of subsonic and transsonic turbulence suggest that δvd 
 δv on most of the inertial
range [52], with δvd ∼ r1/2 and δv ∼ r1/3. Simulations of supersonic turbulence [29,48,55] may
be compatible with the idea that δvd 
 δv but only below the sonic scale. We are not aware
of simulation results showing the behavior of the solenoidal and dilatational components of the
momentum.

In any case, whenever the weakly dilatational regime defined by Eq. (21) and possibly by Eq. (22)
is reached, the Monin-Yaglom equation (16) can be simplified as

∂r j �v j� ji� ji = ∂r j �vs
j�si�si = −4Einj. (23)

This relation possibly applies to subsonic and transsonic turbulence and below the sonic scale for
supersonic turbulence.

Another approximation of Eq. (16) can also be formulated, always based on the idea that
dilatational contributions can be neglected. In [14,15] Aluie discarded the correlation between the
pressure and velocity divergence by assuming that their cospectrum decays as k−β with β > 1. In
terms of increments, Aluie made the assumption that �p�� ∝ r (β−1)/2, so that �p�� → 0 when
r → 0. The same hypothesis can also be applied to the version (18) of the present Monin-Yaglom
relation. As in [14,15], we can assume that the dilatational source terms ���( ji ji) and ���π s

go to 0 when r → 0. In that case, the Monin-Yaglom relation (18) is approximated by

∂r j �v j� ji� ji = −4εc. (24)

The two approximations (23) and (24) coincide provided Einj = εc. This occurs when Pc 
 εc. This
condition can be met when dilatational motions are negligible not only at small scales but also on the
whole spectrum and in particular, when the dilatational forcing is weak. In that case, the circulicity
injected at large scales is equal to the circulicity dissipated at small scales. Equations (23) and (24)
are then indicative of a circulicity cascade.

F. Inertial range scalings in the weakly dilatational regime

In incompressible turbulence, the classical Monin-Yaglom relation can be used to determine
the scaling of velocity increments [5]. To this end, it is assumed that velocity increments obey

a self-similar scaling such that �vi
law∝ rnv . In particular, the velocity structure function of order

p verifies

|�v|p ∝ rnv p. (25)

The incompressible Monin-Yaglom relation then constrains nv to be equal to 1/3. It also implies that
the prefactor of equation (25) is the solenoidal dissipation ε1/3. These predictions must of course be
corrected to account for internal intermittency when necessary [5].

In Sec. III E we argued that below a sonic-like scale, under conditions (22), the Monin-Yaglom
relation (16) could be approximated by Eq. (23). In addition to this approximation, we assume
that the increments of the different flow variables obey a self-similar scaling as in incompressible
turbulence. For a given variable X , we write

�X
law∝ rnX (26)

where nX is the power-law exponent associated with the variable X . Then the Monin-Yaglom
relation (23) forces the relation

nv + 2n j = 1.
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Furthermore, we conjecture that �ρ → 0 as r → 0 and more specifically that nρ � nv . Then, using
the relation �(ρX ) = �ρ{X } 1

2
+ {ρ} 1

2
�X , one deduces that n j = nv . Therefore, with this set of

assumptions, one arrives at the conclusion that

nv = n j = 1
3 .

This is the usual Kolmogorov-Obukhov scaling of the velocity increment, corresponding to a k−5/3

spectrum. Note that the self-similarity assumption (26) does not allow us to separate the exponents
of the different components of the velocity and momentum fields. Given the weak dilatational
assumption, which is summed by Eq. (22), the common value of n j and nv is that of the principal
components of these fields, it is to say, their solenoidal components. The dilatational components
can have a different exponent as long as it is larger than 1/3.

There is also another important conclusion that can be derived from the approximate Monin-
Yaglom relation in the weakly dilatational regime. The sole dimensioning parameter that appears in
this law is εc, which is a dissipation rate based on solenoidal fields and on the sole shear viscosity
μ. Therefore, one can refine the similarity assumption for the velocity and momentum fields and
write that

�vi
law∝ [(εc/ρ

2) r]1/3 and � ji
law∝ [(ρ εc) r]1/3 (27)

This prediction is reminiscent of several simulations where turbulent velocity spectra with a
Kolmogorov-Obukhov scaling are seen to depend on the solenoidal dissipation rate of energy and
not the total one [52,56].

G. Inertial range scalings with shocks

Let us assume that a homogeneous distribution of shocks is present in the flow. In that case, the
self-similarity assumption (26) cannot be upheld. In particular, Lindborg [57] showed that when
dissipation occurs exclusively in shocks, the velocity field does not verify Eq. (25). Instead, one has

|�v|p = 〈|�v|p〉sh r

dsh
, (28)

where dsh is the mean distance between shocks and 〈|�v|p〉sh is the average jump of |�v|p across
shocks.

