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Intermittency and collisions of fast sedimenting droplets in turbulence
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We study theoretically and numerically spatial distribution and collision rate of droplets
that sediment in homogeneous isotropic Navier-Stokes turbulence. It is assumed that, as it
often happens in clouds, typical turbulent accelerations of fluid particles are much smaller
than gravity. This was shown to imply that the particles interact weakly with individual
vortices and, as a result, form a smooth flow in most of the space. In weakly intermittent
turbulence with moderate Reynolds number Reλ, rare regions where the flow breaks down
can be neglected in the calculation of space averaged rate of droplet collisions. However,
increase of Reλ increases probability of rare, large quiescent vortices whose long coherent
interaction with the particles destroys the flow. Thus, at higher Reλ, that apparently include
those in the clouds, the space averaged collision rate forms in rare regions where the
assumption of smooth flow breaks down. This intermittency of collisions implies that rain
initiation could be a strongly nonuniform process. We describe the transition between
the regimes and provide collision kernel in the case of moderate Reλ describable by
the flow. The distribution of pairwise distances (radial distribution function or RDF) is
shown to obey a separable dependence on the magnitude and the polar angle of the
separation vector. Magnitude dependence obeys a power law with a negative exponent,
manifesting multifractality of the droplets’ attractor in space. We provide the so far missing
numerical confirmation of a relation between this exponent and the Lyapunov exponents
and demonstrate that it holds beyond the theoretical range. The angular dependence of
the RDF exhibits a maximum at small angles quantifying particles’ formation of spatial
columns. We provide typical dimensions of the columns, which belong in the inertial range.
We derive the droplets’ collision kernel using that in the considered limit the gradients of
droplets’ flow are Gaussian. We demonstrate that as Reλ increases the columns’ aspect
ratio decreases, eventually becoming one when the isotropy is restored. We propose how
the theory could be constructed at higher Reλ of clouds by using the example of the RDF.

DOI: 10.1103/PhysRevFluids.7.124303

I. INTRODUCTION

Turbulence of air in warm clouds accelerates collisions of water droplets and thus must be
included in studies of precipitation [1–6]. This inclusion is of high interest since it could help to
resolve the bottleneck problem in rain formation. The bottleneck is caused by the narrowness of
the size distribution of droplets created by condensation of vapor. The size proximity implies that
the difference in settling velocities of the droplets is so small that their gravitational collisions

*itzhak8@gmail.com
†sg.lee@yonsei.ac.kr
‡clee@yonsei.ac.kr

2469-990X/2022/7(12)/124303(59) 124303-1 ©2022 American Physical Society

https://orcid.org/0000-0002-9813-8117
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.124303&domain=pdf&date_stamp=2022-12-13
https://doi.org/10.1103/PhysRevFluids.7.124303


FOUXON, LEE, AND LEE

would take long times, that are incompatible with the observations. Hence, the passage to the
later stages of formation of large precipitating drops, where the growth occurs by gravitational
collisions of different size droplets, demands something beyond gravity. Turbulence, that creates
size dispersion by introducing mechanism for collisions of equal-size droplets, can be the missing
factor. However, the relevance of turbulence has not been quantified so far [7] and assessment of
how much turbulence influences the rain formation is an open problem. A main problem is the
extremely high Reynolds number that holds in the clouds. Thus, numerical studies can be performed
only at much smaller Taylor microscale Reynolds numbers Reλ than in the clouds. This makes
rigorous theoretical studies of droplets’ collisions in the Navier-Stokes turbulence (NST), which is
the focus of this paper, specially significant. However theoretical studies of droplets’ behavior in
high-Reλ NST are obstructed by having to deal with flow whose statistics is unknown. The problem
is aggravated because intermittency produces significant probability of rare events that may locally
accelerate the collision rates by a large factor in comparison with estimates using typical events.

The lack of knowledge of statistics of turbulence by itself does not prohibit quantitative predic-
tions for the turbulent transport. In fact, the theory is able to provide accurate quantitative predictions
for the NST [4]. This is thanks to independence of certain properties of turbulent transport of the
details of the statistics (universality). As it is often the case in statistical physics, the universality
holds due to the appearance of sum of a large number of independent random variables in the
analysis. Here we study the case where the particle sediments so quickly through an individual
vortex that the vortex perturbs its motion only weakly. Thus, the droplet’s velocity is determined
by effects of many independent vortices accumulated during the particle velocity relaxation time
τ . The issuing universality demands that intermittency is not too strong so that the probability of
large quiescent vortices is not too high. (We remind the reader that intermittency both increases
the probability of strong bursts and of large, low turbulent intensity, quiescent regions; see, e.g.,
Fig. 8.16 in Ref. [8]. Thus, in the infinite Reynolds number limit dissipation field and vorticity
are zero almost everywhere, being supported on a multifractal set so quiescent regions are space
filling [9]). Otherwise, individual vortex is so large that the particle never leaves it during the
interaction time τ . The motion would then be determined by interaction with a single vortex
destroying the universality. This limits the study to moderate Reλ well below those in clouds where
the statistics is very intermittent. Still, we demonstrate that the results provide a useful reference
point and some of them do generalize to high Reλ.

