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The transport of a passive scalar with molecular Prandtl number Pr near unity was
studied using direct numerical simulations (DNS) of a fully developed channel with smooth
and rough walls. The effects of roughness on the turbulent Prandtl number PrT, turbulent
timescale ratio and scalar-dissipation budget were investigated. For the rough-wall case, the
turbulent Prandtl number was almost constant (PrT ≈ 0.9) from the roughness centroid up
to the roughness crest, matching the common assumption used in modeling. PrT changes
rapidly as the base of the roughness is approached, similar to the near-wall behavior in
the viscous sublayer of a smooth-wall case. Away from the wall, Townsend’s similarity
hypothesis holds; the curves collapse when scaled in wall units. An effective turbulent
Prandtl number PrT,eff , which also includes the dispersive terms was examined. PrT,eff and
PrT have an overall similar behavior, suggesting that they can be interchangeable and that
the PrT ≈ 0.9 approximation may be accurate enough when modeling rough-wall flows
with constant scalar wall flux. This implies that the ad hoc adjustment of model coefficients
is not necessary, and that the scalar dispersive term do not need to be modeled separately.
The near-wall behavior of the ratio between turbulent scalar and momentum timescales,
R, depends strongly on the molecular Pr for a smooth-wall case; roughness significantly
reduces this dependence, tends to lower R, and results in a more uniform behavior. Only
below the centroid R rises rapidly as the base of the roughness is approached; as Pr
decreases, the location at which this rise occurs approaches the base of the roughness.
Townsend’s similarity hypothesis also applies to R away from the roughness crest. The
budget of the scalar dissipation εθ has a complex near-wall behavior in a smooth-wall case.
In a rough-wall case this behavior is significantly simpler, approximating an equilibrium
in which several production-of-dissipation terms match the dissipation-of-dissipation. The
leading turbulent production-of-dissipation term is only due to the gradients of velocity
and scalar fluctuations, which are only indirectly affected by the roughness. Compared
with the smooth-wall case, this term is enhanced due to improved alignment between
the fluctuating scalar gradient and the principal compressive direction of the strain-rate
tensor. The roughness also enhanced the gradient-production of scalar dissipation, which
is directly affected by the roughness shape, due to the diffusive nature of the mean scalar,
which results in large gradients of the time-averaged scalar field.

DOI: 10.1103/PhysRevFluids.7.124601

I. INTRODUCTION

Turbulent flows are present in most applications in engineering and the natural sciences, and ac-
curate models are needed for their analysis. With advances in computational power the use of direct
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numerical simulations (DNS) and large-eddy simulations (LES) has become more widespread. Their
general use, however, is still limited by the significant computational resources required by these
techniques. The resolution of the region close to a solid wall, in particular, poses significant demands
on a computation, which become even more extreme if the surface is rough. Roughness is present
in many important applications (if the Reynolds number is large enough, in fact, then any surface
is rough), and accounting for its effects is becoming increasingly important. The resolution of the
roughness elements on a solid surface is, however, prohibitively expensive for realistic Reynolds
numbers [1]. Additional transport equations must be solved if scalar transport (active or passive)
has to be included, further increasing the computational demands.

Despite the significant increase in computing power, which bring LES and DNS closer to the
practical domain, real-life, complex applications still require experiments, engineering correlations,
or simpler models such as the solution of the Reynolds-averaged Navier-Stokes (RANS) equations.
Within the context of the RANS approach, most commonly used closure models are of the eddy-
viscosity and eddy-diffusivity type. The most common ones are one-equation models (the most
popular of these being the Spalart-Allmaras model [2]), two-equation models, where two additional
differential transport equations are solved to obtain a length- and velocity-scale [3–5], and Reynolds-
Stress models [6] that estimate all the fluctuating stress components.

Attempts to treat roughness in RANS models include modifications to existing models through
boundary-conditions (usually through defining a virtual wall where the turbulent kinetic energy
(TKE) is nonzero), changing the wall value of various turbulent quantities, or modification of terms
in the model equations [4,7], or of the wall functions [8]. A more detailed review of these can be
found in Refs. [9,10].

A useful tool in the study of the effects of roughness is the “double-averaging” technique
[11], which will be discussed further in Sec. II C, and is based on a combination of time- and
space-averaging. Near the roughness the time-averaged fields (velocity, scalar, etc.) vary spatially
and differ from the time-and-space–averaged value; the deviation of the time-averaged field from
the time-and-space–averaged one, known as “wake field” or “form-induced perturbation,” allows
to isolate the direct effects of the geometry. By applying the double-average, additional “form-
induced” (FI) terms appear in the transport equations and budgets. For example new FI stresses,
referred to dispersive stresses, appear in the averaged momentum equation; similarly, new dispersive
fluxes appear in the averaged scalar transport equation [11,12].

Most turbulence models for scalar transport are analogous to those used for momentum trans-
port.1 Often eddy viscosity νT and eddy diffusivity αT are related by simple algebraic relations,
or additional equations for the transport of scalar variance and scalar dissipation are used, of the
same form as the momentum closure models with different coefficients. For example, Refs. [13–15]
introduced models that add two additional equations for scalar variance Kθ and scalar dissipation
εθ ; both scalar model equations mirror the transport equations for the TKE K and dissipation ε used
in the momentum closure.

In the context of smooth-wall flows, models employing a two-equation closure for the scalar
quantities (such as Kθ -εθ ) have shown success, in particular due to sufficient similarities between
the scalar and momentum fields in the absence of strong pressure gradients [16–20]. Additional
quantities are required in these models, the main ones being the turbulent Prandtl number2 PrT

(the ratio between eddy-viscosity νT and eddy-diffusivity αT), and the ratio between the integral
timescales of velocity and scalar R, often referred to as the “scalar-to-mechanical timescale ratio.”

1In incompressible flows heat transfer, mass transfer, or the transport of any other passive scalar are
equivalent; for simplicity we usually adopt the terminology used for heat transfer, but use it interchangeably
with general scalar transport throughout this work. The generic scalar will be denoted by θ , its fluctuations by
θ ′.

2For passive scalars, the turbulent Prandtl number, turbulent Schmidt number, etc., are equivalent.
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The turbulent Prandtl number PrT, plays an essential role in most empirical correlations and eddy-
diffusivity models. PrT is analogous to the molecular Prandtl number Pr, but is a function of the flow
conditions rather than a property of the fluid [21]. PrT can be used to determine the eddy-diffusivity
directly from the eddy-viscosity (usually in conjunction with algebraic or two-equations models
for νT), to determine the coefficients in more complex models, such as K-ε-Kθ -εθ–type models
[13,14,22], or to calculate the dispersive fluxes from the dispersive stresses [23].

A significant amount of work has been devoted to determining PrT in a variety of flows, with
particular interest in wall-bounded flow [24]. Kays [16] clarified the usefulness and effectiveness,
as well as the limitations, of using PrT. He summarized the different approaches used to calculate PrT

by collecting a wide range of sources (analytical, experimental and numerical) for canonical flows
such as boundary layers, pipes, and channels. For commonly used engineering applications (such
as heat exchanges), PrT is estimated via empirical or semiempirical relations. A core conclusion
reached by these studies is that PrT becomes effectively constant in the logarithmic region near the
wall and its value is primarily a function of Re and Pr. In particular, when Pr is near unity, PrT

approaches a value of about 0.85–0.9 and can be assumed constant for high enough Re [18,21,25–
27]. However, the same studies show that when approaching the wake region of a boundary layer,
the centerline of channels or the axis of pipes, PrT decreases to values in the neighbourhood of 0.5
Many models assume a constant value for PrT, despite the fact that this is only justified for the
logarithmic region.