If we want to analyze scalings compatible with Eq. (16) we must consequently account for these
two distinct behaviours. To this end, we propose to separate the average of two-point correlations
in order to make shock contributions explicit. For a given quantity X (x, x′) depending on the two
positions x and x′ = x + r, we split its average as

X (r) = Psh(r)X |sh(r) + [1 − Psh(r)]X |ns(r), (29)

where Psh is the probability of finding a shock between two points separated by r and where X |sh
and X |ns are the averages of X conditioned respectively on the event of finding or not a shock
between two points separated by r.

Then the Monin-Yaglom relation (16) can be written as

∂r j

[
Psh

(
�v j�(ρvi )�(ρvi )|sh − 2�v j{ρ2vivi} 1

2

∣∣
sh

− 4�di{ρviv j} 1
2

∣∣
sh

)]
+ ∂r j

[
(1 − Psh)

(
�v j�(ρvi )�(ρvi )|ns − 2�v j{ρ2vivi} 1

2

∣∣
ns

− 4�di{ρviv j} 1
2

∣∣
ns

)] = −4Einj.

(30)

This equation only makes explicit the presence of shocks but does not introduce any additional
assumption compared to the Monin-Yaglom relation (16) from which it is derived. However, if we
want to interpret it further, some simplifications must be made. First, for any given quantity X (x, x′)
with x and x′ = x + r, we assume that X |sh is dominated by the shock contribution. In that case, we

124604-12



CASCADE OF CIRCULICITY IN COMPRESSIBLE …

can write that

X |sh(r) = 〈X 〉sh,
where 〈X 〉sh represents the contribution of the shock jumps to X , averaged over all shocks. This
contribution is independent from r. Second, we assume that nonshocked contribution to increments
obeys a power law. Thus, we reduce Eq. (26) to the nonshocked intervals:

�X |ns
law∝ rnX .

Finally, we consider that the spatial repartition of shocks follows an isotropic Poisson distribution
with a mean distance d . As a result, as in [57], one has Psh ≈ r

d for r 
 d and 1 − Psh ≈ 1. With
these approximations, the Monin-Yaglom relation (30) becomes

∂r j

(
�v j�(ρvi )�(ρvi )|ns − 2�v j{ρ2vivi} 1

2

∣∣
ns

− 4�di{ρviv j} 1
2

∣∣
ns

) = −4(Einj − Esh)

with Esh = − 1

4dsh

(〈�v‖�(ρvi )�(ρvi )〉sh − 2
〈
�v‖{ρ2vivi} 1

2

〉
sh

− 4
〈
�di{ρviv‖} 1

2

〉
sh

)
. (31)

If we except the particular case Einj = Esh, this formula can only be fulfilled if at least one of the
terms in the divergence on the left-hand side scales as r. Given the scaling laws assumed in the
nonshocked region, this condition implies that at least one of this condition must be verified:

nv + 2nρv � 1, nv + nρ2v2 � 1, nd + nρv2 � 1. (32)

We note that, since �(ρvi )�(ρvi ) = �si�si + �di�di, one must have nd � nρv . Furthermore, if
we assume that �ρ → 0 as r → 0 and more specifically that nρ � nv , then, using the relation
�(ρX ) = �ρ{X } 1

2
+ {ρ} 1

2
�X , one can show that nρv = nv , nρ2v2 = nv2 and nρv2 = nv2 . Finally,

the Schwartz relation �(vivi )2 � 2
√

({v j} 1
2
{v j} 1

2
)2

√
(�vi�vi )2 implies that nv2 � nv .

From there, we finally arrive at the conclusion that the first inequality of Eq. (32) can be verified
if nv � 1/3, while the two others require nv � 1/2. This can be summed up as

Nonvanishing �v j�(ρvi )�(ρvi )|ns : nv � 1
3 , (33a)

Nonvanishing − 2�v j{ρ2vivi} 1
2

∣∣
ns

+ 4�di{ρviv j} 1
2

∣∣
ns

: nv � 1
2 . (33b)

The upper bound of the first constraint corresponds to the usual Kolmogorov-Obukhov scaling
of the velocity increment, corresponding to a k−5/3 spectrum. The upper bound of the second
corresponds to a velocity spectrum scaling as k−2. The first scaling is traditionally observed
in simulations with moderate Mach numbers and with solenoidal forcing [52]. By contrast, in
simulations of supersonic turbulence, a k−2 spectrum is obtained for scales larger than the sonic
scale. Below this scale, a shallower spectrum with a scaling close to k−5/3 is observed [29,55]. We
recall that these scalings are derived for the nonshocked regions of the flow. Given the decompo-
sition �vi�vi = Psh�vi�vi|sh + (1 − Psh)�vi�vi|ns, we note that the k−2 spectrum observed in
simulations of supersonic turbulence can have two contributions. The first comes from the presence
of shocks, as in Burgers turbulence. The other comes from the dilatational components of the
velocity and momentum, shock excluded. The role of this second contribution was also highlighted
in [29].

