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Large eddy simulation (LES) combined with filtered density function (FDF), i.e.,
LES/FDF, is an effective approach for high-fidelity simulation of turbulent flames. In this
work, LES/FDF simulations are performed for the turbulent piloted premixed methane-air
flame F3 to investigate the impact of reaction-induced subgrid scalar mixing on the
predicted flame characteristics. The effects of mixing formulation on flame characteristics,
as well as the performance of the classic constant mechanical-to-scalar mixing timescale
model, are investigated, illustrating that reaction-induced scalar gradient plays an impor-
tant role in determining the species mixing frequency. A new closure of scalar mixing
timescale (hybrid-DD) is proposed to account for the reaction-induced differential mixing
among species. The model adaptively adjusts the relative contribution from turbulence
and reaction and requires no ad hoc model parameters to be specified manually. It is
found that the hybrid-DD model yields a reasonable prediction of the overall combustion
process of the flame F3, notably better than the conventional constant mechanical-to-scalar
mixing timescale model with the nonoptimal model constant. The predicted scalar mixing
frequency by the hybrid-DD model is found to exhibit differences among species, resulting
in more abundant thermochemical states. Considering that all the components of the
hybrid-DD model are readily available in the transported FDF method, the model is a
promising candidate to be employed in LES/FDF simulations of turbulent premixed flames.

DOI: 10.1103/PhysRevFluids.7.124603

I. INTRODUCTION

Turbulent premixed combustion is a technology commonly applied in many modern combustion
devices for high combustion efficiency and low pollutant emissions. A fundamental understanding
of complicated flame dynamics and turbulence-chemistry interaction in turbulent premixed combus-
tion is essential for reliable combustor design. The transported probability density function (TPDF)
method [1–5], one of the advanced approaches for turbulent flame simulation, provides an elegant
solution to the closure of the mean chemical source term without any approximation and is capable
of reliable prediction for turbulent flames such as the near-limit flame [6] and the dilute spray flame
[7]. Despite some reported success in turbulent non-premixed combustion simulations [8–19], the
simulation for turbulent premixed combustion when applying TPDF methods remains challenging.
In particular, the conditional molecular diffusion term is arguably more difficult to model since
the local gradients of chemical species are driven principally by reaction-diffusion interaction for
premixed flames at least when the Karlovitz number is small.

Many efforts have been made to model the conditional molecular diffusion [20–28]. Consider-
ing the simplicity of implementation and the guarantee of realizability, the three widely applied
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micromixing models are the interaction by exchange with the mean (IEM) or linear mean-square
estimation model [20,21], the modified Curl’s (MC) model [22,23], and the Euclidean minimum
spanning tree (EMST) model [24]. Recently, some new mixing models such as the multiple mapping
conditioning model [25,26] and shadow-position conditioning [27,28] have been developed as
well. While the mixing models describe the manner in which mixing occurs, the specification of
mixing timescale is required to describe how fast the scalar PDF changes. Studies based on a direct
numerical simulation (DNS) dataset illustrate that the scalar mixing timescale is critical for a TPDF
simulation of turbulent premixed combustion [29]. The most widely applied mixing timescale model
is the constant mechanical-to-scalar mixing timescale model. The model essentially assumes that
the scalar mixing timescale is proportional to the turbulence timescale by a constant. However, it
has been well recognized that the assumption of constant mechanical-to-scalar timescale ratio is
questionable for reactive scalars, especially in turbulent premixed flames where both turbulence and
chemical reactions play important roles in varying the species gradients [30], and thus both factors
have significant influence on the mixing timescale of species [31–33].

Accounting for the reaction-induced scalar mixing has been a feasible way to improve the
accuracy of TPDF simulation for the turbulent premixed flames and has been attracting a great
deal of attention [34–42]. To circumvent the difficulty of modeling the scalar mixing in turbulent
premixed flame, Pope and Anand [34] proposed a closure by mapping the mixture state to a
1D freely propagating premixed flame. However, the intrinsic assumption of embedded laminar
flamelets limits the applicability of such closure. Later, Kolla et al. [35] and Lindstedt et al. [36,37]
separately proposed algebraic models for the scalar dissipation rate of chemical species in turbulent
premixed flames. These models account for dilatation, turbulence-scalar interaction, chemical
reactions, and scalar dissipation, but are limited to turbulent premixed flames with high Damköhler
numbers. To capture the transition to more intense turbulent combustion regimes, Stöllinger and
Heinz [38] and Kuron et al. [39] proposed their scalar mixing timescale models based on the idea
of linear blending by Mura et al. [40], i.e., linearly blends a mixing timescale model for the flamelet
regime and another model for the broken-reaction-zones regime. These are valuable efforts made
to incorporate the reaction-induced mixing for reactive scalars in the Reynolds-averaged (RANS)
framework. The modeling of reactive scalar mixing in the context of large eddy simulation (LES) is
arguably more difficult, considering that the subgrid scalar mixing becomes dependent on the filter
width, requiring the model to be locally adaptive to the LES filter. Tirunagari and Pope [41] and
Wang et al. [42] separately proposed their mixing timescale models for reactive scalars in turbulent
premixed flames, and both employed the filter width (�), the laminar flame thickness (δL), and the
subgrid turbulence frequency (�t ) to formulate the models. The former one by Tirunagari and Pope
scales as (�/δL )�t , while the latter one by Wang scales as (�/δL )2�t . These models have been
demonstrated to improve the prediction of the macroscopic properties of turbulent premixed flames,
e.g., the overall combustion progress, turbulent flame speed, and mean temperature.

Despite being valuable, the major assumption in the above studies is that the mixing character-
istics of all composition variables can be represented by that of one reactive scalar, mostly taken
to be progress variable. However, it is known that the mixing timescales of species depend on the
gradients caused by chemical reaction in turbulent premixed flames. Therefore, chemical species
feature their own characteristic length scales and timescales, resulting in different controlling
processes for the mixing of species, and thus, the difference in mixing timescales among species.
It has also been proved in the DNS studies [43,44] that the mixing timescales of species are very
different from each other. The recent study by Zhou et al. [45,46] indicates that taking account for
differential mixing timescales in TPDF simulations yields notable improvement in the prediction of
the overall combustion process.

Nevertheless, there are few studies considering reaction-induced differential mixing in TPDF
simulations. On the one hand, most of the widely applied micromixing models, e.g., IEM, MC, and
EMST, cannot incorporate differential mixing timescales while ensuring the realizability condition
of the species mass fraction summing to unity. On the other hand, mixing timescale models that
account for reaction-induced differential mixing are still in their infancy. A model for the dissipation
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rate of each individual species was once proposed by Richardson et al. [44] based on the reference
laminar flame. The model employs the species gradients obtained from laminar flames to estimate
the relative magnitude of the species dissipation rates in turbulent flames, thus the model is expected
to be valid in the flamelet regime, but not in the thin-reaction-zones or broken-reaction-zones
regime. To cover the full combustion regime of turbulent premixed flames, Zhou et al. [47] proposed
a mixing timescale model for each individual species by extending Kuron’s model [39]. However,
none of these models have been employed in a posteriori TPDF simulations. More importantly,
these models were originally proposed for the RANS framework. Modeling the reaction-induced
differential mixing in the context of LES warrants further investigation.