As far as the case of weak intermittency is concerned, the present work continues the study [10]
which provided successful quantitative predictions for correlation dimension and Lyapunov ex-
ponents of particles in the Navier-Stokes turbulence. The predictions were confirmed by direct
numerical simulations at Reλ = 70 (claimed in Ref. [11] contradiction with some data is elim-
inated below). Here we provide the theory of the collision kernel and perform simulations at
the same Reλ = 70, that demonstrate full agreement with the theory. We derive angle-dependent
radial distribution function (RDF) that gives probability of finding a pair of particles at a given
vector separation. The RDF determines the collision kernel by providing probability of a pair at
collision distance. The angle dependence of the RDF allows us to obtain vertical and horizon-
tal dimensions of particles’ columns in space whose formation is the signature of the studied
fast sedimentation limit; see Fig. 1. In the remainder of the Introduction we provide outlook
(currently lacking in the literature) at the existing rigorous theories and describe the paper’s
organization.

A. Theory at weak gravity and small inertia and its breakdown in clouds

Until Ref. [10], a complete rigorous theory for inertial particles in the NST existed only at
negligible gravity and small but finite inertia [4,12]. The magnitude of inertia is measured by
the dimensionless Stokes number St which is the ratio of τ and the typical turnover-time of the
viscous scale vortices, the Kolmogorov time τK ; see Ref. [8]. The inertia is usually considered to
be small at St � 1 where the particle velocity would relax quickly to the local velocity of the flow
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FIG. 1. DNS snapshots of particles’ distributions in space at fixed St = 1, Reλ = 70 and increasing Fr
of (a) Fr = 0.0125, (b) Fr = 0.0167, (c) Fr = 0.0333, and (d) Fr = 0.05. The distributions are multifractal.
The positive difference of 3 and the fractal dimension increases linearly with Fr in the considered range.
The fractal structure is anisotropic. Pronounced columns of particles predominantly point in the direction of
gravity, that was slightly slanted from the y axis to avoid numerical artifact due to periodicity. We demonstrate
in the text that characteristic dimensions of the columns are gτ 2 in the direction of gravity and lc � 10η in
the perpendicular direction. This is confirmed by the Figure. Indeed, St = 1 and Kolmogorov scale η = 0.024,
imply gτ 2 = η/Fr. Thus, the theory predicts that characteristic longest dimension of columns is 0.024/Fr and
the characteristic shortest dimension is 0.24. This agrees with the snapshots where columns become more
convoluted at increasing Fr. There is no apparent correlation with the vorticity component in the perpendicular
direction, which would hold for the centrifugal mechanism of clustering.

and the particles would nearly trace the flow [13]. However, we demonstrate in this subsection that
intermittency of turbulence quite certainly makes the effect of inertia in clouds large, even at St � 1.

Reference [4] introduced a picture of motion of particles in space that holds at St � 1 inde-
pendently of the Reynolds number and, thus, would hold also in the clouds. This picture can be
understood by using the concept of the local Stokes number, similar to that of the local Reynolds
number [8]. This number is necessary to describe strong contrasts in the strength of particle-vortex
interaction throughout a high Reynolds number flow. The contrasts can be described via the local
energy dissipation rate ε, defined as the product of the kinematic viscosity ν and the square of
velocity gradients. The rate undergoes strong intermittent fluctuations in clouds, see Ref. [1] and
references therein. We observe that the Kolmogorov time, defining St, is given by τK ≡ √

ν/ε0
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where ε0 is the mean energy dissipation. Correspondingly the local relevance of inertia can be
characterised by the local Stokes number τ

√
ε/ν. If the local Stokes number is not small, then

strong interaction of particles with the local vortices occurs in that region. Due to the intermittency
of turbulence, the magnitude of fluctuations of the local Stokes number depends on Reλ, implying
dependence of particles’ statistics on both St and Reλ.