Relatively little attention has been given to PrT in the context of rough-wall flows [28–33]. Of
these, Kuwata [33] introduced the “effective turbulent Prandtl number” PrT,eff , an approach that
extends PrT to include the dispersive stresses and fluxes. They noted that PrT,eff behaves similarly
to PrT outside of the roughness sublayer, but increases rapidly inside it.

Compared with PrT, R exhibits a much smaller variation with wall distance [19,34]. For example,
in a smooth-wall channel with Pr = 0.71, R ≈ 0.5 through most of the channel height; as Re
increases, the near-wall region where R differs from this value becomes thinner. Beguier et al. [35]
observe that R ≈ 0.5 when the velocity and thermal fields are in local equilibrium. The dissipation
of scalar variance, εθ , is often calculated assuming a constant R [36]. The use of R is particularly
common in the field of combustion; a detailed discussion of this topic can be found in Ref. [37].
However, R is harder to calculate from experiments and depends on Pr.

Little work has been done to determine how these quantities are affected by roughness. Chedev-
ergne [23] cited the lack of data on both R and the relation between K and Kθ in rough-wall flows
as the reason for not implementing a direct model of the dispersive scalar fluxes, following the
approach he used for modeling the dispersive stresses. Instead, he estimated the dispersive fluxes
from the dispersive stresses (Eq. (27) of Ref. [23]) using an assumption that the ratio K/Kθ is
proportional to the ratio of averaged velocity to averaged scalar.

In addition to using PrT and R, several models calculate αT directly using additional equations for
the transport of the scalar variance Kθ and its dissipation εθ . PrT is often used to determine some of
the coefficients. R is also needed when the scalar dissipation rate εθ needs to be directly expressed.
This can be achieved either by using the definition of R and solving for εθ or as part of the transport
equation of εθ [15,34,38,39].

The budget of TKE has been widely studied for flows over rough surfaces, from rod-roughened
channel to vegetation canopies. For example, Refs. [12,40–43] and others examined the TKE budget
and spatial distribution, as well as the roughness-associated production mechanisms. Furthermore,
the role of the form-drag in the conversion of mean kinetic energy (MKE) to TKE was clarified.

The budget of the scalar variance over rough walls, however, received significantly less scrutiny:
Coppin and Raupach [44] used a model plant canopy, showing that the peak Kθ production
occurs near the top of the canopy; significant portion of Kθ is then convected into the canopy,
to be dissipated. Miyake et al. [45] and Nagano et al. [46] numerically simulated channels with
two-dimensional rods on one of the walls; they observed that the production of Kθ is reduced
on the rough-wall compared with the smooth one, resulting in a lower intensities of temperature
fluctuations on the rough wall. Recently, Hantsis, and Piomelli [47] examined the budget of the
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scalar variance Kθ for Prandtl numbers near unity, focusing on the contribution of the FI production.
Comparing the budget of Kθ with that of the streamwise Reynolds stress, they found that the FI
production of scalar variance was more significant than that of the streamwise stress, and that the
pressure-work term of the streamwise stress caused dissimilarity between the two budgets. It should
be noted that models for the transport of Kθ are analogous to those for the K, and, because of the
absence of the pressure-strain term, the Kθ budget is expected be more similar to that of K than to
that of the streamwise stress.

The budget of εθ has received significantly less attention, despite the fact that εθ plays a crucial
role in combustion, where it directly affects the rate of chemical reactions, propagation speed of a
flame front, etc. It also controls the rate of scalar mixing (of contaminants, chemical species and
heat) and understanding its behavior is essential for optimization of mixing processes.

Experimental and numerical studies have examined the budget of εθ in canonical flows, such as
isotropic turbulence, shear flows far from solid boundaries [39,48–51]. Abe et al. [18] simulated a
smooth-wall channel and studied the dissipation budgets of TKE and scalar variance, and reported
some differences between the two budgets, as the corresponding terms in scalar and momentum
budgets exhibited different magnitudes and near-wall behavior;. These results were corroborated by
Alćantara-Ávila et al. [20] and Alćantara-Ávila and Hoyas [52]. Abe et al. [18] also noted that the
similarity between the spectra corresponding to the enstrophy and scalar dissipation rate was not as
good as that between the kinetic energy and scalar variance, suggesting that, while a direct analogy
between K and Kθ is reasonable, the same cannot be said for ε and εθ . To our knowledge, no study
has examined the roughness effects on the scalar dissipation budget.

When εθ is used to calculate and eddy diffusivity, its transport equation is not based on the
exact one, but rather on phenomenological observations and physical reasoning. Nevertheless,
the model equation still needs to conform with the physics of εθ , at least in a general sense. Since the
introduction of roughness limits the extend to which the scalar models and rough-wall corrections
can be directly drawn from the momentum ones, an analysis of εθ for the rough-wall case can be
beneficial. In addition, the FI terms caused by the roughness have never been considered. However,
an understanding of their behavior can be critical in developing more advanced turbulence models
such as DANS [23], which requires modeling of the dispersive stresses and dispersive scalar fluxes.

The motivation of the study is to provide modelers with information that can help extend well-
known two-equation scalar models to apply to rough-wall cases. The effects of roughness enters
the model equations through the changes to PrT and R, but also from the presence of FI terms in
the transport equations; these terms should, ideally, be accounted for in the models. This paper,
therefore, will first consider R and PrT, and then focus on the budget of εθ and Kθ , the latter mostly
from a modeling point of view.

The following sections will describe the mathematical description of the test case, the numerical
setup, and details about important quantities that are used throughout this work. Then, results will
be presented for PrT and PrT,eff , the timescale ratio R, the budgets of K and Kθ , and finally on the
budget of εθ . Concluding remarks will close the paper.

II. MATHEMATICAL MODEL

A. Problem definition

A summary of the problem setup will be presented here. A more detailed description of the
methodology can be found in Ref. [47]; here we only recall the salient points. We consider the
transport of a passive scalar in a fully developed turbulent channel with rough walls. The flow is
driven by a mean streamwise pressure gradient in a periodic domain and a constant scalar flux is
maintained through the walls, as was considered by other authors [27,32,36,53,54]. The ratio of
molecular viscosity ν to molecular diffusivity α defines the molecular Prandtl number Pr = ν/α.
We focus on Pr = 1.0, although we also include results for Pr = 0.7 when appropriate; overall the
two cases are very similar and when difference exist they are specifically addressed.
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FIG. 1. (a) Sketch of the computational domain. The arrow indicates the flow direction. (b) Detail of the
roughness geometry and mesh size. The color indicates the wall-normal distance relative to the virtual wall
(y − d = 0).

The transport of momentum is governed by the incompressible Navier-Stokes equations and mass
conservation:

∂uk

∂xk
= 0, (1)

∂ui

∂t
+ ∂ (uiuk )

∂xk
= �δi1 − ∂ p

∂xi
+ ν∇2ui + Fi, (2)

where xi (or x, y, and z) are the Cartesian coordinates in the streamwise, wall-normal, and spanwise
directions, respectively. ui (or u, v, and w) are the velocity components in the Cartesian directions,
p = P/ρ is the pressure divided by the (constant) density, Fi is a forcing term used by the immersed
boundary method (IBM) to impose the roughness geometry in the Cartesian domain. � is the
driving pressure gradient, adjusted in time to maintain a constant mass flux through the channel.
No-slip conditions are used at the wall, while periodicity is enforced in the streamwise and spanwise
directions.

Given a passive scalar T with wall value Tw, we define the transformed scalar θ ≡ Tw − T .
Following the approach of Ref. [53], which has been used extensively in the literature [27,32,36,54],
the governing equation for the transformed passive scalar is

∂θ

∂t
+ ∂ (ukθ )

∂xk
= α∇2θ + Q + Fθ ; (3)

here, the forcing term Q is

Q = u
dTw

dx
= qw

ρcpδ

u

Ub
, (4)

where cp is the specific scalar capacitance (i.e., specific heat, specific moisture, etc.), Ub is the bulk
velocity, δ is the channel half-width, and qw is the prescribed scalar wall flux.