To conclude on this topic, we would like to recall that without solenoidal forcing, when
Einj = ji f s

i = 0, an equilibrium takes place in the inertial range. Equation (31) shows that this
equilibrium can be understood as a balance between the shocked and nonshocked regions of the
flow. In particular, if Esh > 0, shocks lead to a forward transfer of circulicity from large to small
scales, while a backward transfer occurs for nonshocked regions.
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IV. COARSE-GRAINING APPROACH

In this section, we return to discussing the existence of a circulicity cascade. However, instead of
the point-splitting methodology which led us to derive the Monin-Yaglom equation (16), we now use
the coarse-graining approach which was initially propelled by Onsager’s work [6,7]. This approach
does not require the flow to be homogeneous, and unless said otherwise, we drop this hypothesis.
As a whole, we closely follow the works of Eyink and Drivas and Aluie [14–18].

A. Resolved and subscale circulicities

The basic tool of the coarse-graining approach is spatial filtering. For a given variable X (x, t ),
one defines its filtered value by

〈X 〉�(x, t ) =
∫

G�(r)X (x + r, t ) dr, (34)

where G�(r) = G(r/�)�−3 is a filter function with a kernel G rapidly decreasing at infinity and
verifying the normalization condition

∫
G(r) dr = 1. The idea is then to look at the properties of the

filtered circulicity 〈C〉�. More precisely, 〈C〉� can be split into a resolved and subscale circulicity:

〈C〉� = C
∣∣res

�
+ C

∣∣sub

�
with C

∣∣res

�
= 1

2 〈si〉�〈si〉� and C
∣∣sub

�
= 1

2τ (si, si ),

where we used the notation τ (X,Y ) to denote the subscale moment of given quantities X and Y :

τ (X,Y ) = 〈XY 〉� − 〈X 〉�〈Y 〉�.
The evolution of the resolved circulicity C|res

� can be deduced by filtering the evolution equation (9a)
of s and multiplying it by 〈s〉�. As for the subscale circulicity, its evolution can be derived by filtering
the circulicity equation (10) and substracting the resolved part. By doing so, we obtain that

∂t C
∣∣res

�
+ ∂ j F c

j

∣∣res

�
= −�� − π

f μ
� + Pc

∣∣res

�
+ 〈

si f s
i

〉
�
, (35a)

∂t C
∣∣sub

�
+ ∂ j F c

j

∣∣sub

�
= �� + π

f μ
� + Pc

∣∣sub

�
− 〈εc〉�. (35b)

In these equations, F c|res
� and F c|sub

� are the resolved and subscale circulicity fluxes. We recall
that the local circulicity flux appearing in Eq. (10) is noted F c. If we mark symbolically the
dependency of this flux upon the flow variables as F c ≡ F c[X ], then we have F c

j |res
� = F c

j [〈X〉�] +
〈 ji〉�τ ( ji, v j ) and F c

j |sub
� = 〈F c

j [X ]〉� − F c
j [〈X〉�] − 〈 ji〉�τ ( ji, v j ). These two fluxes do not play any

role in the forthcoming analysis. The term π
f μ
� combines a filtered scale dissipation and the subscale

contribution of the force f s. It is defined as π
f μ
� = τ (si, f is) + μ〈i〉�〈ωi〉�. Like the fluxes, the role

of π
f μ
� is inessential since it vanishes in the high Reynolds limit and with the assumption that the

forcing is at large scale. The last three terms that need to be defined, Pc|res
� , Pc|sub

� , and ��, are
the ones playing a central role in the present analysis. The first two correspond to the resolved and
subscale contributions of the circulicity production term Pc. More precisely, we have

〈Pc〉� = Pc

∣∣res

�
+ Pc

∣∣sub

�
(36a)

with Pc

∣∣res

�
= − 1

2 |〈 ji〉�〈 ji〉�|2〈�〉� + 〈π s〉�〈�〉� (36b)

and Pc

∣∣sub

�
= − 1

2 [τ ( ji ji,�) + 〈�〉�τ ( ji, ji )] + τ (π s, �). (36c)

The third term is defined by

�� = −τ (v j, ji )∂ j〈 ji〉�. (37)

This term consists in a subscale stress multiplying the gradient of a filtered quantity and marks the
interaction between resolved and unresolved scales. It appears as a sink in the resolved circulicity
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equation (35a) and as a source in the subscale circulicity equation (35b). Thus, �� can be interpreted
as a nonlinear exchange term between the resolved and subscale circulicities.