The primary objective of this work is to evaluate the potential benefit of incorporating reaction-
induced differential mixing in LES simulations of turbulent premixed flames using the TPDF
method, i.e., LES/filtered density function (FDF). This is done by making head-to-head comparisons
between different modeling approaches for scalar mixing timescales in LES/FDF simulations. To
achieve this, a new closure of scalar mixing timescale (hybrid-DD) is proposed to account for the
reaction-induced differential mixing among species, and the recently proposed MC-DD models
by Yang et al. [48] are applied to incorporate differential mixing timescales while ensuring the
realizability condition. The remainder of this paper is organized as follows: In Sec. II, the LES/FDF
method, the newly proposed scalar mixing timescale model, and the case settings are presented.
In Sec. III, the assessment of different micromixing models and mixing timescale models are
presented, and the effect of reaction-induced differential mixing is discussed. Conclusions are
presented in Sec. IV.

II. METHODOLOGY

A. LES/FDF method

The joint composition FDF method is employed for LES modeling to handle turbulence-
chemistry interaction at the subgrid scale. The joint composition FDF is defined as f (ψ; x, t ) with
ψ being the phase variable corresponding to composition vector φ = (Y1,Y2, . . . ,YN , hs), and the
governing equation for f (ψ; x, t ) yields
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where Ũi and U ′′
i are the ith component of the Favre-averaged mean and fluctuating velocity; Sk

is the source term for the kth composition; and Ji,k is the ith component of the transported flux of
the kth composition due to molecular diffusion. The second term on the right-hand side of Eq. (1)
represents the transported flux due to molecular diffusion at the resolved scale in LES, while the last
term is the conditional diffusion flux at the subgrid scale, which is one of the most important terms
to be modeled in a LES/FDF simulation.

The solution to the governing equation of f (ψ; x, t ) is obtained via a two-way coupled scheme
between a finite volume solver and a Monte Carlo particle solver [13,49,50]. The finite volume LES
solver solves the filtered continuity and momentum transport equations in a cylindrical coordinate,
with a second-order conservative scheme being applied for discretization, while continuity is
enforced by solving the pressure Poisson equation. A set of stochastic differential equations of the
notional Lagrangian particles are shown, governing the evolution in physical and composition space:

dx∗ = [Ũ + ∇(�̃t ρ̄ )/ρ̄]
∗
dt + [2(�̃ + �̃t )

∗
]
1/2

dW ∗, (2)

dφ∗(t ) = M∗dt + S(φ∗)dt, (3)

where x∗ and φ∗ are the spatial location and composition of an individual particle, respectively, and
the superscript “*” denotes a value of the filtered LES field evaluated at the particle’s location. The
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bar (¯) and tilde (∼) represent spatial filtering and density-weighted spatial filtering, respectively.
Therefore, Ũ is the Favre-averaged mean velocity, ρ̄ is filtered density, �̃ and �̃t represent the
filtered molecular diffusivity and turbulent diffusivity. dW ∗ is an independent Wiener increment,
S(φ∗) is the reaction rate, representing the chemical reaction source term, and M∗ represents the
rate of change in composition due to micromixing. In terms of the coupling between the two
solvers, the LES solver provides the filtered velocity, molecular, and turbulent diffusivity to the
particle solver, while the particle solver provides the filtered temperature and the source term of
the specific volume (reciprocal of the filtered density, 1/ρ ) to the LES solver. Note that the filtered
density computed from the computational particles contains considerable random noise due to the
nature of the Monte Carlo approach; a transport equation for the specific volume is solved to obtain
a smoothed filtered density consistent with the Monte Carlo particles.

The modeling of M∗, i.e., micromixing, is the key to the accuracy of LES/FDF simulations and
is essentially the focus of the study. A micromixing model in general involves two ingredients:
the mixing format and the scalar mixing timescale. Three widely used mixing formats, i.e., IEM
[20,21], MC [22,23], and EMST [24] models are employed as the baseline setting. In addition, the
recently proposed MC-DD model [48] is employed to account for differential mixing.

The MC-DD model allows the mixing timescale for each individual species to be specified
explicitly to investigate the effects of differential mixing. In the MC-DD model, the composition
of particle p among the pair (p, q) evolves according to a mass-based formulation ensuring the
realizability condition of the species mass fraction summing to unity:

m(p)
i = (1 − αθi ) m(p)

i,0 + αθi m(p)
0 Ỹ (p,q)

i , i = 1, . . . , Ns

Ỹ (p,q)
i = m(p)

i,0 + m(q)
i,0

m(p)
0 + m(q)

0

, (4)
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)
H (p)

s,0 + αθhs m
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s ,
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s,0 + H (q)
s,0

m(p)
0 + m(q)

0

, (5)

where m(p)
i and H (p)

s represent the mass of species i and the sensible enthalpy contained in particle
p, respectively. The subscript 0 denotes the quantities before mixing and α is a random number
uniformly distributed between 0 and 1. In order to produce the exponential decay of the species
variance with the specified decay rate, θi and θhs are the specified decay factor for each species and
enthalpy, respectively. For example, when θi = 0, the mixing frequency for the ith composition
is zero, i.e., no mixing; when θi = 1, the ith composition has the maximum mixing frequency
among all the compositions defined as �max = max{�1,�2, . . . , �Ns+1}. To accomplish mixing
at an arbitrary frequency with �i < �max, the differential diffusion is accounted for by specifying
different decay rates for different individual species as

θi = 3 − √
9 − 8ωi

2
, i = 1, . . . , Ns + 1, (6)

where the relative decay rate is ωi = �i/�max, and �i is the mixing frequency of the composition
i, which will be computed in the next section. Note that if a single representative mixing frequency
is used for all the species, MC-DD will recover the conventional MC model.

B. Scalar mixing timescale model

Each mixing formulation is coupled with a specification of the scalar mixing timescale, which is
affected by turbulence strain and chemical reaction through the steepening of species gradients [30]

D
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where the three terms on the right-hand side represent diffusion, straining, and reaction, respectively.
This indicates that the chemical reaction would have great influence on species gradients, especially
when the Damköhler number (Da) is large. As a result, the species mixing timescale of any species
would be affected strongly by the flame structure, and differences in the species gradients would
be induced by reaction, in turn resulting in the significant difference in mixing frequency among
species. The mixing frequency of the ith species, �i (reciprocal of the corresponding scalar mixing
timescale), determines the decay rate of the subfilter scale scalar variance due to molecular diffusion.
Following its definition, �i is defined as

�i = χ̃i/Ỹ ′′2
i , (8)

where χ̃i = 2 ˜�i∇Y ′′
i · ∇Y ′′

i is the Favre-averaged scalar dissipation rate, �i represents the species

molecular diffusivity, and Ỹ ′′2
i is the Favre-averaged scalar variance.