The roughness is k type and is modeled, following Scotti [55], as a random distribution of
ellipsoids with axes in the proportion k:1.4k:2k. The roughness crest is located at ycr ≈ 1.5k
and k = 0.04δ (where δ is the channel half-height); this value allows us to minimize blockage
effects, while reaching the fully rough regime. An immersed-boundary method (IBM) based on
the volume-of-fluid (VoF) approach is used to represent the geometry within a cartesian mesh [55].
δ and the bulk velocity Ub, can be used to define the bulk Reynolds number Reb = Ubδ/ν. All
calculations are performed with Reb = 21 000, resulting in a Reynolds number based on friction
velocity uτ of Reτ � 1020 for the smooth-wall case and Reτ � 1700 for the rough-wall one. The
channel and roughness geometries are shown in Fig. 1.
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FIG. 2. Illustration of the virtual wall plane (light blue) located at the roughness centroid at y − d = 0.
Inset shows a zoomed-in view of the XY plane with the y axis origin. Roughness is coloured based on the
distance from the base of the roughness at y = 0.

For the smooth case, 1024 × 320 × 512 grid points are used to discretize a domain of dimensions
6δ × 2δ × 3δ, and 1024 × 530 × 512 are employed in the rough one. Note that in the latter case, the
actual domain height is 2.064δ (rather than 2δ) to compensate for the blockage due to the roughness.
This results in �x+ = �z+ � 6 in the smooth case, and 10 in the rough one. The resolution of
the roughness is nx = nz = 7 cells per k in the x and z directions while in the y direction there
are ny = 85 cells per k and a total of ncrest = 125 cells covering the region from trough to crest.
A grid-convergence study was also carried out. A mesh coarser by roughly 25% in all directions
showed less than 3% difference for the mean scalar and velocity and less than 5% for the other
quantities inspected. The present calculations are in very good agreement with reference data (mean
velocity, Reynolds stresses, and TKE budgets) in the two cases considered, as discussed in Ref. [47].
Full details can be found in the Appendix of Hantsis and Piomelli [47].

While the domain is smaller than that used by Lee and Moser [56] or Hoyas and Jiménez
[57] (8πδ × 2δ × 3πδ), it is similar to that used by Alcántara-Ávila et al. [20] (2πδ × 2δ × πδ)
and is significantly larger than in simulations that use minimal channels to study the near-wall
region [58,59]. Alcántara-Ávila et al. [20] showed that a domain of this size was large enough to
compute accurately first-order statistics and turbulent budgets for a similar combinations of Reτ

and Pr. Townsend’s outer-layer similarity hypothesis [60] (which states that some distance outside
of the roughness sublayer, turbulent statistics are independent of the roughness when properly
normalized) has been widely confirmed [61,62]. Since we will concentrate on the near-wall region
of a two-dimensional plane channel, even if the outer outer layer may be slightly affected by the
domain size, the inner-layer statistics are expected to be accurate.

B. Virtual-wall location

Since the roughness displaces the flow upwards, the effective half-height of the channel is the
distance between the channel’s center plane and the mean height of the momentum absorption by
the roughness surface [1,63]. This means that the line-of-action of the resultant drag force on the
roughness is located at a distance d from the base of the roughness (trough) given by

d = 1

ycr

∫ ycr

0
F1 dy, (5)

where F1 is the total force applied on the roughness in the streamwise direction Eq. (2). By
definition, d � ycr; for a smooth-wall case d = 0.

The location y = d is referred to as the “force centroid” or “roughness centroid,” and the
horizontal plane y = d will be referred to as the “virtual wall,” as illustrated in Fig. 2. As mentioned
in the previous section, the channel half-width in the rough-wall case is slightly increased to balance
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the blockage due to the roughness. This increase of channel half-width is equal to d; the distance
between the top and bottom virtual walls remains 2δ, as in the smooth-wall case. More details can
be found in Hantsis and Piomelli [47].

C. Triple decomposition and form-induced quantities

In rough-wall flows, in addition to the usual Reynolds-averaging operator, a second type of
averaging can be defined, the triple decomposition [11,12]. Any flow quantity f can be decomposed
into three terms: (1) a component that is averaged both in time and space (or double-averaged), 〈 f 〉;
(2) the spatial variation of the time-averaged quantity, f̃ ; and (3) the instantaneous fluctuation f ′:

f (xi, t ) = f (xi ) + f ′(xi, t ) = 〈
f
〉
(y) + f̃ (xi ) + f ′(xi, t ). (6)

f̃ is known as the “wake field,” or “form-induced perturbation,” and represents the deviation of the
time-averaged field from the double-averaged (time-and-space) one, thus highlighting the geometry-
induced effects. The wake-field is a stationary spatial perturbations field, nonzero whenever the
time-averaged field is nonuniform.

We utilize two types of spatial averages over the xz plane: The “intrinsic” spatial average 〈 · 〉,
used in Eq. (6), is only applied to the area A f occupied by the fluid within the given horizontal plane
while the “superficial” average 〈 · 〉s is applied over the entire plane area (Ao), including the solid
area [11]:

〈 f 〉 = 1

A f

∫∫
A f

f dA, 〈 f 〉s = 1

Ao

∫∫
A f

f dA. (7)

The fluid fraction φ(y) = A f /Ao, i.e., the ratio of fluid area to total area, directly relates the two
averages: 〈·〉s = φ〈·〉. By definition, 〈 ·̃ 〉 = 〈 ·̃ 〉s = 0 and, if the time-averaged fields are spatially
uniform (in x and z) ·̃ = 0, the triple decomposition reverts back to the standard Reynolds
decomposition. This is true in the smooth-wall case, but also away from the roughness sublayer
(RSL) in a rough-wall flow.

Since the time-averaged fields are spatially inhomogeneous in the RSL and the spatial averages
do not commute with spatial derivatives, applying the triple decomposition to transport equa-
tions yields form-induced (FI) terms, in addition to the regular, nonform-induced (NFI), ones. The
FI terms represent the direct impact of the roughness on the flow; they vanish in a smooth-wall
case. The NFI terms, which would also be present in a smooth-wall case, are formally unchanged;
however, they can still be affected by the roughness indirectly [47].

III. RESULTS

A. Turbulent Pandtl number

In RANS solutions, or in any method in which averaging is applied, the turbulent stresses and
fluxes need to be modeled. A variety of models have been devised to approximate them; the simplest
techniques are based on the Boussinesq approximation, which relates the Reynolds stresses and
scalar fluxes to the gradients of velocity and scalar concentration (or temperature) through an eddy
viscosity νT and an eddy diffusivity αT:

−〈u′
iu

′
j〉s + 2δi j

3
K = 2νT 〈Si j〉s, −〈θ ′u′

k〉s = αT 〈Gk〉s, (8)

where Si j and Gk are the time-averaged strain tensor and scalar gradient

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, Gk = ∂θ

∂xk
. (9)

The turbulent Prandtl number is defined as the ratio between νT and αT, and can be calculated from
experimental or numerical data by contracting Eq. (8) with 〈Si j〉s [64] and 〈Gk〉s (see Appendix B
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for details), resulting in

PrT = νT

αT
= 〈u′v′〉s

〈θ ′v′〉s

d〈θ〉s/dy

d〈u〉s/dy
. (10)

For a rough-wall case the governing equations for mean (time- and superficially averaged)
momentum and scalar are [47]

−〈�〉s = d

dy

[
ν

d〈u〉s

dy
− 〈u′v′〉s − 〈̃ũv〉s

]
+ fp + fν, (11)