At St � 1, for the more probable events turbulent vortices are slow, τ
√

ε/ν � 1. The particles’
motion in these vortices is smooth and ordered in space so that there is no crossing of trajectories of
different particles. A flow of particles v(t, x) can be introduced [13], providing the changes of their
coordinates x(t ) as ẋ = v(t, x(t )). However, for fast vortices with timescale � τ , characterized by
nonsmall local Stokes number, the turbulent driving creates jets of particles that separate from the
turbulent flow, as in a sling, and cause the trajectories’ crossing [4]. This “sling effect” was observed
experimentally [14] and at any Reλ, including those in clouds, it is confined to well isolated small
regions of fast vortices. Increase of Reλ, at least in the high-Reλ limit, would make regions of the
sling effect even more rare in space because the regions of quiescent turbulence increase in size
with the Reynolds number [8]. This creates significant difficulties in experimental and numerical
measurements which must have resolution that increases with Reλ.

The above picture implies that space averages, such as the average rate of droplets’ collisions,
can be found as sums of contributions of flow and sling regions (termed below “flow contribution”
and “sling contribution”). The contributions of these regions into the collision rate were calculated
in Ref. [4]. It was demonstrated that, despite that the regions of the sling effect are rare in space,
their contribution into the collision kernel can be significant because they create optimal conditions
for collisions [4,15].

In contrast with the above qualitative picture, that is valid at any Reynolds number, quantitative
predictions of Refs. [4,12] break down at increasing Reλ. The predictions for the RDF rely on
the assumption that at St � 1 the RDF is determined by vortices whose turnover time, similar to
the most probable turnover time τK , is much larger than τ . Making that assumption, the theory
implies that distribution of inertial particles in the turbulent flow is multifractal. Multifractality
manifests itself in the RDF that obeys at small distances a power law with an exponent −α. Here
α is positive—the RDF diverges at zero separation because the particles’ concentration is singular.
An explicit formula for α via a high order moment of the turbulent velocity gradients is provided in
Refs. [4,12]. Application of the standard phenomenology of turbulence to that formula gives that at
large Reλ the magnitude of the exponent is proportional to the product of St2 and a positive power
of Reynolds number [4,16]. This implies that in the limit of large Reλ, however small St is, the
exponent, calculated under the described assumptions, is larger than 3. This however implies that
the RDF becomes nonintegrable at the origin which contradicts finiteness of the total number of
particles (the number’s second moment is proportional to the integral of the RDF over distance).

The reason for the described contradiction is that the assumption of the theory that the RDF is
determined by vortices with turnover time larger than τ becomes inconsistent at large Reλ. In fact,
the theory predicts its own breakdown via the formula for α. Intermittency of turbulence implies
appreciable presence in the flow of vortices whose turnover time is much smaller than τK . More
precisely, the probability that the turnover time is smaller than τK by a power of the Reynolds
number is appreciable [8], cf. the recent Ref. [17]. As a result, in the limit of large Reynolds
numbers the gradients that determine α grow with Reλ according to a nontrivial power law [16].
This implies that the timescale of the vortices that determine α decreases with Reλ as τK Re−q

λ

with q > 0 (according to the standard phenomenology timescales as the inverse gradient). Thus,
considering increase of Reλ at a fixed small St, at large enough Reλ the timescale of the relevant
vortices becomes of order τ . We designate the corresponding threshold Reynolds number by Re∗

λ.
This number is not sharp and is determined by order of magnitude only via the asymptotic equality
τK (Re∗

λ)−q ∼ τ . Thus, at Reλ � Re∗
λ the assumption that the relevant vortices have timescale larger

than τ is inconsistent. We conclude that the RDF is determined at Reλ � Re∗
λ by vortices whose

characteristic turnover time is of order τ or less. Anomalously strong, short-lived vortices become
relevant to the RDF at higher Reλ because intermittency makes their probability appreciable. We
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also conclude that an approach other than that of Refs. [4,12] must be devised at Reλ � Re∗
λ. It is

anticipated that Reynolds number dependence saturates in this range since characteristic timescale
of the relevant “resonant” vortices gets fixed at about τ . This would explain observations of the
weak Reynolds number dependence of α, both numerical [18,19] and experimental [20].

The above considerations demonstrate that the actual validity condition of the small inertia
theory of Refs. [4,12] is St � Re−q and not St � 1, cf. Refs. [21,22]. The value of q can hardly
be predicted and must be empirically determined. Thus, the theory of Refs. [4,12] is a so-called
asymptotic theory at small St, i.e., it holds at St → 0 when Reλ is fixed.