For the classic constant mechanical-to-scalar timescale model [51,52], the mixing frequency of
all species is assumed to be equal to the subgrid turbulence frequency; the mixing frequency of the
ith species therefore yields

�const
i = CM

� + �t

�2
, (9)

where � and �t are the thermal diffusivity and turbulent diffusivity, respectively, and � is the
filter length scale. As described in Sec. I, the mechanical-to-scalar timescale model constant CM

is critical to the simulation, of which the optimal value has a wide variation even for flames in the
same configuration. Considering that CM is ad hoc and needs to be specified manually, the constant
mechanical timescale model does not appear to be viable for turbulent premixed flames in general.

A dynamic closure [52] has been proposed to circumvent the difficulty of specifying the case-
dependent model constant CM manually. The closure is based on the dynamic modeling of subgrid
variance (ρ̄ξ̃ ′′2) and scalar dissipation rate (ρ̄χ̃ξ ) of a passive scalar ξ . Therefore, it is important to
appreciate that the closure only aims at modeling passive scalar mixing and could be problematic
when applied to reactive scalar mixing. The mixing frequency is computed as

�
Dyn
i = CDyn

M

�t

�2
, (10)

where CDyn
M is computed dynamically via an algebraic scaling law; readers are referred to Ref. [53]

for details. Note that the selection of the characteristic passive scalar depends on the specific
problem. In this work, the central jet mixture fraction is chosen to construct mixing frequency since
the mixing between the central and pilot (coflow) stream affects the combustion process.

To account for the reaction-induced scalar gradients, Kuron et al. [39] proposed a hybrid mixing
timescale for RANS/PDF simulations of turbulent premixed flames. Later, Yang et al. [53] extended
this model for the application in LES/FDF simulations. The hybrid mixing timescale model assumes
that the mixing timescale of all species can be reasonably represented by that of the reaction progress
variable, and the mixing timescale of progress variable has a linear blending formulation

�
Hyb
i = (1 − η)�t + η� f

c , (11)

where η is the segregation factor characterizing the relative contribution of the turbulence-induced
mixing (�t ) and the reaction-induced mixing for progress variable (� f

c ). Specifically, η is defined
as the normalized local variance of the progress variable c, both bounded between 0 and 1:

η = [c̃2 − (c̃)
2
]/c̃(1 − c̃), (12)

where the double overbar represents the spatial averaging over the statistical homogeneous direction,
i.e., circumferential direction for the free shear jet configuration, and tilde represents the Favre
averaging. The progress variable c is defined as the mass of carbon element in CO2 and CO over
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TABLE I. The features of different mixing timescale models.

Mixing timescale model Dynamic closure Reaction-induced mixing Differential mixing

Constant model (�const
i ) × × ×

Dynamic model (�Dyn
i ) � × ×

Hybrid model (�Hyb
i ) � � ×

Hybrid-DD model (�Hyb−DD
i ) � � �

the total mass of carbon element of the mixture in this work. When the local Da is much smaller
than 1, η approaches 0, and scalar mixing is governed by turbulent mixing. Conversely, when local
Da 	 1, η approaches 1, and scalar mixing is governed by reaction-induced mixing.

The turbulence-induced mixing frequency �t is modeled by the dynamic model in Eq. (10), and
the reaction-induced mixing frequency �

f
c is reconstructed from laminar reference flames, which is

formulated as

� f
c = χ̃ c

f /c̃′′2 =
∫ 1

0
χc|ζ f̃c(ζ )dζ /c̃′′2, (13)

where χ̃ c
f is the Favre-averaged scalar dissipation rate obtained from the reference laminar flame,

computed by the conditional filtered scalar dissipation rate χc|ζ and the density-weighted filtered
density function fc(ζ ) of the progress variable. The modeling of � f takes advantage of LES/FDF
methods in which fc(ζ ) is a part of the solution for individual particles. Thus, the hybrid mixing
frequency adaptively changes depending on the filter size and state of combustion.

To account for the difference in species mixing timescale due to the difference in species
gradients induced by chemical reaction, Zhou et al. [47] extended Kuron’s model and proposed
a mixing timescale model for each individual species for RANS/PDF simulations. In this work,
Zhou’s model was extended to LES/FDF simulations, which yields

�
Hyb−DD
i = (1 − η)�t + η�

f
i . (14)

Here �t is modeled by Eq. (10) and �
f
i represents the reaction-induced mixing frequencies of the

ith species, which yields

χ̃
f

i =
∫ 1

0
〈2Di∇Yi · ∇Yi|c = ζ 〉 f̃c(ζ )dζ =

∫ 1

0
(2Di∇Yi · ∇Yi )

lam f̃c(ζ )dζ , (15)

where Di is the molecular diffusivity of the ith species. Thus, the model described by Eq. (14)
accounts for the effects of both turbulence strain and chemical reaction on the mixing timescale of
each individual species.

Table I presents the features of three mixing timescale models, i.e., �const
i by Eq. (9), �

Dyn
i by

Eq. (10), �
Hyb
i by Eq. (11), and �

Hyb−DD
i by Eq. (14). As shown, �const

i ignores both the reaction-
induced mixing and the differential mixing and needs to be adjusted manually; �

Dyn
i provides a

dynamic closure but ignores the reaction-induced mixing and differential mixing; �
Hyb
i provides a

dynamic closure and accounts for the reaction-induced mixing, but ignores the differential mixing;
�

Hyb−DD
i features all three aspects.

C. Flame configuration and simulation settings

The premixed turbulent flame investigated in this work is produced by a piloted Bunsen burner,
experimentally studied by Chen et al. [54], which gives a stationary mean flow field and is easier for
numerical simulations to study the interaction between flame propagation and turbulence structure.
The burner consists of a nozzle for main stream with diameter D = 12 mm, and a large pilot flame

124603-6



INVESTIGATION OF REACTION-INDUCED SUBGRID …

to stabilize the turbulent main jet flame. The pilot stream is generated from a perforated plate (1175
holes of 1 mm diameter each) around the central nozzle. Three stoichiometric turbulent Bunsen
flames (F1, F2, and F3) at different exit velocities were investigated by Chen et al. [54]. In this
work, the F3 flame is chosen due to its large Damköhler number (Da). The large Da indicates the
strong reaction-induced species gradient and differential mixing; therefore, the target flame serves
the purpose of investigating the benefit of incorporating reaction-induced differential mixing in
TPDF simulations of turbulent premixed flames. For the flame F3, the mean nozzle exit velocity
is U0 = 30 m/s and the corresponding Reynolds number Re = 24 200. The estimated Karlovitz
number 3.4 by Stöllinger and Heinz [38] indicates that the F3 flame falls into the thin-reaction
zones and is close to the borderline of the corrugated flamelet regime in the modified turbulent
premixed combustion diagram of Peters [55]. In this regime, turbulence is able to thicken the flame
preheat zone but not the reaction zone.