−〈Q〉s = d

dy

[
ν

d〈θ〉s

dy
− 〈θ ′v′〉s − 〈̃θ ṽ〉s

]
+ fα, (12)

where 〈�〉s and 〈Q〉s are the driving mean-pressure-gradient and scalar source-term, respectively.
The terms in the square parenthesis on the right-hand side of both equations are the viscous,
turbulent, and dispersive stress/flux terms, respectively. The dispersive terms arise from the the
spatial inhomogeneity of the time-averaged velocity and scalar fields (also known as “wake fields”)
due to the roughness; as such, they are nullified above the roughness. fp and fν are the form-induced
pressure and viscous forces on the roughness elements, and fα accounts for the effect of heat transfer
to the roughness elements [11,47]:

fp = −
〈
∂ p̃

∂x

〉
s

, fν =
〈

∂

∂xk

(
ν

∂ ũ

∂xk

)〉
s

− 2ν
d〈u〉
dy

dφ

dy
− ν〈u〉d2φ

dy2
, (13)

and

fα =
〈

∂

∂xk

(
α

∂θ̃

∂xk

)〉
s

− 2α
d〈θ〉
dy

dφ

dy
− α〈θ〉d2φ

dy2
. (14)

A dispersive equivalent of the turbulent Prandtl number can be derived in a similar way as

P̃rT = ν̃T

α̃T
= 〈̃ũv〉s

〈̃θ ṽ〉s

d〈θ〉s/dy

d〈u〉s/dy
. (15)

Alternatively, one can combine the stochastic and dispersive terms to derive an “effective” Prandtl
number PrT,eff [33]:

PrT,eff = νT + ν̃T

αT + α̃T
= 〈u′v′ + ũṽ〉s

〈θ ′v′ + θ̃ ṽ〉s

d〈θ〉s

dy
d〈u〉s

dy

. (16)

This definition avoids the ill-conditioning of P̃rT , due to the fact that the dispersive stresses vanish a
short distance above the roughness crest, and both denominator and numerator of Eq. (15) are small,
resulting in a division of small numbers.

Figure 3 shows the turbulent Prandtl number PrT and the effective one, PrT,eff , for the smooth-
and rough-wall cases. Since some of the reference data use Pr = 1 and others Pr = 0.71, both
values are shown in the figures; their behavior is, however, very similar. It is important to note that
there is some variability in the scalar boundary-conditions between the studies: Some used constant
internal heat-source (uniform forcing) based on Ref. [26], others used various implementations of
a constant wall heat-flux. For example, Antonia et al. [19] used a strictly constant wall-flux by
adding a spatially nonuniform source term [36,67] while Pirozzoli et al. [27] applied a running
average to determine the mean wall-flux, allowing for 1% variation with respect to the imposed
mean value. The approach by Antonia et al. [19] is almost identical to the one used here, which is
reflected in the excellent agreement for Pr = 0.71 (the only case studied). Considering the scatter
of the reference data, probably due to the difference in the boundary-condition implementation
and physical configuration, the present calculation can be considered in agreement with the other
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FIG. 3. Near-wall distribution of the Turbulent Prandtl Number PrT and effective Prandtl Number PrT,eff in
(a) smooth-wall and (b) rough-wall cases, for Pr = 0.71 (blue) and Pr = 1.0 (orange). Studies cited in panel
(a): [19,20,27,65,66].

studies. While a constant value PrT ≈ 0.9 is often assumed, the wall-normal variation of PrT is not
negligible, starting form a value of 1.05 at the (smooth) wall and decreasing to 0.7 at the centreline.

In Fig. 3(b), we consider both PrT and PrT,eff for the rough-wall case and compare it with the
smooth-wall behavior. As would be expected, both PrT and PrT,eff collapse with the smooth-wall
equivalent above (y − d )/δ ≈ 0.15, a value four times larger than the roughness height, consistent
with Townsend’s similarity. Inside the RSL, for (y − d )/δ � 0 � 0.04, both PrT and PrT,eff remain
much closer to the value of 0.9 usually assumed in most models, and remain within a narrower range,
compared to the smooth-wall case. Below the virtual wall however, both PrT and PrT,eff change
drastically and increase monotonically approaching the base of the roughness, (y − d )/δ � −0.02.
Note that this region is usually outside the computational domain if the roughness is not directly
resolved. The two different Pr cases show similar behavior, but with a shift.

Note that PrT and PrT,eff , inside the RSL are lower than PrT of the smooth case, in contrast to
the results of Kuwata [33]; however, the steep increase of PrT and PrT,eff at the very bottom of the
roughness (reaching much higher values than 1.0) is consistent with their result.

B. Timescale ratio

The ratio between the integral timescale of the turbulent scalar fluctuation (τθ = Kθ /εθ ) and that
of the velocity fluctuation (τk = K/ε), known as the timescale ratio R = τθ/τk , is another impor-
tant quantity used heavily in modeling scalar transport, combustion, and simplified heat-transfer
calculations [35]. It is central to modeling quantities such as the scalar variance dissipation εθ in
algebraic models and simplified analytic calculations [35,39,50]. In particular, the simplest algebraic
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FIG. 4. Ratio of integral timescales R = τθ/τ . Lines: smooth-wall case; markers: rough-wall case. Inset is
zoomed at the region around (y − d )+ = 0.

model for εθ uses the definition of R to yield

εθ = R−1 Kθ

K ε, (17)

with R being prescribed as constant or by some power law. It is often assumed in practical
applications that R is constant, and approximately equal to 0.5, which holds well away from the wall
(note that in combustion, R is usually defined as the inverse, τk/τθ , and assumed to be approximately
equal to 2.0).

Beguier et al. [35] concluded that R ≈ 0.5 in local equilibrium. While indeed R ≈ 0.5 holds
well away from a solid boundary in many cases, Kawamura et al. [36] showed analytically, for a
smooth-wall channel, that the timescale ratio R tends to Pr as the wall is approached, independent of
the Reynolds number. The smooth-wall results in Fig. 4, which match well those of Refs. [19,68],
show a different behavior based on Pr. While Pr = 1.0 shows a monotonic trend, Pr = 0.71 has
both local minima and maxima near the wall. The difference stems from the different thickness
of the scalar diffusive-sublayer compared to that of the momentum: for Pr = 1.0 both viscous and
diffusive sublayers are of similar thickness; however for Pr = 0.71 the scalar diffusive sublayer
is thicker, resulting in the decrease of the scalar fluctuations further from the wall. Note that this
near-wall behavior of R was not reflected in PrT since R only depends on the turbulent quantities
while PrT also depends on viscous/diffusive terms; the viscous/diffusive terms increase near the
wall to the same extent that the turbulent terms reduce, causing the different near-wall behavior
between R and PrT [36,68]. As shown in Fig. 4, this is not the case for a rough-wall: from the crest
to the virtual wall R < Pr, but increases monotonically and rapidly to larger values at the base of
the roughness. The near-wall dependence on Pr still exists, but is considerably reduced compared
with the smooth-wall case. This is likely due to the fact that roughness allows the turbulent motions
to penetrate deep into the RSL, prevents the formation of a thick diffusive sublayer and removes the
buffer layer [47,62]. Thus, the RSL is dominated by turbulence, which has little to no impact from
the molecular diffusivity. However, the effect of Pr is not completely eliminated since there is still a
thin diffusive layer that follows the geometry [32,47], maintaining some of the effect of Pr.
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FIG. 5. Budgets of (a) TKE and (b) scalar variance with Pr = 1.0, normalized by wall units (uτ , θτ , and
ν); panels (c) and (d) show the relative contribution of each term in the corresponding budget. Lines used
for smooth-wall case and markers for rough-wall. ×: DNS from Abe et al. [67]. The vertical line marks the
roughness crest.