Note that if we introduce a density-weighted filter and density-weighted subscale moments as
X̃ |� = 〈ρX 〉�/〈ρ〉� and τ̃ (X,Y ) = X̃Y |� − X̃ |�Ỹ |�, then the exchange term �� can also be written as

�� = −〈ρ〉�2τ̃ (vi, v j ) ∂ j ṽi|� − τ (ρ, v j )∂ j (〈ρ〉� ṽi|�ṽi|�) − τ (v j, ji )ṽi|�∂ j〈ρ〉�. (38)

Up to a density factor, the first term on the right-hand side is the deformation work that plays
a central role in the transfer of kinetic energy between scales [14–17]. Besides, the second term is
similar to the “baropycnal work” which also appears as a means to transfer kinetic energy. However,
the actual pressure p which enters the definition of the “baropycnal work” is here replaced with a
dynamic one: 〈ρ〉�ṽi|�ṽi|�. Finally, the last term has no direct equivalent in the transfer of kinetic
energy. This comparison between �� and the transfer of kinetic energy reinforces the idea that ��

is an exchange term between resolved and unresolved scales. Furthermore, it indicates that some of
the mechanisms at work in the transfer of energy and circulicity are similar.

To follow on this comparison, we note that the exchange term between the resolved and subscale
kinetic energies has been a staple of the analysis of subgrid-scale models for large-eddy simulations
(LES) for more than five decades (see [58,59] and references therein). Its link with the Kolmogorov-
Obukhov spectrum and with the Monin-Yaglom relation has long been discussed [58,59]. However,
its use as a proper theoretical tool able to demonstrate the existence of a cascading process seems to
have been only recognised more recently, most notably with Refs. [14–17].

B. Circulicity cascade

We now consider the high Reynolds limit of the resolved and subscale circulicities, with the
added assumption that the force only acts at large scales. Taking the limit μ → 0 in Eqs. (35a) and
(35b), and discarding the subscale force contribution, we obtain that

∂tC
∣∣res

�
+ ∂ jF j

∣∣res

�
= −�∗

� − Pc

∣∣sub

�

∗ + 〈P∗
c 〉� + 〈

si f s
i

〉
�
, (39a)

∂tC
∣∣sub

�
+ ∂ jF j

∣∣sub

�
= �∗

� + Pc

∣∣sub

�

∗ − 〈ε∗
c 〉�, (39b)

where we substituted Pc|res
� with 〈Pc〉� − Pc|sub

� and where

�∗
� = lim

μ→0
��, ε∗

c = lim
μ→0

εc, Pc

∣∣sub

�

∗ = lim
μ→0

Pc

∣∣sub

�
and P∗

c = lim
μ→0

Pc.

These limits are taken in a weak distributional sense. For instance, one has

P∗
c = − 1

2 | j|2 ∗ � + π s ∗ �,

where the operator ∗ stands for the distributional product in the limit μ → 0. The reason for
introducing this distributional meaning is explained in [17]. It comes from the fact that ρ and v

become nonsmooth when μ → 0. Hence, � = ∂ ju j and � = ∂ j (ρu j ) exhibit divergences that can
only be described by distributions. As a result, products such as | j|2� and π s� behave as the
products of Heaviside functions with Dirac distributions. Their values are ill-posed in the sense that
they depend on the particular regularizing path chosen to describe them [60,61]. This regularizing
path does not need to be made explicit for our purpose. It is sufficient to know that it depends on the
physics of the problem and on the particular way the limit μ → 0 is approached.