The above demonstration of limitations of the theory of Ref. [4] due to intermittency is performed
by using the laws holding in the limit of large Reλ. This does not signify that intermittency
becomes relevant only at Reλ → ∞. Simulations of Ref. [21] of the particles’ motion in the NST
demonstrated that for St ∼ 0.1 the small inertia theory of the RDF of Ref. [4] applies accurately at
the moderate Reλ = 21. However, considering higher Reλ, already at Reλ = 47, that theory fails.
We see that smallness of St does not guarantee the smallness of inertial effects already at rather
moderate Reλ. Despite that the criterion of validity of the theory, St � Re−q, derived at Reλ → ∞,
cannot be used at Reλ of Ref. [21], we can use it to get very rough idea of magnitude of q. We find
that q ∼ 0.5 i.e., it is a number of order one. Using q = 0.5 we find that for Reλ ∼ 104, that can
hold in the clouds, the effects of inertia on the RDF are appreciable at St as small as 0.01 (which
covers the whole range of relevant droplet sizes, see Sec. II). More precise considerations demand
extensive future numerical work.

The above conclusion transfers to the collision kernel which, under the assumption of small
inertia, is given by a sum of two terms [4]. One term describes the contribution of vortices whose
turnover time is much larger than τ . That term is proportional to the RDF and, as we saw, it becomes
determined by vortices with turnover time of order τ at higher Reλ. The other term in the collision
kernel describes the contribution of the sling effect which by definition is due to vortices with
timescale τ or smaller. Thus, in the limit of high Reλ the collision kernel is due to vortices with
turnover time τ or smaller.

We summarize how increase of Reλ results in the breakdown of the theory of Ref. [4]. The
theory demonstrates that the clustering rate, holding in the regions of the smooth motion of the
droplets, is determined by vortices whose characteristic timescale decreases with Reλ as a power
law. The theory holds at moderate Reλ where this timescale is much larger than τ as necessary
for the self-consistency of the assumption of smooth motion. When Reλ increases, faster vortices
with decreasing turnover time become relevant, until their timescale becomes comparable with τ

at some Re∗
λ, cf. Ref. [21]. When this happens the separation of the total rate of collisions into the

contributions of the regions of the smooth motion and of the sling effect, that was used in Ref. [4]
for the calculations, breaks down. Both contributions are determined by “resonant” vortices with
lifetime of order τ . The corresponding changes in the theory will be published elsewhere.

B. Fast sedimentation theory

Applicability of the above theory to clouds is limited by three factors. The first factor is the
Stokes number which is not necessarily small for the droplets taking part in the rain formation. The
second factor is gravity, which in clouds is strong and not weak. The magnitude of gravity can be
measured by the Froude number Fr given by the ratio of the typical (Lagrangian) acceleration of
the fluid particles ε

3/4
0 /ν1/4 and gravitational acceleration g, i.e., Fr ≡ ε

3/4
0 /(gν1/4). Thus, Ref. [4]

applies at Fr → ∞ when gravity is negligible. In contrast, in the clouds even rather strong cloud
turbulence with ε0 = 2000 cm2/s3 gives Fr = 0.5. For typical turbulence with smaller ε0, the Froude
number is yet smaller. The last limiting factor is the high Reλ of the clouds, as described above. The
two former limitations were overcome in Ref. [10] who constructed the theory that holds at strong
gravity, Fr → 0, and any St including St 
 1. However, this theory, similar to that considered in the
previous subsection, is also asymptotic and has the validity condition Fr � Re−q′

with q′ > 0, as
will be discussed in this work. Thus, how small Fr must be, for the theory to be valid at a given Reλ,
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is not known. It was found in numerical simulations of Ref. [10] that at Reλ = 70 the validity of the
theory demands Fr � 0.033 which implies quite weak typical accelerations ε

3/4
0 /ν1/4 as compared

with the gravity. The theory was also shown to apply reasonably well at Fr = 0.05.
The main limitation of Ref. [10] is again the Reynolds number—the intermittency increases the

fluctuations of the gradients and destroys the approximations made. Nevertheless, this theory, in
comparison with that of Ref. [4], incorporates the effects of the gravitational sedimentation of the
droplets, that are strong in precipitating clouds, giving us qualitative insight and the possibility of
consistent interpolation. It seems reasonable, given that clouds are indeed characterized by small Fr,
to make the small Fr theory a starting point for approaching collisions in clouds. It is to this theory
that this paper is devoted. Here we provide more detailed predictions than in Ref. [10], confirm them
numerically and describe how the theory breaks down at higher Reynolds number.