Townsend’s similarity hypothesis was shown to extend and hold for many different turbulent
quantities [31,32,47,54,61,62,69]. As could be expected, it also holds for both timescales (not shown
here), and as a result for their ratio R: both smooth- and rough-wall timescales collapse on the
smooth-wall case rather quickly above the RSL.

C. Turbulent kinetic energy and scalar-variance budgets

Hantsis and Piomelli [47] compared the budgets of the scalar variance Kθ and the streamwise
Reynolds stress 〈u′u′〉s, including the effects of roughness on the budgets. Much of the analogy
between momentum and scalar transport stems from the streamwise component, which dominates
momentum transport and the TKE K budget. The model is the equation of Kθ ; however, it is
developed in analogy to that of K, which has some differences from that of the streamwise Reynolds
stress. For this reason we will briefly discuss the TKE budget, focusing on modeling issues.

The budgets of the TKE K and scalar variance Kθ in a plane channel are

0 = Pkk + Akk + Tkk + Dkk − εkk + �kk, (18)

0 = Pθ + Aθ + Tθ + Dθ − εθ + Qθ , (19)

where the terms on the right-hand side of these equations are the production P , mean (or wake)
transport A, turbulent transport T , diffusion D and dissipation ε. In addition, Eq. (18) contains the
pressure-work term �kk and Eq. (19) contains the source term Qθ . For the explicit expressions of
the terms and additional details see Ref. [47].

Figures 5(a) and 5(b) show the budgets of the K and Kθ , respectively, as well as the relative
contributions of each term in Figs. 5(c) and 5(d). The relative contribution gi,rel of a term gi is
calculated as gi,rel = gi/(2

∑
k |gk|); with this definition the sum of all relative contributions is zero;

if two terms dominate, each has a value of ±1.0.
Hantsis and Piomelli [47] observed that the scalar form-induced (FI) production Pfi

θ , being
the dominant source term in the RSL, is more significant than the corresponding FI production
component of the streamwise velocity fluctuation 〈u′u′〉, P f i

11. This difference is mainly due to the
dissimilarity between the wake fields of θ̃ and ũ, as well as the magnitude of the different roughness
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functions, resulting in 〈θ〉+ > 〈u〉+ within the RSL, for all the Pr examined. In terms of K, the FI
production P f i

kk is (half) the sum of contributions from the three fluctuating velocity components
(k = 1, 2, 3). Since both P f i

22 and P f i
33 are significantly smaller than P f i

11, P f i
kk effectively behaves like

P f i
11 and therefore is smaller than the Kθ comparable term, P f i

θ .
For 〈u′u′〉s the contribution of the pressure-work term (�11) was significant [47] and a key

differences from the scalar variance budget. For the K budget, however, the pressure-work term
contribution (�kk) is negligible for y − d � 0, as the pressure fluctuations mainly redistribute the
energy between the normal stress components. Thus, the budget of Kθ is more similar to that of the
K compared with 〈u′u′〉s. Deeper in the roughness sublayer, where �kk becomes more important
[Fig. 5(c)] all the TKE budget terms, as well as K itself, become very small.

The relative contributions shows that in both K and Kθ , the overall rough-wall behavior can
be adequately approximated by P ≈ ε, all other terms being negligible; this was not the case for
〈u′u′〉s. This approximation is valid all the way to the virtual wall at y − d = 0, which would be
the boundary when the roughness geometry is substituted by a model, as is the case in RANS. In
fact, for Kθ this approximation is valid all the way to the very bottom of the roughness sublayer.
Note that here P includes both shear and FI production. This simple P ≈ ε behavior is very
useful for roughness modeling. In particular, when double-averaged quantities are used to describe
the macroscopic behavior due to roughness (such as the DANS methodology), the shear and FI
components of P can be modeled independently.

D. Dissipation budget

Many turbulence models employ a transport equation for the scalar dissipation-rate εθ . Unlike
the TKE or scalar-variance equations, the exact dissipation transport equation is rarely used for
modeling [17], and all the budget terms are derived from phenomenological considerations. The
double-averaged dissipation transport equation can be written as

0 = −2α

〈(
u′

i

∂θ ′

∂xk

)
∂2θ

∂xi∂xk

〉
s︸ ︷︷ ︸

PG
εθ

−2α

〈(
∂u′

i

∂xk

∂θ ′

∂xk

)
∂θ

∂xi

〉
s︸ ︷︷ ︸

PMS
εθ

−2α

〈(
∂θ ′

∂xk

∂θ ′

∂xi

)
∂ui

∂xk

〉
s︸ ︷︷ ︸

PMV
εθ

−α

〈
∂θ ′

∂xk

∂θ ′

∂xi

∂u′
i

∂xk

〉
s︸ ︷︷ ︸

PT
εθ

−
〈

∂

∂xi
(u′

iεθ )

〉
s︸ ︷︷ ︸

Tεθ

−
〈

∂

∂xi
(uiεθ )

〉
s︸ ︷︷ ︸

Aεθ

+α

〈
∂2εθ

∂xi∂xi

〉
s︸ ︷︷ ︸

Dεθ

−2α2

〈(
∂2θ ′

∂xi∂xk

∂2θ ′

∂xi∂xk

)〉
s︸ ︷︷ ︸

εεθ

+2α

〈
d〈Tw〉

dx

∂θ ′

∂xk

∂u′
1

∂xk

〉
s︸ ︷︷ ︸

Qεθ

,

(20)

where the terms are: (1) gradient production PG
εθ , (2) mean scalar gradient production PMS

εθ , (3)
mean velocity-gradient production PMV

εθ , (4) turbulent production PT
εθ (stretching of the scalar field

by turbulent strain), (5) turbulent transport Tεθ , (6) mean transport Aεθ , (7) molecular diffusion Dεθ ,
(8) molecular dissipation εεθ , and (9) source term contribution Qεθ (due to wall scalar flux in our
case, but can be due to reactions and other sources).

The scalar-dissipation budget terms for smooth-wall and rough-wall cases and Pr = 0.71 are
shown in Fig. 6. Figure 6(a) shows the smooth-wall case and the data from Abe et al. [18], in inner
scaling. Both smooth- and rough-wall cases are shown in Fig. 6(b). The terms are normalized using
uτ , θτ , ν, and Pr. The vertical line in Fig. 6(b) identifies the roughness crest. For the smooth case
(lines), good agreement with Ref. [18] (black markers) is found both in terms of magnitude and
behavior. The largest differences in the production and dissipation terms is less than 6%. These
differences may be due to the slight difference in the scalar boundary-conditions between this work
and Abe et al. [18]; altogether, the results trends are consistent with Refs. [18,49] and show the
same key features: the near-wall dominance of three production (of scalar dissipation) terms PT

εθ ,
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FIG. 6. Scalar dissipation budget for Pr = 0.71: (a) smooth-wall only, black markers are reference data
from Abe et al. [18]; (b) smooth-wall (lines) and rough-wall (markers, corresponding colors). All budget terms
are normalized by wall units using uτ , θτ , ν, and α. The vertical line marks the roughness crest.