To discuss the existence of a circulicity cascade, we make two crucial hypotheses, similar to those
made in [17]. The first one is that dissipative anomalies exist and that the dissipation of circulicity
εc has a nonzero finite value in the infinite Reynolds limit:

ε∗
c �= 0. (40)

The second is that in the limit � → 0, the evolution equation (39a) of C|res
� tends, in the sense of

distributions, to the evolution equation of C in the ideal limit μ → 0. The limit of Eq. (39a) can be
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written as follows:

∂tC + ∂ jF c
j =P∗

c + si f s
i − �∗

0 − Pc

∣∣sub

0

∗
, (41)

with �∗
0 = lim�→0 �∗

� and Pc|sub
0

∗ = lim�→0 Pc|sub
�

∗. The evolution of C in the ideal limit is deduced
from Eq. (10) and can be written as

∂tC + ∂ jF c
j = P∗

c + si f s
i − ε∗

c . (42)

The reason for the identity between these two limit equations is discussed in [17] (p. 10, second
paragraph) and comes for the principle that “objective physical facts such as the rate of decay of
energy . . . cannot depend upon an arbitrary scale �.” One may expect that this “objectivity principle”
also applies to circulicity, its dissipation and injection rates. Comparing Eqs. (42) and (41), one
deduces that

�∗
0 + Pc

∣∣sub

0

∗ = lim
�→0

lim
μ→0

�� + Pc

∣∣sub

�
= ε∗

c . (43)

This equality is the main result of this section. It states that the circulicity transferred nonlinearly
from resolved to subscales (�∗

0) summed to the one produced at subscales (Pc|sub
0

∗) does not vanish
in the limit μ → 0, � → 0: it tends to a nonzero finite value independent from � and equal, in
the sense of distributions, to the dissipation ε∗

c . Equation (43) does not assert the existence of a
circulicity cascade. Instead, it expresses a balance between transfer, production and dissipation of
circulicity in the subscale range. Since ε∗

c �= 0, this balance is anomalous and both the transfer and
subscale production of circulicity may be the source of the anomalous dissipation ε∗

c . A similar
result has already been obtained for the kinetic energy: in [17], it was shown that the anomalous
dissipation of energy could have two origins, an energy cascade and a pressure-dilatation defect
akin to a subscale energy production. Both elements are similar to the mechanisms identified in this
work for circulicity.

Equation (43) has been cast in the form of a subscale balance. It can also be used to express a
balance for resolved scales. Indeed, using Eq. (36), one can show that

Pc

∣∣res

0

∗ − �∗
0 = lim

�→0
lim
μ→0

Pc

∣∣res

�
− �� = P∗

c − ε∗
c . (44)

This equation shows that, in the limit μ → 0, � → 0, the circulicity transferred to small scales and
produced at resolved scaled tends to a finite value equal to the difference between the production
and dissipation of circulicity.

Equations (43) and (44) can be understood as the coarse-grained equivalents of the Monin-
Yaglom relations (18) and (16). However, as opposed to a Monin-Yaglom relation, Eqs. (43) and
(44) are not statistical and do not involve an ensemble mean or, if ergodicity applies, an integration
over a spatial domain. Instead, they are written in a weak distributional sense. In this regard, it is
worth stressing that Eq. (43) does not imply that �∗

0 + Pc|sub
0

∗ = ε∗
c locally and instantly. As a weak

equality, it involves spatial integrations with test functions. When seen under this light, equality
(43) has a meaning which is indeed stronger that the one given to a Monin-Yaglom relation, but, at
the same time, which is maybe not so far removed from it. In the same line of thought, it should
also be mentioned that in a real flow, with finite μ and �, the measurable quantities which give
rise to equality (43) are ��, Pc|sub

� , and 〈εc〉� which appear in the right-hand side of Eq. (35b). The
left-hand side of this equation has no reason to be equal to 0 so that the values of �� + Pc|sub

� and
〈εc〉� have no reason to be equal locally and instantaneously. Again, this is not what Eq. (43) is
meant to say. The weak distributional sense of this equation should always be kept in mind in order
to avoid overinterpreting it. The same also applies to Eq. (44).

Another remark worth making about equalities (43) and (44) comes from the fact that a double
limit is taken, first μ → 0 and then � → 0. In doing so, Eyink and Drivas [17,18] noted that several
distributional products appear. For instance, the contribution τ (π s, �) of Pc|sub

� is equal to 〈π�〉� −
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〈π〉�〈�〉�. Taking the double limit, then leads to write

lim
�→0

lim
μ→0

τ (π s, �) = π s ∗ � − π s ◦ �.

In this equality, the symbol ◦ refers to the regularization of 〈π〉�〈�〉� which is different from the
one associated with the symbol ∗ and the regularization of 〈π�〉�. This double regularization arises
because circulicity is not an inviscid invariant and its coarse-grained dynamics cannot be closed as
fluxes. This is similar to the case of kinetic energy for which work done by fields which become
distributions also lead to a double regularization [17,18].