Before continuing the development of the approach of Ref. [10], a controversy must be faced.
The theoretical formula of Ref. [10] for the correlation codimension α, studied in detail below, was
tested numerically in Ref. [11] at Reλ = 398. The comparison was done for Fr = 0.052 and a range
of St. They observed that while [10] describe correctly the independence of α of St for St � 1,
quantitatively the predictions are wrong by about 50 percent. It is unfortunate that the performed
comparison contained two mistakes. Equation (4.21) of Ref. [11], which the authors considered as
the prediction of Ref. [10] for α, is a factor of 2 smaller than the actual prediction made in Ref. [10].
If the correct formula is used, then the discrepancy is about 30 and not 50 percent. This seems to be
as much as one can hope for, because Ref. [11] use the predictions outside the domain of validity of
the theory, which is α � 1, cf. Ref. [12]. In fact, the result of Ref. [11] completely agrees with the
simulations of Ref. [10] that demonstrated that at Fr = 0.05 there are significant deviations from
the theory. The inequalities α � 1 and Fr � 1 differ much because of the large numerical factor:
we have α ≈ 13Fr, see below and Sec. IV.

We stress the asymptotic character of the described theories to avoid future misunderstandings.
Both theories of Ref. [4,10] hold rigorously in the limits of St → 0 and Fr → 0, respectively,
when the Reynolds number is held fixed. Thus, if it is found that the predictions of Ref. [10]
are invalid, then it tells that Fr is too large and by decreasing Fr the theory will be made to hold
true. Similar situation holds for St → 0 theory of Ref. [4]. Thus, the observation of Ref. [21] of
breakdown of the theory of Ref. [4] at Reλ � 47 only tells that at this Reλ the theory applies
at St smaller than those considered in Ref. [21]. These St are determined by the condition that
their corresponding τ are much smaller than the lifetime of the vortices that determine the sum
of the Lyapunov exponents in Ref. [4]. As an example of the use of the asymptotic theory
beyond its region of validity we will demonstrate below that the numbers obtained from Fr → 0
theory at Reλ = 70 in Ref. [10] can be used for predicting the values observed at Reλ = 398 in
Ref. [11].

C. Review of developments before the work [10]

We review the developments leading to the small Fr theory of Ref. [10], both to give credit and
address concerns of an anonymous referee. This theory was aimed to explain the observations of
Ref. [23] of patterns of particles sedimenting in turbulence. Flow description of the particle motion
was employed, which is rigorously valid at Fr → 0 at other parameters, including the Reynolds
number, fixed, cf. above. The earliest clue to the possibility of the flow description seemingly was
made in Ref. [22] who observed that increasing gravity at a fixed, not necessarily small St, damps
the sling effect. The reason is that faster sedimentation of the particle shortens the interaction time
during which an individual vortex swings the particle before the shooting. Thus, the sling events,
that destroy single-valuedness of the flow [4], become more rare at increasing gravity and at a
sufficiently strong gravity the flow may become single-valued despite a possibly large St.

The value of gravity at which a smooth single-valued flow of droplets exists in the NST was
provided in a Master thesis [24]. The study was done disregarding the effects of intermittency
and predicted that at Fr � 1 the flow is well-defined for typical vortices, independently of St.
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In application to clouds this implies that all droplets with size within the range from 10 to
60 microns, which is the range where turbulence has relevance, move in most of the space
according to a size-dependent smooth flow. The condition, that the regions where the smooth
flow description breaks down are rare, happens to imply that the flow’s compressibility is nec-
essarily weak (this coincidence occurs because the same property of inertia that causes the sling
effect also causes the compressibility of the particles’ flow). This allows to derive the droplets’
distribution from the general solution for tracers’ distributions in a weakly compressible random
flow [4,12].

Later, the observation that the sling effect is deactivated at large gravity was done in a model
two-dimensional flow studied in the regime where the turbulent flow constitutes a small perturbation
of the particle’s trajectory in Ref. [25], see also Refs. [23,26] and cf. similar expansion in Ref. [13].
All these works but Ref. [26] used for the study of the sling effect the blowup equation introduced
in Ref. [4]. Reference [26] provided a different outlook by observing numerically that at Fr →
0 average velocity difference of nearby particles scales linearly with the distance between these
particles. Thus, Ref. [26] concluded that in this limit the particles become tracers in an effective flow.
Care is needed though. Indeed, if there is a flow, then the linear scaling holds for each realization
and hence also statistically. However, linear scaling of the average velocity difference would also
hold for a velocity field with (effective) discontinuities as in Burgers turbulence [27]. Thus, the
observed linear scaling can be used as an indication of the existence of the flow however not as its
proof. Finally, Ref. [10], which worked independently of Refs. [25,26] (the first arxiv version of
Ref. [10] appeared in the same year with statement of independent work), gave a rigorous theory
of the droplets’ flow able to provide quantitative predictions for the particles’ behavior in the NST.
Direct numerical simulations (DNS) of the NST were done for weakly intermittent turbulence with
Reλ = 70 and confirmed the theory. The work demonstrated how complete calculations can be
performed, despite that there is no explicit formula for the droplets’ flow in terms of the underlying
fluid flow (the relationship between these flows is nonlocal both in space and in time).