PMS
εθ , and PMV

εθ along with the dissipation (of dissipation) term εθ , while away from the wall only
PT

εθ and εθ remain dominant with diminishing in magnitude further from the wall.
In Fig. 6(b) we compare the smooth-wall case (lines) with the rough-wall one (markers with

matching color). Both turbulent production of scalar dissipation PT
εθ and dissipation of scalar

dissipation εεθ are dominant away from the wall, consistent with other studies. These two terms
remain the most significant inside the RSL, making them the dominant terms throughout the entire
domain. PT

εθ has the same (normalized) magnitude as the smooth wall while PMS
εθ and PMV

εθ , which
are significant in the smooth-wall case, decrease significantly, making PT

εθ the most dominant source
term throughout the entire domain. In the smooth case, however, they decrease as the wall is
approached. However, the remaining production (of dissipation) terms are not negligible in the
rough case; PMV

εθ is approximately equal to half of PT
εθ while PG

εθ and PMS
εθ are roughly one-third of

PT
εθ each. Together, PG

εθ , PMV
εθ , and PMS

εθ give about the same contribution as PT
εθ . The increase of

the magnitude of PG
εθ compared to the smooth-wall case is directly associated with the roughness

geometry, which forces a larger curvature of the θ isosurfaces, which follow the geometry closely;
this will be further discussed later.
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A similar trend, PT
εθ becoming more dominant over the other production terms, was also observed

by Ref. [52] in a smooth-wall channel, when Peτ = Reτ Pr was increased; the effect of increasing
Pr was more significant than an equivalent increase in Reτ (resulting in the same Pe). While the
increase of Pe for the smooth-wall case had a very similar trend to the addition of roughness (without
changing Pe), the increase was not as marked as that due to the roughness. Abe et al. [18] and [52]
showed that the εθ budget terms collapse away from the (smooth) wall for the different values of
Pe. This is consistent with Townsend’s similarity and the fact that away from the (smooth) wall the
flow field is dominated by turbulent motions. This is also true for the rough-wall case, as all the
rough-wall terms collapse on the corresponding smooth-wall ones a few roughness-heights above
the crest. When compared to the addition of roughness, increasing Pe provided a very similar trend
to adding roughness. However, it does appear that adding roughness might have an effect equivalent
to a significant increase of Pe.

The turbulent transport of scalar dissipation Tεθ and the diffusion of scalar dissipation Dεθ are
insignificant for y − d > 0 while for y − d � 0 the diffusion term Dεθ becomes comparable to PT

εθ ,
each of them balancing about half of εεθ . The mean transport Aεθ , which was identically zero for the
smooth-wall case, remains the smallest of the transport terms and can be neglected in the rough-wall
case as well.

Pεθ ≈ εεθ holds well from the virtual wall outward for the scalar dissipation budget, in a similar
manner to the behavior of the 〈θ ′θ ′〉s budget. In the rough-wall case, the different budget terms,
including those of Kθ and εθ , tend to the same form, with a peak around (y − d )/δ ≈ 0.01 followed
by a similar simple increase or decrease for all the the other terms. Thus, it seems that in terms of the
1D statistics, roughness reducing the complexity of the near-wall in the smooth case, significantly
simplifying the problem to a P ≈ ε type of equilibrium, which is more amenable to modeling.

Many of the terms in Eq. (20) have a form-induced (FI) and non form-induced (NFI) contribu-
tions. We consider the following terms:

PG
εθ = P̃G

εθ − 2α

〈
v′ ∂θ ′

∂y

〉
s

d2〈θ〉
dy2

PMS
εθ = P̃MS

εθ − 2α

〈
∂v′

∂xk

∂θ ′

∂xk

〉
d〈θ〉s

dy

PMV
εθ = P̃MV

εθ − 2α

〈
∂θ ′

∂x

∂θ ′

∂y

〉
d〈u〉s

dy
(21)

where the FI term is denoted with a tilde (for more details, see Appendix A). The breakdown of these
terms is shown in Fig. 7; the FI contributions are shown by dashed lines and the NFI contributions
by dotted lines. The total is as shown in Fig. 6 and uses the same markers and colors.

As mentioned before, the gradient production-of-dissipation PG
εθ is more significant in the rough

case than in the smooth case, as it depends strongly on the curvature of the of the isosurfaces of
time-averaged scalar field θ via the 2nd-order spatial derivatives; the roughness geometry directly
affects the curvature, since the mean scalar isosurfaces follow the roughness geometry closely
without significant separation regions, a phenomenon discussed by Refs. [31,47], and shown in
Fig. 8. Furthermore, Fig. 7, shows how the entire PG

εθ is due to the FI contribution P̃G
εθ . However,

for PMS
εθ and PMV

εθ , the FI contributions are much less significant, suggesting that in these terms the
effect of the geometry is mostly indirect. Overall, the total FI contribution of the three production
terms is about the same as the NFI contribution.

To better understand the role of the FI and NFI contributions, we define a “local production” P̂ ,
a quantity whose superficial average is equal to a corresponding production term P:

〈P̂〉s = 1

A0

∫
A f

P̂dA = P . (22)
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FIG. 7. Breakdown of the rough-wall production terms shown in Fig. 6. Markers: total contribution; - - - -
nonform-induced (NFI) part; — form-induced (FI) part. Normalization is the same as in Fig. 6.

The components P̂G
εθ , P̂MS

εθ , P̂MV
εθ , and P̂T

εθ , shown in Figs. 9(a)–9(d), would then be the expres-
sions inside the spatial averaging operator 〈•〉s of the corresponding production terms in Eq. (20).
Note that these expressions contain both FI and NFI contributions. P̂G

εθ is only significant near the
roughness surface, in particular around the upstream side and over crests of the roughness elements,
where the diffusive film of θ

+
<5.0 changes thickness rapidly or becomes distorted, causing the

large gradients in θ . P̂MS
εθ is most significant in the shear layers formed at the top of the crests,

and in small, concentrated spots just ahead of the crests, where the FI contribution is lower. Both
these terms do not extend far from the roughness itself. P̂MV

εθ has very significant contributions right
at the roughness surface, larger than those of P̂G

εθ or P̂MS
εθ ; however, some of these are negative and

appreciably reduce the resulting FI contribution of PMS
εθ . In the gaps between elements P̂MV

εθ also has
both positive and negative contributions. This term is significant further away from the roughness,
compared with P̂MS

εθ . Overall, P̂MV
εθ is a dominant term locally; however, significant negative values

reduce its averaged value, PMV
εθ , which is roughly equal to PMS

εθ . Finally, P̂T
εθ is significant throughout

the RSL, both near and between roughness elements and is the dominant term above the roughness.
Since PT

εθ does not depend directly on the mean scalar or velocity fields, it has no FI component.
However, significant contributions to P̂T

εθ occur due to the strong turbulent motions impinging on

the upstream sides of the roughness elements [31,32] (where the diffusive θ
+

< 5 film is thinner)
and in the shear-layers that emanate from the roughness crests and extend downstream of them.

FIG. 8. Spatial distribution of θ
+

. Blue region denotes where θ
+

< 5.0; Dashed magenta line denotes the
isocontour of u+ = 5.
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FIG. 9. Spatial distribution in XY plane of (a) P̂G
εθ , (b) P̂MS

εθ , (c) P̂MV
εθ , and (d) P̂T

εθ .

Since the leading production term, PT
εθ , has no FI component, altogether only a small part of

the scalar dissipation generation is due to FI contributions; This is in contrast to the scalar variance
〈θ ′θ ′〉s, for which the generation in the RSL is dominated by the FI production term [47]. Note that
the remaining terms in Eq. (20) either do not have a direct FI part or, if they have it, it is negligibly
small.

E. Analysis of the turbulent production-of-dissipation term

A better understanding of the turbulent production terms is necessary to gain further insight
into the production (of scalar dissipation) process in view of the leading-order magnitude of these
terms across the channel. As shown, PT

εθ is the dominant production in the rough-wall case and
reproducing it correctly is a crucial part of any model that solves a transport equation for εθ . PT

εθ

has been studied both in cases without a solid boundary (such as homogeneous isotropic turbulence
and homogeneous sheared turbulence [39,49–51,70–72] and in smooth-wall bounded flows (such as
channel flow [18,20]); however, the authors are not aware of any rough-wall analysis of this term.