The LES/FDF simulation domain is a three-dimensional axisymmetric cylinder, which extends
to 40D downstream in the axial direction and 20D in the radial direction. The domain is divided
into 168 × 112 × 48 (axial, radial, and azimuthal, respectively) structured grid cells, and the grid is
stretched to the boundary to ensure the fine resolution in the near-field region. The characteristic grid
width, i.e., � = (�x × �r × r�θ )1/3 ranges from 0.12 to 1.55 mm in the main flame zone defined
as r/D � 2 where the mixing and combustion of the central jet mixture mostly occur. Considering
that the thermal laminar flame thickness (δL) of the stoichiometric methane-air mixture is around
0.5 mm, �/δL ranges from 0.24 to 3.10 in the main flame zone, indicating a modest grid resolution
in terms of resolving the flame structure. The simulation runs for around six flow-through time to
reach the statistical stationary state, then the time average is taken for around three flow-through
time for statistics. For the inlet velocity, the jet inflow boundary is generated from a separate LES
simulation of a fully developed pipe flow with the same Re as the central jet flow. A uniform inflow
velocity profile is applied to the pilot and coflow streams according to the work by Wang et al.
[42]. The convective boundary condition is prescribed at the lateral and outflow boundaries [56].
As for the inlet composition, the coflow stream consists of ambient air, the jet stream consists of a
stoichiometric methane-air mixture, and the pilot stream is comprised of products by a stochiometric
methane-air mixture combustion. Considering the 20% heat loss to the burner, the temperature of
the pilot is specified to be 1785 K [37,42] while the temperature of the jet and coflow is 300 K.

The Vreman algebraic subgrid model [57] is used to compute the subgrid turbulent viscosity, with
the Smagorinsky constant taken to be 0.1. The subgrid turbulent diffusivity is computed from the
subgrid turbulent viscosity using a turbulent Schmidt number (Sct ) of 0.4 [58]. The sensitivity of the
Schmidt number is investigated in Ref. [6], indicating that the difference due to the variation of Sct

is very minor. The molecular diffusivity is computed using the unity Lewis number assumption.
The employed chemical reaction is an augmented reduced mechanism of GRI1.2, i.e., ARM1
mechanism [59] consisting of 16 species and 12-step reactions. The composition change due to
chemical reactions is treated by the in situ adaptive tabulation (ISAT) method developed by Pope
[60], with the ISAT error tolerance being set to 5 × 10−5. The nominal number of particles per cell
is 20, which has been demonstrated to be sufficient for numerical accuracy [47]. The species mixing
frequency is handled by the mixing timescale models presented in the previous section, i.e., �const

i

by Eq. (9), �
Dyn
i by Eq. (10), �

Hyb
i by Eq. (11), and �

Hyb−DD
i by Eq. (14). The mixing formulation

is taken to be IEM, MC, EMST, IEM-DD, or MC-DD.

III. RESULTS AND DISCUSSIONS

A. Effects of mixing models on flame characteristics

By comparing the LES/FDF simulation results with three different micromixing models, i.e.,
IEM, MC, and EMST, a qualitative examination of the flame shapes is first performed to illustrate
the impact of the micromixing model on the target flame. The constant mechanical timescale model
is applied with the model constant CM being 2 and 12 for comparison. Figure 1 shows the contour
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FIG. 1. The contour plots of the predicted instantaneous flame temperature in flame F3 using the IEM
model, MC model, and EMST model with different mixing timescale model constants (the first row: CM = 2;
the second row: CM = 12).

plots of the instantaneous temperature field. An isoline of T̃ = 1500 K is also shown to indicate the
flame front. The intersection of the isoline and centerline indicates the instantaneous axial position
of the flame tip, and the flame length is defined as the axial distance of the flame tip. As can be
observed, the increasing of CM from 2 to 12 leads to the enhancement of the predicted combustion
process, regardless of the micromixing model, i.e., IEM, MC, or EMST being applied. Specifically,
when CM = 2, the flame front indicated by T̃ = 1500 K is broken with obvious flame holes, and the
peak temperature is just slightly higher than the pilot temperature of 1785 K within the axial distance
of x/D = 8, indicating that the chemical reaction is weak in general. When the model constant CM

is increased to 12, the flame front becomes more continuous with much fewer flame holes, and the
highest temperature is close to the adiabatic flame temperature of the unburnt methane-air mixture,
i.e., 2200 K. All these illustrate that chemical reaction becomes much stronger by increasing CM

from 2 to 12. Furthermore, for a certain CM , it is evident that the predictions by the IEM and MC
models are similar to each other, and the reaction intensity is weaker than that by the EMST model.
For example, when CM = 2, there exist more flame holes simulated by the IEM and MC models
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FIG. 2. The radial profiles of the time-averaged mean temperature (〈T̃ 〉), mean mass fraction of H2O
(〈ỸH2O〉), and mean mass fraction of CO2 (〈ỸCO2 〉) by the IEM, MC, and EMST models, respectively, using
�const

i with CM = 2.

compared to the EMST model; the former two models even predict an open-tip flame due to a weak
chemical reaction. When CM = 12, the flame lengths simulated by the IEM, MC, and EMST models
are about 17D, 19D, and 11D, respectively; the shorter flame length predicted by the EMST model
again illustrates a stronger and faster combustion process compared to the IEM and MC models.