The limit of large gravity studied in Ref. [10] assumes that the droplet’s settling velocity
is larger than the typical turbulent velocity at the Kolmogorov scale [8]. However, the settling
velocity must still be smaller than the integral scale velocity, to fit the applications in clouds.
Thus, turbulence is not a small perturbation of the particles’ trajectories, as in Ref. [25] or some
qualitative considerations of Ref. [26], because the particle velocity coincides with the local flow
velocity in the leading order. Reference [10] differed from previous works by aiming at a complete,
rigorous Fr → 0 theory for particles in the NST without modeling assumptions. This comes as
the next effort to get a rigorous theory for the NST, after the St → 0 theory of Ref. [4]. For the
considered Reλ = 70 it was observed numerically that the theory is accurate for Fr � 0.03, with
some theoretical predictions holding up to Fr = 0.1, cf. above.

Certain aspects of the theory of Ref. [10] were observed previously. Due to fast sedimentation
the separation of particle pairs is driven effectively by white noise, as it was observed for the NST
in Ref. [28]. The authors originally considered the case of zero gravity and large inertia, St 
 1.
The large inertia causes the particle to drift fast through the fluid so that the flow “looks to it”
as a white noise. However, Ref. [28] observe that, using the gravitational drift instead of inertial
one, gives the answer for the case with gravity. The value of the first Lyapunov exponent for
the case with gravity was provided. It can also be seen from this work that pair separation is
effectively horizontal, the result which was significantly developed further in Ref. [26]. Horizon-
tality of separation implies that the particles spend more time when located one above the other
which will be seen as columns in space observed in Refs. [23,26]. Independently, the applicability
of the white noise model, and preferential alignment of the vector inter-pair distance with the
vertical, were observed in the model flow of Ref. [25], who also derived numerically the Lyapunov
exponents of their model. The observation that gravity enhances preferential concentration at
St � 1 and can result in strong particle clustering was done in Refs. [23,25,26] independently.
In contrast, at St � 1, gravity decreases the clustering where three different asymptotic regimes
exist [10].
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D. Organization of the paper

All studies in this paper are performed for the Navier-Stokes equations of incompressible flow
and no model of turbulence is used. Since the text is rather long then for reader’s convenience
we describe organization of the material. In the next section we introduce the equation of motion,
discussing its applicability in the high Reλ case of clouds, and the numerical scheme. The main
message of this section for future studies is that in high Reλ turbulence we need to use a more
fundamental description of the particle-vortex interaction than in the usually used equation of
particle motion, to be certain that we do not miss significant contributions in the collision kernel.
This is because the flow fluctuations with scales smaller than the particle size might be relevant due
to intermittency.

In Sec. III we describe how increase of Reλ invalidates small Fr theories in the simplest context.
We derive the remarkably simple structure of separation of close particles at Fr → 0: the vertical
component of the separation is conserved and the horizontal component evolves as separation of
two tracers in a white-noise velocity known as the Kraichnan model [29]. This structure is the
reason for columns’ formation. We derive the spectrum of the Lyapunov exponents extending the
results of Ref. [10]. We observe that horizontal motions are driven by vortices much larger than
the Kolmogorov scale whose characteristic size increases with Reλ. This leads to breakdown of
the theory above certain Reλ, where the statistics becomes isotropic and particles would not form
columns in space.

The next section is devoted to reviewing the developments that preceded the theory of Ref. [10]
and description of the main predictions of that theory. It is demonstrated, in a significantly more
detailed way than in Ref. [10], that the DNS of the NST at Reλ = 70, indicate unequivocally
that Ref. [10] provides us with a completely valid theory that can be used in the domain of its
validity. The contradiction with simulations of Ref. [11] at Reλ = 398 is due to the application
of the theory outside the domain of validity (this is besides that Ref. [11] use a wrong numerical
factor in studying the prediction of Ref. [10]). Section V is devoted to explanation that the theory
of Ref. [10] breaks down at increasing Reλ. The reason is growing intermittency that implies
both increasing regions of calm turbulence, allowing long coherent particle-eddy interactions, and
increasing relevance of strong bursts of velocity gradients. It must be stressed again that the theory
would breakdown does not mean that there is some critical Reλ where it stops to work. Rather, it says
that the range of small Fr where Ref. [10] holds, shrinks to zero with increasing Reλ in a power-law
fashion.