PT
εθ can be expressed in terms of the eigenvalues and eigenvectors of the fluctuating strain tensor

s′
i j . λ1 > λ2 > λ3 are the eigenvalues, and 	ψ i (i = 1, 2, 3) is the set of corresponding eigenvectors

(i.e., the principal directions of strain):

PT
εθ = −2

〈
α

∂θ ′

∂xi

∂θ ′

∂x j
2s′

i j

〉
s

= −2〈α|∇θ ′|2(λ1 cos2 β1 + λ2 cos2 β2 + λ3 cos2 β3)〉s, (23)
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FIG. 10. Distribution and orientation of principal stresses and contribution to turbulent production PT
εθ .

(a) Eigenvalue probability distribution; (b) probability of the angle cosine between the principal-stress direc-
tions 	ψ i and the fluctuating scalar gradient ∇θ ′; (c) contributions to PT

εθ conditioned on the eigenvalue λi and
alignment angle βi. Lines: smooth-wall case; markers: rough-wall case. Distribution taken at (y − d )+ = 5 and
for Pr = 1.0. PT

εθ normalization is the same as in Fig. 6.

where βi are the angles formed between the gradient of the fluctuating scalar ∇θ ′ = ∂θ ′/∂xk and
the eigenvectors 	ψ i:

cos βi = ∇θ ′ · 	ψ i

|∇θ ′|| 	ψ i| . (24)

Equation (23) shows that positive contributions to PT
εθ can only come from compressive stresses

(for which λ < 0) while extensional stresses can only decrease PT
εθ . Additionally, PT

εθ is strongly
dependent on the alignment between the direction of the principal stresses ( 	ψi) with the direction of
the scalar gradient, through cos2 βi [18].

Figure 10(a) shows the probability distributions of the principal strain eigenvalues λi normalized
by the total stress magnitude, taken at the plane (y − d )+ = 5, which is close to the wall in
the smooth-wall case and well within the RSL in the rough-wall case. The distributions, for
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both smooth- and rough-wall geometries, show significant resemblance to those of Nomura and
Elghobashi [49] in homogeneous sheared turbulence, confirming that the compressive principal
stress λ3 tends to be larger than the extensional one λ1, while λ2 is only slightly biased toward
extensional stresses. Wu et al. [73] (who studied rotating channel flows), observed that in the
RSL, turbulence is near the axisymmetric compression line, rather than axisymmetric expansion
(for smooth-wall), suggesting increased dominance of compression at the wall. Overall, we see that
while the roughness tends to increase the probability of stronger λ3 and somewhat decreases λ1,
these difference are not significant.

The probability of alignment between the principal strain directions and the scalar gradient is
shown in Fig. 10(b) at the same location. In the smooth-wall case, both 	ψ1 and 	ψ3 tend to form
a 45◦ angle with ∇θ ′, while 	ψ2 tends to be perpendicular to it, matching the results of Ref. [18]
closely. For the rough-wall case, the distribution is significantly more uniform, with 	ψ3 showing a
higher probability of alignment (0.7 < |cos β3|) compared with 	ψ1 and 	ψ2.

Finally, Fig. 10(c) presents the contributions to PT
εθ from each of the principal strain components

λi and as function of the alignment angle βi. For both smooth- and rough-wall cases, the intermediate
eigenvalue λ2 has negligible contribution, due to positive and negative values canceling each
other and to poor alignment with ∇θ ′. Thus, PT

εθ is effectively due to the difference between the
contributions of the main extensional and compressive strain components.

The PT
εθ contribution due to the extensional eigenvalue λ1 behaves similarly in smooth-and

rough-wall cases; for the smooth-wall the contribution is limited to a narrower range of angles
around β1 ≈ 45◦, while for the rough case it is spread over a wider range. The main difference in
PT

εθ between the smooth- and rough-wall cases is due to the compressive component, λ3, and is
most evident when the alignment between 	ψ3 and ∇θ ′ is very good. Since the distribution of the
eigenvalues λi is similar between the smooth- and rough-wall cases, this suggests that the increased
alignment, due to roughness, holds the key to the different behavior between the two cases. These
results are valuable for extending PDF methods [74,75] to the a rough-wall case.

IV. CONCLUSIONS AND DISCUSSION

A direct numerical simulation (DNS) of the transport of a passive scalar in a fully developed
turbulent channel with rough walls was performed; the results are used to understand how to incor-
porate the effects of roughness into turbulence models of passive scalars. While several rough-wall
corrections have been developed for momentum transport turbulence models in the context of for
the Reynolds-averaged Navier-Stokes (RANS) equations, analogous modifications for the modeling
of passive scalars are less advanced. Formulating rough-wall corrections to existing scalar models
requires the knowledge of the behavior of the two main transported quantities (scalar variance and
dissipation), as well as the key quantities used in these models, namely, the turbulent Prandtl number
and timescale ratio. Our investigation aims to provide modelers with the information needed to
incorporate the effects of roughness effects into existing scalar closure models and develop new
ones.

The turbulent Prandtl number PrT is extensively used both in simplified calculations and turbu-
lence models of scalar transport, and is often taken as a constant, PrT ≈ 0.8–0.9, despite the fact that
it is known to depart from that range near a smooth wall [16]. For the rough-wall case, PrT is indeed
almost constant from the roughness centroid up to the crest PrT ≈ 0.9, in line with the assumptions
commonly used in modeling. Its rough-wall value is smaller than the smooth-wall one above the
centroid. Below the centroid it changes rapidly, ranging from about 0.6 and up to 4.0 at the very
base of the roughness. This region, however, is usually neglected in turbulence models, in which the
virtual wall is taken to be the centroid location. Various studies reported different near-wall behavior
of PrT [32,33,76], suggesting possible dependence on boundary conditions, roughness regime, type
of roughness (in particular d-type versus k-type in transitional roughness) or other factors; further
studies are required to determine whether the present results can be generalized to other conditions.
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Away from the wall, Townsend’s similarity hypothesis holds; the smooth- and rough-wall cases
curves collapse.

Since additional dispersive terms exist in both the stress and scalar flux, they can be merged
with the corresponding turbulent stresses and fluxes to form an effective turbulent Prandtl number,
PrT,eff . PrT,eff collapsed on PrT above the roughness and has an overall behavior similar to PrT inside
the roughness. Some variation can be seen below the centroid of the roughness, however it is only
significant at the very base of the roughness and PrT,eff is slightly better behaved. Although only
a limited range of Pr and one type of roughness were examined, these results suggest that PrT and
PrT,eff can be used interchangeably, and the approximation PrT ≈ PrT,eff ≈ 0.9 may be accurate
enough (with relative error of 6% for both Pr values) when modeling rough-wall flows without
the need to explicitly adjust model coefficients for roughness or add additional treatment of the
dispersive scalar fluxes. Of course, a more systematic study including different types of roughness
and a wider range of Pr would be required.

The timescale ratio R is another important quantity for which the effects of roughness are not
well understood. In many models it is also assumed to be constant, with an equilibrium value
R ≈ 0.5. This assumption holds away from a wall, but differences can be observed near a solid
surface. For a smooth-wall case, it tends to Pr at the wall [36], and the near-wall behavior depends
strongly on Pr. For the rough-wall case, however, the Pr dependence is much reduced, and R is
lower than the corresponding smooth-wall values. Below the roughness centroid d , R rises rapidly
as the base of the roughness is approached. The location at which this sharp rise starts depends
on Pr: where for Pr = 1.0 it happens right under the centroid, for Pr = 0.71 occurs well below
the centroid, most likely due to the fact that the turbulent motions, and, therefore, the turbulent
timescales, decay at different distance from the base of the roughness for different scalars due to the
dominance of the diffusivity there. Away from the wall, Townsend’s similarity hypothesis applies to
R. The approximation R ≈ 0.5, which was inaccurate near a smooth wall, is also inaccurate in the
rough-wall case, although to a lesser degree. The near-wall behavior appears to be much simpler for
a rough wall with a much lower dependence on Pr.