To investigate the effects of micromixing models on LES/FDF simulations more quantitatively,
the radial profiles of the ensemble-averaged mean temperature (〈T̃ 〉), and mean mass fraction of
H2O and CO2 (〈ỸH2O〉 and 〈ỸCO2〉), at different axial locations in flame F3 are shown, respectively.
When CM = 2, as shown in Fig. 2, simulations with all three mixing formulations underpredict the
overall combustion process indicated by the mean temperature, H2O and CO2 to a certain extent.
Upstream at x/D = 2.5, there is almost no difference among the three mixing models since the
position is near the inlet. Downstream at x/D = 6.5, the peak mean temperature is underpredicted by
about 251, 272, and 145 K, with the IEM, MC, and EMST models, respectively. Further downstream
at x/D = 8.5, the deviation from experimental measurement in terms of the peak mean temperature
further increases to 459, 494, and 300 K. It is interesting to note that despite the seemingly drastic
difference in model formulation between the IEM and MC models, the predictions by the two
models are very similar to each other. Specifically, as is shown above, the maximum difference in
mean temperature between the IEM and the MC is only 21 and 35 K at x/D = 6.5 and x/D = 8.5,

respectively. This could be attributed to the fact that both the MC and the IEM models ignore the
localness in composition space. By accounting for the localness in composition space, the EMST
model predicts a notably higher mean temperature, especially at downstream, resulting in better
agreement with the experiment. Nevertheless, the EMST model with CM = 2 still underpredicts the
peak mean temperature, as well as the mass fraction of H2O and CO2 by about 15%. These findings
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FIG. 3. The radial profiles of the ensemble-averaged mean temperature (〈T̃ 〉), mean mass fraction of H2O
(〈ỸH2O〉), and mean mass fraction of CO2 (〈ỸCO2 〉) by the IEM, MC, and EMST models, respectively, using
�const

i with CM = 12.

illustrate that by applying the constant mechanical-to-scalar mixing timescale model (�const
i ) with

CM = 2, all three micromixing models fail to reproduce the overall combustion process.
To investigate whether the overall combustion process of the target flame can be reproduced

by using an optimal global CM , Fig. 3 presents the results of LES/FDF simulations using the
(�const

i ) model with CM = 12. Compared to the results with CM = 2, the selection of CM = 12
notably improves the prediction of the mean temperature and species when the IEM or MC model
is employed for micromixing. For instance, the deviation from the experiment in terms of mean
peak temperature is reduced from ∼250 to ∼12 K at x/D = 6.5, and from ∼470 to ∼120 K at
x/D = 8.5. The error in peak 〈ỸH2O〉 reduces from 16% to 3% at x/D = 6.5, and from 28% to 10%
at x/D = 8.5. In general, simulation by the IEM or the MC model adopting the constant mechanical
timescale model with CM = 12 provides a reasonable prediction on the mean temperature and mean
mass fraction of major species, illustrating that the optimal value of CM for the IEM and the MC
models is around 12. As for EMST model, adopting CM = 12 instead of CM = 2 is capable of
better predicting the mean peak temperature; however, the centerline mean temperature downstream
gets notably overpredicted. Specifically, the mean temperature of the centerline is overpredicted by
157 K at x/D = 6.5 and by 449 K at x/D = 8.5. The prediction of the mean mass fraction of the
major species, i.e., H2O and CO2, on the centerline is also consistently higher than the simulation
with CM = 2. These findings illustrate that the EMST model with CM = 12 overpredicts the overall
combustion process; therefore, the optimal CM for EMST is expected to be between 2 and 12.

To further illustrate the difference between the IEM, MC, and EMST models when the constant
mechanical timescale model (�const

i ) with CM = 12 is employed, Fig. 4 shows the PDFs of the
progress variable (c) plotted over the sample space variable at two specific positions considered.
The sampling particles are extracted from the positions with a range of 0.2D, e.g., 2.4 < x/D < 2.6
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FIG. 4. PDFs of the reaction progress variable at positions x/D = 2.5, r/D = 0.6 (left) and x/D = 8.5,
r/D = 0.5 (right) using �const

i with CM = 12 with the IEM, MC, and EMST models.

for position x/D = 2.5, and 0.5 < r/D < 0.7 for r/D = 0.6. Thus, the sampling region consists
of a 0.2D × 0.2D annular area. The two selected positions are at x/D = 2.5 with r/D = 0.6, and
x/D = 8.5 with r/D = 0.5, which locate within the flame-brush region at the corresponding axial
location according to Fig. 1. In order to reduce the statistical error, particles are sampled for 800
time steps, resulting in about 3 × 106 samples in total. At x/D = 2.5 and r/D = 0.6, the PDFs of
the progress variable exhibit two peaks near c = 0.2 and c = 1. The peak near c = 0.2 results from
the mixing process of particles in the jet and the pilot stream, while the other peak is the result
of flame stabilization through the pilot stream, and therefore exhibits a high probability of finding
burning particles. It is evident that for the IEM model the peak due to the mixing process is higher,
while for the EMST model the peak corresponding to the stabilization process is higher. As for the
position at x/D = 8.5 and r/D = 0.5, the peak near c = 0.2 shifts to c ≈ 0, corresponding to the
preheated particles due to the entrainment of cold particles from coflow. Compared to the IEM and
MC models, the EMST model predicts a notably higher peak close to c = 1, illustrating that more
particles are close to the fully burnt state. This implies a faster overall combustion process predicted
by the EMST model than that by the IEM or the MC model, consistent with the findings in Fig. 3.

The findings from Figs. 1–4 illustrate that the LES/FDF simulation on the target F3 flame is
sensitive to the micromixing model applied, i.e., the EMST model shows different mixing behavior
compared with the IEM and MC models. More importantly, the modeling of the mixing timescale
is essential to correctly predict the combustion process. For example, the LES/FDF simulation with
the constant mechanical timescale model with CM = 2 notably underpredicts the overall combustion
process regardless of the micromixing model being applied. Although the IEM and MC models can
predict the overall combustion process reasonably well by applying the constant mechanical-to-
scalar mixing timescale model (�const

i ) with an optimal CM of 12, the optimal value of CM is case
dependent and mixing model dependent. Thus, it could be hard to manually specify an appropriate
CM given a new configuration, which justifies the necessity of developing a more advanced mixing
timescale model.

Considering that the IEM and MC models yield similar predictions given the same mixing
frequency, the following study employs the MC and MC-DD micromixing model to investigate the
effects of mixing timescale models. Note that investigation based on the EMST and the EMST-DD
models is certainly valuable; however, one cannot explicitly enforce the variance decay rate of each

124603-11



WANG, WEI, SU, ZHOU, AND REN

FIG. 5. The schematic plot of laminar reference opposed flame for the reconstruction of �
f
i .

individual species, for the reason that the species decay rates depend on the shape of the Euclidean
mixing tree in the composition space. In the following, the results predicted by the MC and MC-DD
models are presented unless otherwise stated.

B. Effects of mixing timescale models

To investigate the effects of mixing timescale models, LES/FDF simulations are performed using
the MC micromixing model with various scalar mixing timescale models, i.e., �const

i [Eq. (9)],
�

Dyn
i [Eq. (10)], and �

Hyb
i [Eq. (11)]. To apply �

Hyb
i , a laminar reference flame needs to be

specified. Note that the constant CM for the �const
i model is given by the optimal value of 12

in the following investigations. Figure 5 presents the schematic plot of a laminar opposed flame
composed of jet and pilot streams, which is chosen as the reference flame to mimic the combustion
characteristics of the target flame. As illustrated in Fig. 1, the central jet is mostly surrounded
by the pilot stream for the region within the axial distance of x/D = 8. Considering that the F3
flame is close to the flamelet regime far from extinction, a moderate bulk strain rate of 700 s−1 is
applied to the opposed flame. It is worth noting that the prediction by the �

Hyb
i model exhibits minor

sensitivity to the bulk strain rate of the reference flame if the imposed bulk strain rate is far from
extinction.