To conclude this discussion of Eqs. (43) and (44), we would like to mention that a purely
statistical version of these equalities can also be derived, without invoking the finiteness of ε∗

c and an
“objectivity principle.” Instead of these assumptions, one may assume that the flow is homogeneous
and statistically stationary, and that the mean of ε∗

c is finite, i.e., that limμ→0 εc �= 0, which is a
weaker statement than ε∗

c �= 0. Then, by averaging Eqs. (35b) and (35a), one deduces that, in the
limit μ → 0 and � → 0, the following equality stands:

lim
�→0

lim
μ→0

�� + Pc

∣∣sub

�
= εc and lim

�→0
lim
μ→0

�� − Pc

∣∣res

�
= εc − Pc = Einj. (45)

These two relations can be obtained by averaging Eqs. (43) and (44). They can also be derived
by filtering the Monin-Yaglom relations (18) and (16). Conditions under which Pc|sub

� and Pc|res
�

could be neglected compared to �� were given in Sec. III E. They are met in a so-called weakly
dilatational regime. In that case, the mean transfer of circulicity �� becomes independent of �

and tends to a finite nonzero value: a circulicity cascade takes place. Otherwise, a mean transfer-
production-dissipation equilibrium occurs in the inertial range in lieu of this sole cascade. Still, in
Sec. III C it was shown that this mean equilibrium could be interpreted as an effective cascade by
recasting the source term in the form of a flux-like transfer term.

C. Increment scalings and locality

There are two ways by which the anomalous dissipation ε∗
c can be sustained: one is the transfer

term ��, the other is the subscale production Pc|sub
� . The orders of magnitude of these terms

are linked to the space increments of the velocity, density, and momentum fields. The order of
magnitude of the increment �X (x, r) of a quantity X is noted δX (r). As discussed in [14,17,54],
one has

τ (X,Y ) = O(δXδY ), ∂i〈X 〉� = O

(
δX

�

)
, X − 〈X 〉� = O(δX ).

Using these relations, it is straightforward to show from Eq. (37) that

�� = O

(
δv(δ j)2

�

)
.

One may also use Eq. (38) and the developments of Aluie [14] to show that this expression can be
simplified as

�� = O

(
(δv)3

�

)
ρ2

[
1 + O

(
δρ

ρ

)
+ O

(
δρ2

ρ2

)]
. (46)

From this estimate, one deduces that the transfer term does not vanish in the limit � → 0 provided
the velocity field is rough enough. More precisely, let us assume that the order of magnitude δX of
the increment a quantity X obeys a power law:

|δX (�)n| ∝ �ζ X
n .
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Then, if ζ ρ
n > 0, i.e., if δρ/ρ → 0 when � → 0, Eq. (46) implies that �� is nonvanishing provided

ζ v
n � n

3
for n � 3. (47)

This is a necessary condition for �� to contribute to the anomalous dissipation ε∗
c . This condition

is identical to the one derived in [17] for the energy cascade. This is not entirely unexpected: the
resolved to unresolved exchange terms of circulicity and energy both involve the deformation work
as a common mechanism.

We now turn our attention to the subscale circulicity production Pc|sub
� defined in Eq. (36). This

term has three components involving � = ∂ jv j = ∂ jv
d
j and � = ∂ j j j = ∂ jd j . By comparing the

right- and left-hand sides of the relation ∂i〈�〉� = ∂2
i j〈vd

j 〉�, one deduces that δ�/� ∼ δvd/�2 so that
δ� ∼ δvd/�. Similarly, one derives that δ� ∼ δd/�. Therefore, the three contributions of Pc|sub

�

lead to the following order of magnitude:

Pc

∣∣sub

�
= O

(
δvdδ( j2)

�
,

δvd (δ j)2

�
,

δπ sδd

�

)
.

The Poisson equation for the pressure (9c) also leads to δπ s ∼ δ(v j). Thus, the conditions for the
production to be nonvanishing are

ζ vd

n + ζ j2

n � 1, ζ vd

n + 2ζ j
n � 1, ζ d

n + ζ v j
n � 1 for n � 3.

If the dilatational fields vd and d decay sufficiently rapidly then these conditions are not fulfilled.
In that case, the transfer term �� is the only one contributing to the anomalous dissipation. Thus,
sufficient conditions for the existence of a circulicity cascade are

ζ vd

n > 1 − min
(
2ζ j

n , ζ j2

n

)
and ζ d

n > 1 − ζ v j
n . (48)

Other conditions may also lead to the fact that Pc|sub
� vanishes in the limit μ → 0, � → 0. For

instance, d and vd may simply be quantities belonging to the dissipative range that vanish when
μ → 0. This is the case for vd in the pseudocompressible limit studied in [42,62,63].