In previous work [47], the similarities and differences between the budgets of 〈u′u′〉s and Kθ =
〈θ ′θ ′〉s were examined, and it was found that the form-induced (FI) production is dominant for the
scalar variance. Here, we considered the budget of turbulent kinetic energy (TKE), K, and compared
it to the Kθ one. Once again, the FI production PFI was much more dominant in the Kθ budget than
in that of K; however, due to the reduced importance of the pressure-work term in K, the K budget
is more similar than that of 〈u′u′〉s to the budget of Kθ . Above the centroid, the production is nearly
balanced by dissipation for both K and Kθ . This also applies to Kθ under the centroid, but not for K.
This is of importance for models that use a transport equation for Kθ , as it suggests that a specific
near-wall correction for roughness might not be necessary and the underlying equilibrium balance
Pθ ≈ εθ can be extended all the way to the boundary.

Finally, the scalar dissipation budget was examined. While important for Kθ -εθ type or more
complex models, this budget had not been previously considered for a rough-wall case. It is far
more complex than the Kθ budget, containing four different production-of-dissipation terms, and
has a complex near-wall behavior for a smooth-wall case. In contrast, the rough-wall behavior is
significantly simpler, since many terms decrease in importance. While, for a rough wall, the budget
satisfies a Pεθ ≈ εεθ equilibrium, there are several production-of-dissipation terms that need to be
considered. While the turbulent production PT

εθ is about twice as large as the other production terms,
it is not dominant on its own. A similar trend of significant increase of PT

εθ (compared to all other
production terms) had also been observed in a smooth-wall case when Pe = RePr was increased
[52], and an increase of Pr had a stronger effect than a comparable increase in Re. There could be a
correspondence between introducing roughness (without changing Pe) and the increase of Pr; from
a modeling point of view, this could result in a roughness correction to those models that use a εθ

equation.
The roughness significantly enhanced the gradient-production of scalar dissipation PG

εθ , due to
the roughness imposing large curvature on the mean scalar isosurfaces and to the creation of large
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θ gradients locally. This is caused by the fact that for the rough-wall case, PG
εθ was entirely due to

FI contributions and was shown to only be significant directly at the roughness surface.
Finally, PT

εθ was examined to determine why it becomes much more significant in the roughness
sublayer. A breakdown of the term based on the principal strain directions showed that, while rough-
ness induces slightly more dominant compressive strains, it is the improved alignment between
the fluctuating scalar gradient ∇θ ′ and the principal compressive direction of the strain-rate tensor
that results in the increase of PT

εθ . When the angle between ∇θ ′ and the principal compressive
stresses was 35◦ or less, a significant increase in PT

εθ was observed. Beyond the understating of the
underlying physical processes, these results are directly relevant to extending probability density
function (PDF)-based models for rough-wall applications.

As was pointed throughout this work, the findings are limited to a small range of Prandtl numbers,
around unity, and a single case of k-type roughness. To get a more generalized understanding and
confirmation of these results, a systematic study encompassing (1) different roughness geometries,
(2) wider range of Prandtl numbers, and (3) wider range of Reynolds numbers is needed. This type
of study will shed light on both the trends and sensitivities associated with the different factors as
well as allowing the development of improved models.
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APPENDIX A: BREAKDOWN OF THE PRODUCTION TERMS

When we apply the double-average, the terms become: (1) Gradient production:

PG
εθ = −2α

〈(
u′

i

∂θ ′

∂xk

)
∂2θ

∂xi∂xk

〉
s

= P̃G
εθ − 2α

〈
v′ ∂θ ′

∂y

〉
s

d2〈θ〉
dy2

,

P̃G
εθ = −α

〈( ˜
u′

i

∂θ ′

∂xk

)
∂2θ̃

∂xi∂xk

〉
s

− α

〈
u′

i

∂θ ′

∂xk

〉〈
∂2θ̃

∂xi∂xk

〉
s

.

(2) Mean scalar gradient production:

PMS
εθ = −2α

〈(
∂u′

i

∂xk

∂θ ′

∂xk

)
∂θ

∂xi

〉
s

= P̃MS
εθ − 2α

〈
∂v′

∂xk

∂θ ′

∂xk

〉
d〈θ〉s

dy
,

P̃MS
εθ = −α

〈(
˜∂u′

i

∂xk

∂θ ′

∂xk

)
∂θ̃

∂xi

〉
s

.

(3) Mean velocity gradient production:

PMV
εθ = −2α

〈(
∂θ ′

∂xk

∂θ ′

∂xi

)
∂ui

∂xk

〉
s

= P̃MV
εθ − 2α

〈
∂θ ′

∂x

∂θ ′

∂y

〉
d〈u〉s

dy
,

P̃MV
εθ = −α

〈(
˜∂θ ′

∂xi

∂θ ′

∂xk

)
∂ ũi

∂xk

〉
s

.
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(4) Turbulent production:

PT
εθ = −α

〈
∂θ ′

∂xk

∂θ ′

∂xi

∂u′
i

∂xk

〉
s

.

(5) Turbulent transport:

Tεθ = −α

〈
∂

∂xi

(
u′

i

∂θ ′

∂xk

∂θ ′

∂xk

)〉
s

= −α
d

dy

〈
v′ ∂θ ′

∂xk

∂θ ′

∂xk

〉
s

.

(6) Mean transport:

Aεθ = −α

〈
∂

∂xi

(
ui

∂θ ′

∂xk

∂θ ′

∂xk

)〉
s

= Ãεθ = −α
d

dy

〈
ṽ

(
˜∂θ ′

∂xk

∂θ ′

∂xk

)〉
s

.

(7) Molecular diffusion:

Dεθ = α2

〈
∂2

∂xi∂xi

(
∂θ ′

∂xk

∂θ ′

∂xk

)〉
s

= D̃εθ + α2 d2

dy2
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〉
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D̃εθ = α2

〈
∂2

∂xi∂xi

(
˜∂θ ′

∂xk

∂θ ′

∂xk

)〉
s

.

(8) Molecular dissipation:

εεθ = −2α2

〈
∂2θ ′

∂xi∂xk

∂2θ ′

∂xi∂xk

〉
s

.

(9) Source-term contribution:

Qεθ = 2α
d〈Tw〉

dx

〈
∂θ ′

∂xk

∂u′
1

∂xk

〉
s

.

APPENDIX B: TURBULENT PRANDTL NUMBER CALCULATION FOR THE CHANNEL CASE

The turbulent Prandtl number PrT is the ratio between the eddy viscosity νT and eddy diffusivity
αT, as defined in Eq. (10). Contracting Eq. (8) with the time-averaged strain tensor Si j and scalar
gradient Gk , respectively, yields

−〈u′
iu

′
j〉s〈Si j〉s + 2K

3
δi j〈Si j〉s = 2νT 〈Si j〉s〈Si j〉s (B1)

and

−〈θ ′u′
k〉s〈Gk〉s = αT 〈Gk〉s〈Gk〉s. (B2)

In channel flow, only 〈S12〉s, 〈S21〉s, and 〈G2〉s are nonzero, since superficial averages are considered
(the same does not apply to time-averaged terms).

Equations (B1) and (B2) then simplify to

νT = −〈u′v′〉s

[
d〈u〉s

dy

]−1

, αT = −〈θ ′v′〉s

[
d〈θ〉s

dy

]−1

. (B3)

Employing these relationships in the definition of PrT, we obtain Eq. (10). Similarly, repeating the
process while including the dispersive terms ũiũ j and θ̃ ũk yields PrT,eff as shown in Eq. (16).
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