The radial profiles of the mean temperature, species mass fraction of H2O and CO2 predicted
by LES/FDF simulations with various mixing timescale models are presented in Fig. 6. As can be
observed, the simulation with dynamic closure for the mixing timescale (�Dyn

i ) notably underpre-
dicts the temperature and major product species, e.g., the peak temperature is underpredicted by
361 K at x/D = 6.5 and 586 K at x/D = 8.5. This implies that the �

Dyn
i model predicts a much

slower combustion process. It is worth noting that the �
Dyn
i model is a widely applied dynamic

closure for the subgrid variance of passive scalars. However, the failure of the �
Dyn
i model indicates

that ignoring the effect of chemical reaction on scalar mixing may result in large error for reactive
scalars, i.e., chemical species and progress variable. In comparison, the LES/FDF simulation with
the hybrid mixing timescale model (�Hyb

i ) reasonably well reproduces the distribution of the mean
temperature and major species measured by experiment, illustrating that the �

Hyb
i better models

the species mixing frequency by accounting for the reaction-induced scalar gradients. It is worth
noting that in general the �

Hyb
i model has a similar prediction as the �const

i model with CM = 12,
namely, that the former one does not exhibit superior performance in terms of accuracy. For instance,
the peak mean temperature at x/D = 8.5 is overpredicted by 19 K with �

Hyb
i and underpredicted

by 133 K with �const
i , while the relative error in the peak mean H2O mass fraction (computed by

normalizing the difference in peak 〈ỸH2O〉 between the simulation and the experiment by the peak
value of 〈ỸH2O〉 in experiment) at x/D = 8.5 is 6% with �

Hyb
i and 10% with �const

i . Nevertheless,
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FIG. 6. The radial profiles of the ensemble-averaged mean temperature (〈T̃ 〉), mean mass fraction of H2O
(〈ỸH2O〉), and mean mass fraction of CO2 (〈ỸCO2 〉) by different mixing timescale models.

this does not diminish the advantage of the �
Hyb
i model, since the hybrid mixing timescale model

requires no ad hoc parameters to be specified manually.

FIG. 7. The relative error on the mean mass fraction 〈ỸCO2 〉 (above) and 〈ỸH2O〉 (below) with experiment
for different mixing timescale models.
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FIG. 8. PDFs of the reaction progress variable at positions x/D = 2.5, r/D = 0.6 (left), and x/D = 8.5,
r/D = 0.5 (right) with different mixing timescale models.

To further illustrate the performance of different timescale models, Fig. 7 presents the relative
error of peak 〈ỸCO2〉 and 〈ỸH2O〉 at different axial locations, which are computed by normalizing
the difference in peak values between the simulation and the experiment by the peak value in
experiment. At the upstream of x/D = 2.5, all three mixing timescale models yield similar pre-
dictions of 〈ỸCO2〉 and 〈ỸH2O〉. This is because these two quantities are mostly governed by the
mixing process between the jet and the pilot in the near-field region. Moving downstream, as the
reaction-induced scalar gradient plays a more important role, the error in terms of peak 〈ỸCO2〉 and
〈ỸH2O〉 at x/D = 8.5 is over 30% when the �

Dyn
i model is employed. The performance of the �

Hyb
i

model is in general similar to that of the �const
i model with an optimal CM = 12; the former one

slightly better predicts the peak 〈ỸCO2〉 and 〈ỸH2O〉 at x/D = 6.5 and x/D = 8.5. These findings
are consistent with Fig. 6, and again illustrate the advantages of the �

Hyb
i model, i.e., the model

reasonably well reproduces the overall combustion process without the need to tune any model
parameter.

The findings above illustrate that �
Hyb
i and �const

i with an optimal CM exhibit similar predictions
on the mean quantities. To reveal the difference between these two models, Fig. 8 presents the PDF
of the progress variable within the flame brush at x/D = 2.5 and x/D = 8.5, respectively. As can be
observed, the progress variable having the largest probability shifts to a higher value when �

Hyb
i is

employed, implying that the �
Hyb
i model predicts a faster combustion progress than �const

i . This is
consistent with the higher mean temperature and product species predicted by �

Hyb
i shown in Fig. 6.

Given the limited experimental data, it is hard to justify whether the faster combustion process
predicted by �

Hyb
i is closer to reality or not. Additional experiment or DNS data that provide PDF

information would serve this purpose, which is the focus of future study.

C. Analysis on reaction-induced subgrid scalar mixing

The success of the �
Hyb
i model, as well as the failure of the �

Dyn
i model presented in the previous

section, implies that reaction-induced scalar gradient plays an important role in determining the
species mixing frequency. Therefore, further analysis of reaction-induced scalar mixing is presented
in this section.
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FIG. 9. The spatial distribution of ensembled-averaged and instantaneous segregation factors.

Figure 9 shows the spatial distribution of the segregation factor η; by its construction, η

approaches 1 when local Da 	 1, and approaches 0 when Da � 1. Both the instantaneous seg-
regation factor η and the ensemble-averaged segregation factor 〈η〉 are plotted for completeness.
As can be observed, η is close to zero in most regions, and only deviates from zero in the flame
brush. Specifically, the maximum η is 0.5 at x/D = 2.5, and the maximum η increases to 0.54 at
x/D = 8.5. The increase of η with the axial distance is as expected considering that the turbulence
frequency reduces as the flow goes downstream, resulting in an increase of the local Da in the
flame-brush region. Note that further downstream in the post-flame zone, as the combustion process
approaches the end, η approaches zero again. The spatial distribution of ensemble-averaged 〈η〉 also
shows that the reaction-induced mixing plays an important role in the reaction zone, consistent with
the conclusion based on the instantaneous η.