To conclude, the locality of the transfer term �� obeys the same constraints as the locality of
the energy transfer term studied in [14]. We recall that locality requires the velocity and density
exponents to satisfy

ζ v
n < n and ζ ρ

n > 0.. (49)

If equations (47), (48), and (49) are verified then a local conservative cascade of circulicity takes
place in the inertial range.

V. CONCLUSION

Eyink and Drivas [17] noted that “it is not hard to find infinitely many anomalous balance
relations in the ideal limit of turbulence, but most of them are not physically relevant and have no
significant consequences.” In this work, we started by raising a physical question: we asked whether
a cascade of rotational motions (whirls) exist in the inertial range of compressible turbulence. This
question was formulated in terms of a quantity called circulicity which carries information about
the large scale angular momentum of the flow. We then used a point-splitting and a coarse-graining
approach to analyze the properties of the circulicity. The two approaches gave similar results but
allowed us to highlight different aspects. Concerning the point-splitting approach, we derived a
Monin-Yaglom equation that differs from previously derived expressions [19–30]. In particular, it
only involves quantities which can be reconstructed from the velocity and density fields, ρ and
v. It does not require any knowledge about the energy or the pressure and is independent of the
equation of state of the flow. It is also valid whether the flow is fully compressible or is in a
quasi-incompressible limit. This Monin-Yaglom relation allowed us to show that an “effective”
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cascade of circulicity exists when the flow is stirred with a solenoidal force, but not when the force is
purely dilatational. Besides, it also allowed us to identify a weakly dilatational regime characterized
by a Kolmogorov-Obukhov scaling and a scaling parameter given by a solenoidal dissipation. In the
opposite regime, it was shown how this Monin-Yaglom relation could be interpreted when strong
shocks are present. Finally, the practical relevance of this Monin-Yaglom was discussed.

The coarse-graining point of view brought additional information and allowed us to clarify
several points. In particular, we were able to disentangle the role played by the actual transfer
of circulicity and its subscale production. This allowed us to propose conditions under which a
conservative and local circulicity cascade could take place.

APPENDIX A: ANGULAR MOMENTUM OF A EULERIAN CONTROL VOLUME

We consider a volume of fluid enclosed in sphere of radius R centered at a position x. By
definition, the angular momentum of this sphere with respect to its center is

Li(x, R, t ) =
∫
V

εi jk (r j − x j ) [ρvk (r, t )] d3r, (A1)

where
∫
V · d3r represents the integration over the volume of the sphere.

Now, if we let the radius R become infinitely small, we may Taylor-expand the integrand. We
obtain

for R → 0, Li(x, R, t ) =
∫
V

εi jk (r j − x j )[ρvk (x, t ) + (rl − xl )∂l (ρvk )(x, t ) + O(|r − x|2)] d3r.

(A2)

The first term of the expansion vanishes by symmetry so that the main contribution to the angular
momentum is given by the second term:

for R → 0, Li(x, R, t ) = 4π

15
R5εi jk∂ j (ρvk )(x, t ) + O(R7). (A3)

Thus, as explained in the introduction, the angular momentum of a Eulerian control volume is
defined with respect to the curl of the linear momentum ρv. When density is constant, for instance
when ρ(x, t ) = ρ0, then one has

for R → 0 and ρ(x, t ) = ρ0, Li(x, R, t ) = 4π

15
ρ0R5εi jk∂ jvk (x, t ) + O(R7). (A4)

In that case, the angular momentum of the Eulerian control volume is set by the value of the vorticity
field. This is why we wrote in the introduction that vorticity becomes a proxy for measuring angular
momentum when density is constant.

Note that the inertial moment of the infinitesimal sphere with respect to an axis passing through
its center is

I = 8π

15
ρR5. (A5)

Thus, the main order of the angular momentum can be written as

L = I� with �i = 1

2ρ
εi jk∂ j (ρvk ). (A6)

The quantity � corresponds to the angular velocity of the sphere.
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APPENDIX B: EVOLUTIONS OF THE ANGULAR MOMENTUM AND OF THE DILATATIONAL
PART OF THE LINEAR MOMENTUM

The evolution of the angular momentum � = εi jk∂ j (ρvk ) is deduced from Eq. (1b), knowing that
∂ j (ρv jvk ) = v j∂k (ρv j ) + ρvk∂ jv j − εkpqvpq:

∂ti + v j∂ ji =  j∂ jvi − i∂ jv j + εi jk∂k

(ρvlvl

2

)∂ jρ

ρ
− εi jk∂ j (ρvk∂lvl ) + μ∂2

j jωi + εi jk∂ j f s
k .