The rest of the paper is devoted to the case of Fr so small that the flow description of Ref. [10]
holds. We provide complete theory of collisions in this limit and its numerical confirmation.
Section VI derives the RDF at not too small angles and equal-size particles. The main difference
from Ref. [10] is the recognition of the fact that the smoothness scale of the droplets’ flow is larger
than the Kolmogorov scale by order of magnitude. We provide numerical data for the RDF (which
was not done in Ref. [10]) and demonstrate that they confirm the theory. We also derive in this
section a sum rule. That provides the probability density function (PDF) of the inter-pair distance
irrespective of the pair’s orientation in space, which equals the angle-averaged RDF. We demonstrate
that small angles, that correspond to preferential vertical orientation of the pairs, can be neglected
in the PDF of the distances. This imposes a constraint on the magnitude of preferential orientation.

The complete angle dependence of the RDF of equal-size particles is derived in Sec. VII.
Section VIII extends the calculations to different size particles by providing the bidisperse RDF.
Section IX describes reduction of collision kernel of different size particles to the RDF. We apply
Yaglom-type relation for rewriting the kernel and calculate the average velocity of approach of
colliding droplets. The difference from the classical work [30] is that compressibility demands
somewhat different approach in treating the kernel. The approach velocity can be calculated
completely due to Gaussianity of gradients of the droplets’ flow. The next section collects the
information to complete the calculation of the collision kernel. Section XI studies the possibilities
for interpolation of the results to the Reynolds numbers characteristic of clouds.
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The paper is quite long and for convenience of the reader we provide a rather detailed summary
and outlook in Sec. XII. Appendices provide technical details of calculations. The main results
of this work are: demonstration of clash of Fr → 0 and Reλ → ∞ limits; theory and numerical
confirmation of angle-dependent RDF at Fr → 0; description of dimensions of particles’ columns
in space (see Fig. 1) and conjecture on the RDF in the high Reynolds number turbulence in clouds.

II. EQUATION OF MOTION AND ITS APPLICABILITY IN CLOUDS

In this section, we consider the Newton equations of motion of the droplets. The equations are
characterized by three dimensionless parameters—the Froude number Fr = ε

3/4
0 /[gν1/4], the Stokes

number St = τ/τK , and the Taylor microscale Reynolds number Reλ; see the Introduction. Our
definition of Fr is one of a number of possible definitions. It is chosen here because of its indepen-
dence of the parameters of the droplets: Fr characterizes turbulence with respect to gravity and is a
property of the flow only, cf. Ref. [21] and below. All the three parameters play significant role in
defining the nature of the particle trajectories. Other dimensionless parameters used in the literature
are functions of the three parameters, e.g., the gravitational settling parameter Sg ≡ gτ/(εν)1/4, used
in Ref. [31] and some other works, equals St/Fr.

We describe the parameter ranges that are relevant for the rain formation problem. We stress the
possibility that the usually used equation of motion could actually not apply in the clouds because
of the strong intermittency.

Typical values. We consider spherical droplets with radii a from 10 up to 60 microns, which
is the size range where turbulence is most relevant in the formation of larger droplets [1]. For a
given droplet radius a, the Stokes and Froude numbers are not independent. We consider the Stokes
number Sts(a) ≡ τs(a)

√
ε0/ν defined with the help of the Stokes time τs(a) = (2/9)(ρ/ρa)(a2/ν)

where ρa is the density of air and ρ is the droplet density (this is not St in the rest of the paper, see
below). We have Sts(a) = 0.02(a/15)2√ε0/10 where a is measured in microns, ε0 is measured in
cm2/s3 and we use the numerical values of ν = 0.15 cm2/s and water-to-air density ratio of 814.
This formula can be used for studying the size dependence of Sts at different levels of turbulence,
as characterized by ε0. For instance, using a of 10 microns we find Sts � 0.01 for ε0 � 10. We
conclude from considerations of Sec. I A that in the clouds, in the whole range of relevant droplet
sizes, the RDF and the collision kernel are determined by vortices with timescale of order τ .

We also observe that Sts(a) = 0.5(a/15)2Fr2/3. We find that at Fr = 0.03 (corresponding to
ε0 = 48 cm2/s3 by ε0/10 = 517Fr4/3), the range of Sts(a) � 1 corresponds to droplets’ radii larger
than forty microns. When Fr = 0.05 (which is ε0 about 100 cm2/s3), the range of sizes with
Sts(a) � 1 is somewhat larger than thirty microns. For not weak turbulence with Fr = 0.29 (with
ε ≈ 1000 cm2/s3), we have Sts(a) � 1 at size of 15–20 microns. Thus, allows to see the range of
sizes with nonsmall inertia for different strengths of turbulence.