To quantify the relative importance of the reaction-induced mixing in comparison with the
turbulence-induced mixing for flame F3, Fig. 10 presents the axial evolution of the ensemble average
ratio of the hybrid mixing frequency of the progress variable over the turbulence-induced mixing
frequency 〈〈�Hyb

c 〉/〈�t 〉|x〉. Specifically, 〈�Hyb
c 〉 and 〈�t 〉 are firstly computed via an ensemble-

averaging operation which involves averaging over the circumferential direction and time, then
the average of 〈�Hyb

c 〉/〈�t 〉 over the computational cells within the main flame zone is computed
at every axial location to obtain 〈〈�Hyb

c 〉/〈�t 〉 |x〉. The main flame zone is defined as r/D � 2
where the mixing and combustion of the central jet mixture mostly occur. As can be observed,

FIG. 10. Axial evolution of the ensemble-averaged ratio 〈〈�Hyb
c 〉/〈�t 〉|x〉.
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FIG. 11. Conditional averaged mixing frequency ratio on mean progress variable 〈〈�Hyb
c 〉/〈�t 〉|〈c̃〉〉 (left)

and conditional averaged segregation factor 〈〈η〉|〈c̃〉〉 (right).

the ratio of 〈�Hyb
c 〉 over 〈�t 〉 is close to unity in the near-field region of x/D � 1, indicating that

turbulence-induced mixing is the dominating factor for scalar mixing in the near-field region. This
is as expected since the large velocity gradient at the inlet results in strong turbulence strain which
dominates the formation of scalar gradients. The slight deviation from unity can be attributed to the
variation of the progress variable, which is 0 in the central jet and 1 in the pilot stream, which appears
right at the nozzle exit. The ratio of 〈〈�Hyb

c 〉/〈�t 〉|x〉 increases quickly with the axial distance as
reaction-induced scalar gradients play a more important role, specifically, 〈〈�Hyb

c 〉/〈�t 〉|x〉 is over
15 at x/D = 5 and over 20 at x/D = 10. Moving further downstream to the post-flame region,
〈〈�Hyb

c 〉/〈�t 〉|x〉 decreases with the axial distance and approaches unity again after x/D = 22 where
chemical reaction becomes less intensive and the scalar gradient is again dominated by turbulent
strain.

To better illustrate the effect of reaction-induced mixing frequency on the whole combustion
process, the ratio of 〈�Hyb

c 〉 over 〈�t 〉 as well as the segregation factor (〈η〉) is conditionally averaged
on the mean progress variable, i.e., 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 and 〈〈η〉|〈c̃〉〉 where 〈c̃〉 is the mean progress
variable indicating the overall combustion process. 〈�Hyb

c 〉, 〈�t 〉, and 〈η〉 are firstly computed via an
ensemble-averaging operation which involves averaging over the circumferential direction and time.
Then, the average of 〈�Hyb

c 〉/〈�t 〉 and 〈η〉 over the computational cells within the main flame zone
is computed at each bin of 〈c̃〉 (ten bins in total) to formulate the conditional mean quantities. As
shown in Fig. 11, for the unburnt mixture indicated by 〈c̃〉 < 0.1, 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 is around unity
and 〈〈η〉|〈c̃〉〉 is close to zero, indicating that turbulent mixing is the dominating factor for scalar
mixing. In the preheat zone indicated by 0.1 < 〈c̃〉 < 0.5, both 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 and 〈〈η〉|〈c̃〉〉
consistently increase with 〈c̃〉, as a result of the increasingly important role of reaction-induced
scalar mixing, i.e., 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 increases from about 1 at 〈c̃〉 = 0.1 to around 95 at 〈c̃〉 = 0.5,
and 〈〈η〉|〈c̃〉〉 increases from lower than 0.1 at 〈c̃〉 = 0.1 to 0.4 at 〈c̃〉 = 0.5. In the reaction zone
indicated by 0.5 < 〈c̃〉 < 0.9, 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 reaches its maximum of over 110, while 〈〈η〉|〈c̃〉〉
also reaches its peak magnitude of over 0.41. Finally, in the post-flame zone indicated by 〈c̃〉 > 0.9,
〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 and 〈〈η〉|〈c̃〉〉 recover to unity and zero, respectively, indicating that scalar mixing
is again dominated by turbulence. The findings from both Figs. 10 and 11 illustrate the importance
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FIG. 12. The radial profiles of the ensemble-averaged mean temperature (〈T̃ 〉), mean mass fraction of H2O
(〈ỸH2O〉), and mean mass fraction of CO2 (〈ỸCO2 〉) by different mixing timescale models.

of reaction-induced mixing in the flame considered, and therefore provide an explanation for the
good performance of the �

Hyb
i model which accounts for the effect of chemical reaction on scalar

mixing.

D. Effect of subgrid scalar differential mixing

To investigate the potential benefit of incorporating the reaction-induced differential mixing
timescale, LES/FDF simulation has been performed using the MC-DD micromixing model with
the mixing timescale of each species modeled by the hybrid-DD model, i.e., �

Hyb−DD
i . Figure 12

presents the radial profiles of the mean temperature and species mass fraction; the results predicted
by the �

Hyb
i model and the �const

i model with an optimal CM = 12 are also shown for comparison. As
shown, the �

Hyb−DD
i model slightly better predicts the mean temperature than the �

Hyb
i model, but

the improvement is minor. In general, these three mixing timescale models yield similar accuracy in
terms of the prediction for mean temperature and major species, implying that differential mixing
has a minor impact on the overall combustion process for the flame considered.

To further investigate the effect of incorporating differential mixing on th flame structure, the
conditional mean and PDF of the CO mass fraction in the progress variable space predicted
by the �

Hyb−DD
i and �

Hyb
i models are presented in Fig. 13. Three regions located at x/D =

2.5, 6.5, and 8.5 and within 0 < r/D < 1 are chosen as sampling regions, and computational
particles in these regions are sampled for statistics. As can be observed, for a certain progress
variable, �

Hyb−DD
i predicts a notably wider conditional PDF than �

Hyb
i , indicating that the former

one exhibits a larger conditional fluctuation. This is as expected considering that accounting for
the differential mixing among species would result in more abundant thermochemical states. In
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FIG. 13. Conditional mean and conditional PDFs of CO mass fraction in progress variable space at 2.5D,
6.5D, and 8.5D of the F3 flame with the (a) hybrid model and the (b) hybrid-DD model.

addition, the peak magnitude of the conditional mean CO mass fraction 〈YCO|c〉 is found to increase
with the axial distance for both mixing timescale models. This could be attributed to the reduction
of local strain, as found in the laminar opposed flame where peak YCO increases with the decrease
of the bulk strain rate. Moreover, compared to the �

Hyb
i model, the �

Hyb−DD
i model predicts a

higher conditional mean 〈YCO|c〉 in the preheat zone indicated by 0.1 < c < 0.5. For example, at the
location of x/D = 8.5, 〈YCO|c〉 for c = 0.4 is around 0.02 when �

Hyb−DD
i is applied and 0.015 when

�
Hyb
i is applied. To justify whether the higher 〈YCO|c〉 in the preheat zone predicted by �

Hyb−DD
i is

more accurate or not, additional experiment or DNS data is needed, which is the focus of a future
study.