(B1)

This equation can be compared against the vorticity equation

∂tωi + v j∂ jωi = ω j∂ jvi − ωi∂ jv j + εi jk
∂k p

ρ

∂ jρ

ρ
+ μ

ρ
∂2

j jωi + εi jk
∂lσkl

ρ

∂ jρ

ρ
+ εi jk∂ j ( fk/ρ).

(B2)

We note that similar stirring terms are present in both equations, while the standard baroclinic torque
acting in the vorticity equation is replaced by a torque involving the dynamic pressure ρ|v|2/2 in
the angular momentum equation.

As for d, its evolution is given by

∂t di = −∂iπ
d − ∂ jσ

d
i j + f d

i , (B3)

with πd = p − π s, σ d
i j = −(

η + 4
3μ

)
∂kvkδi j, f d

i = −∂iφ
f ,

and ∂ j jφ
f = −∂ j f j . This equation is readily integrated and shows that the scalar potential φ, such

that di = −∂iφ, is directly related to the dilatational pressure πd in addition to forcing and viscous
terms:

φ(x, t ) = φ0(t ) +
∫ t

0
πd (x, t ′) dt ′ +

∫ t

0
φ f (x, t ′) −

(
η + 4

3
μ

)
∂kvk (x, t ′) dt ′, (B4)

with φ0 an arbitrary function of time.

APPENDIX C: USEFUL RELATIONSHIPS FOR TWO-POINT CORRELATIONS

For some given quantities A, B, and C with homogeneous statistics, we have

�A�B =2AB − AB′ − A′B, (C1)

�A�B�C =A′(BC) − A(BC)′ + B′(AC) − B(AC)′ + C′(AB) − C(AB)′, (C2)

A′B − AB′ =2�A {B} 1
2

= −2�B {A} 1
2

= �A {B} 1
2
− �B {A} 1

2
, (C3)

∂ ′
i A

′B − ∂iAB′ = ∂ri (A′B + AB′) = −∂ri�A�B. (C4)

If v j satisfies ∂ jv j = ∂ ja j , we have

∂r j (v
′
jB

′C − v jBC′) = − ∂r j �v j�B�C − ∂r j (v
′
jBC′ − v jB′C) + ∂r j (a

′
jBC − a jB′C′), (C5)

∂r j (v
′
jBB′ − v jBB′) = − 1

2∂r j �v j�B2 + 1
2∂r j (a

′
jB

2 − a jB′2). (C6)

We also recall that homogeneity implies that

∂ ′
j (·) = −∂ j (·) = ∂r j ( · ). (C7)
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APPENDIX D: KÁRMÁN-HOWARTH EQUATION FOR THE MOMENTUM

The Kármán-Howarth equation for the linear momentum j = ρv can be found in [17]. Its
expression, derived from Eq. (1b), is recalled here:

∂t� ji� ji(r, t ) = −∂r j F
j
j (r, t ) − 4E j

inj(t ) + ∂2
r j rk

D j
jk (r, t ) + 2� ji� fi, (D1a)

with

F j
j (r, t ) = �v j� ji� ji + 2∂r j

(
�	�p − 1

2
�ϕv�( ji ji )

)
, (D1b)

E j
inj(t ) = −

(
σi j∂ j ji + p∂ j j j − 1

2
ji ji∂ jv j

)
, (D1c)

D j
jk (r, t ) = 2μ�vi� jiδ jk + 2

(
η + μ

3

)
�v j� jk . (D1d)

APPENDIX E: EXPRESSION OF THE SPECIES MASS FLUXES AND HEAT FLUX

Following [44–46], the species mass fluxes σ (α) and heat flux σ (e) take the following form:

σ (α) = ρYαVα with Vα = −
∑

β

Dαβ (dβ + χβ∇ log T ), (E1a)

σ (e) =
∑

β

hβσ (β ) − λ∇T + p
∑

β

χβVβ, (E1b)

with Dαβ the multicomponent diffusion coefficients, dβ the diffusion driving force, χβ the species
thermal diffusion ratio, hβ the species enthalpy and λ the thermal conductivity. The symbol ∇ refers
to the gradient operator and there is no summation on repeated Greek indices (as opposed to repeated
Latin indices in the main text). Note that all the coefficients of Eqs. (E1) are functions of density,
mass fractions and temperature. Simplifications of Eqs. (E1) are given in [44–46], in particular for
binary mixtures and for diluted species.
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