Figure 14 presents the mixing frequencies of representative species over that of the progress
variable predicted by the �

Hyb−DD
i model. Species CO2, H2O, OH, and CO are chosen for

FIG. 14. The ratio of mixing frequencies of representative species (〈�Hyb−DD
i 〉) over the mixing frequency

of progress variable (〈�Hyb−DD
c 〉) at different axial positions.
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analysis; the former two are representative major species, while the latter two are representative
intermediate species. As can be observed in Fig. 14, in the flame-brush region at x/D = 2.5,
〈�Hyb−DD

CO 〉/〈�Hyb−DD
c 〉 is mostly larger than unity, while 〈�Hyb−DD

CO2
〉/〈�Hyb−DD

c 〉 is mostly smaller

than unity, and 〈�Hyb−DD
H2O 〉/〈�Hyb−DD

c 〉 and 〈�Hyb−DD
OH 〉/〈�Hyb−DD

c 〉 could be either larger or smaller
than unity depending on the radial location. In the flame-brush region at x/D = 8.5, 〈�H2O〉/〈�c〉
and 〈�CO〉/〈�c〉 are mostly larger than unity, while 〈�CO2〉/〈�c〉 and 〈�OH〉/〈�c〉 are mostly
smaller than unity. The larger than unity 〈�CO〉/〈�c〉 indicates that CO exhibits stronger mixing
than the progress variable in the flame-brush region; this may explain the higher 〈YCO|c〉 in the
preheat zone predicted by the �

Hyb−DD
i model than by the �

Hyb
i model. Nevertheless, the hybrid-DD

model exhibits the overall similar performance as the hybrid model for the flame F3 studied in this
work. A turbulent hydrogen flame where differential diffusion is known to play a more important
role could be a better option for evaluating the performance of the hybrid-DD model, which is the
focus of our future work.

IV. CONCLUSIONS

In this work, LES/FDF simulation is applied to the turbulent premixed methane-air flame F3 to
investigate the effect of incorporating the reaction-induced subgrid scalar mixing on a LES/FDF
simulation of turbulent premixed flames. Three widely used micromixing models (IEM, MC, and
EMST) are tested in the first place to investigate the effects of mixing formulation on flame
characteristics. The predictions by the classic constant mechanical-to-scalar mixing timescale model
(�const

i ) with various model constants (i.e., CM = 2 and 12) illustrate that the LES/FDF simulation
is sensitive to the mixing timescale model constant CM . It is found that the LES/FDF simulation
using �const

i with CM = 2 notably underpredicts the overall combustion process regardless of the
micromixing model (IEM, MC, or EMST) being applied, illustrating that the mixing timescale
model is a key component to correctly predicting the combustion process. The failure of the dynamic
closure for passive scalar (�Dyn

i ) implies that ignoring the effect of chemical reaction on scalar
mixing may result in large error for reactive scalars. By accounting for the reaction-induced scalar
gradients, the hybrid mixing timescale model (�Hyb

i ) reasonably well reproduces the distribution of
the mean temperature and major species.

The effect of reaction-induced mixing on the whole combustion process is further investigated.
It is found that for the unburnt mixture, 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 is around unity and 〈〈η〉|〈c̃〉〉 is close to
zero, indicating that turbulent mixing is the dominant factor for scalar mixing. In the preheat zone,
both 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 and 〈〈η〉|〈c̃〉〉 consistently increase with 〈c̃〉, as a result of the increasingly
important role of reaction-induced scalar mixing. In the reaction zone, both 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉
and 〈〈η〉|〈c̃〉〉 reach their peak magnitude. Finally, in the post-flame zone, 〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 and
〈〈�Hyb

c 〉/〈�t 〉|〈c̃〉〉 recover to unity and zero, respectively, indicating that scalar mixing is again
dominated by turbulence. These findings illustrate that reaction-induced subgrid mixing is of great
importance especially in the reaction zone, and thus provide explanations for the accurate prediction
by the �

Hyb
i model.

A new mixing timescale model, hybrid-DD (�Hyb−DD
i ), is proposed, which accounts for the

reaction-induced differential mixing among species. The LES/FDF simulation with �
Hyb−DD
i yields

a reasonable prediction for the mean temperature and mass fraction of major species. The difference
between �

Hyb−DD
i and �

Hyb
i in terms of the mean temperature and major species field is in general

minor. Further investigation shows that the former one, i.e., �
Hyb−DD
i predicts a higher conditional

mean CO mass fraction in the preheat zone. In addition, the predicted scalar mixing frequency
by �

Hyb−DD
i is found to exhibit large differences among species, resulting in more abundant

thermochemical states than �
Hyb
i . However, to justify whether the prediction by �

Hyb−DD
i is more

accurate or not, additional experiment or DNS data is needed, which is the focus of a future study. To
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FIG. 15. Radial profiles of the ensemble averaged mean temperature and the mass fraction of H2O and CO2

predicted using the three different grids of 0.5M, 0.9M, and 1.7M cells, respectively, with CM = 12.

summarize, the proposed hybrid-DD model yields a reasonable prediction of the overall combustion
process of the flame F3 and requires no ad hoc parameters to be specified manually. In addition,
all the components of the hybrid-DD model are readily available in the transported FDF method,
making it a promising candidate to be employed in LES/FDF simulations of turbulent premixed
flames.
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APPENDIX

A grid sensitivity study has been performed. The number of cells is 0.5M, 0.9M (baseline), and
1.7M, respectively. Compared to the baseline grid of 0.9M cells, the grid of 0.5M cells is ∼1.5×
coarser, while the grid of 1.7M cells is ∼1.5× finer in the main flame zone. Figure 15 presents
the radial profiles of the mean temperature and major species predicted using the three different
grids with CM = 12. Compared to the baseline grid, the coarser grid slightly overpredicts the peak
temperature, H2O and CO2 upstream at x/D = 2.5, while the finer grid slightly underpredicts the
peak temperature, H2O and CO2 downstream. This implies that the optimal CM for the coarser
grid would be slightly smaller than 12, while the optimal CM for the finer grid would be slightly
larger than 12. Nevertheless, the three grids with CM = 12 yield a similar prediction of the mean
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FIG. 16. Radial profiles of the ensemble averaged mean temperature and the mass fraction of H2O and CO2

predicted with CM = 6, 12, and 24, respectively.

temperature and major species in general, indicating that the optimal CM exhibits a minor sensitivity
to the grid resolution for the three grids tested.

Additional simulations with CM = 6 and 24 have been performed to illustrate the sensitivity
of the simulation results to this parameter. Figure 16 presents the radial profiles of the mean
temperature and major species predicted using the three different CM values. As can be observed,
at the four selected locations, the simulation with CM = 6 underpredicts the mean temperature
and the mass fraction of H2O and CO2, especially for x/D � 4.5, while the simulation with
CM = 24 overpredicts the mean temperature and the major species, especially for x/D = 4.5 and
6.5. This is as expected given that a higher CM leads to a larger mixing frequency, which enhances
the micromixing and thus the combustion process. The simulation with CM = 12 yields the best
agreement with experiment in terms of the mean temperature and the major species. Thus, 12 is the
optimal CM value in a sense that it best reproduces the overall combustion process.
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