Equation. We use the effective linear drag description within which the droplet’s coordinate x(t )
and velocity v(t ) obey

dx
dt

= v,
dv

dt
= −v − u(t, x(t ))

τ
+ g, (1)

where u(t, x) is the incompressible homogeneous turbulent flow (obeying the Navier-Stokes equa-
tion), g is the vector of gravitational acceleration, and τ is the effective relaxation time, described
below. We assume that the droplets form a dilute gas; therefore, the droplet’s motion can be
considered independently of other droplets. We also assume that diluteness allows to neglect the
reaction of particles on the turbulence so that u(t, x) is a given flow independent of the particles’
locations and velocities, see the criterion in Ref. [32] and cf. Ref. [33]. The equation’s validity
demands that the particles are much denser than the fluid, which is true for liquid droplets in air.
The condition of validity of the linear friction force is that the flow changes weakly at the scale of
the particle, i.e., a is much smaller than the local viscous scale [8], and the Reynolds number of the
flow perturbation due to the particle Rep, given by the product of the drift velocity |v − u(t, x(t ))|
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and 2a/ν, is small, Rep = 2|v − u(t, x(t ))|a/ν � 1. We consider these conditions with the account
of intermittency.

Role of fluctuations of viscous scale. Due to intermittency, the local viscous scale has strong
fluctuations where with appreciable probability its values may be smaller than the Kolmogorov scale
η ≡ ν3/4/ε

1/4
0 by a power of Reλ, see, e.g., Ref. [8] for theoretical references and [17] for a recent

numerical observation. In clouds, the Kolmogorov scale is one or two orders of magnitudes larger
than relevant droplets’ sizes a, see numerical estimates below. Since the viscous scale associated
with extreme events is smaller than the Kolmogorov scale by Reδ

λ, where δ is about 1/2 according to
Ref. [17], then it seems quite certain that Eqs. (1) do not apply to extreme events in clouds. However,
this is not necessarily of concern since these events might be irrelevant for the space-averaged rate
of droplets’ collisions. What is more relevant is whether the viscous scale associated with those
vortices that are relevant is larger than a. As an example we consider the situation where the collision
kernel is determined by rare events for which the local Froude number ε3/4/[gν1/4] is of order one
(to be distinguished from Fr that always stands for ε

3/4
0 /[gν1/4]). Since the collision rate increases

with Fr at Fr � 1, e.g., as described in detail below, then it is plausible that this situation holds for
high Re, at least in a wide range of St, cf. Ref. [26]. This is a “resonance” condition, similar to the
condition on relevant vortices at negligible gravity considered in the Introduction. However, for the
events where locally ε3/4/[gν1/4] ∼ 1 velocity gradients are larger than the typical value of

√
ε0/ν

by a factor of Fr−2/3. The corresponding local viscous scale is then smaller than the Kolmogorov
scale by factor of Fr−1/3. Here we assume that the local viscous scale is of order of ν3/4ε−1/4. Since
in practice Fr1/3 ∼ 1 then the assumption that the local viscous scale of cloud vortices relevant for
collision kernel is much larger than a appears self-consistent in this case. Further studies of which
vortices are relevant in which range of parameters are necessary, more so, that nontrivial geometry
might occur.

Some reservations need to be made. We used in the above estimates the standard phenomenology
of turbulence [8] which could be invalid [17]. This might demand a reconsideration. Moreover
self-consistency of the assumption that the local viscous scale of relevant vortices is much larger
than a may not yet guarantee that vortices with scale smaller than a can be neglected in the collision
kernel. For instance, self-consistency argument fails for the sling effect: the calculation of the
collision kernel that neglects the sling effect is self-consistent in weakly intermittent turbulence
(see the Introduction), yet the sling effect’s contribution may be appreciable [4]. Therefore, it might
be necessary to perform a separate study of the effect of vortices with spatial scale �a. These
vortices could cause a kind of “sling effect” of their own because they could generate large velocity
difference of nearby particles. This would demand separate account of these vortices in the collision
kernel. It seems that the only way to study this possibility is by performing numerical simulations
at high Reλ. These simulations must use the description of motion that is more fundamental than
Eqs. (1) and applies also to vortices with size �a. This is left for future work.

Remaining condition of Rep � 1. For the study of this condition it is useful to integrate the
velocity equation

v(t ) = v(0) exp

(
− t

τ

)
+

∫ t

0
dt ′ exp

[
− t − t ′

τ

][
u(t ′, x(t ′)) + gτ

τ

]
. (2)

We find that, after the particle spent in the flow time larger than τ , we have

v − u(t, x(t )) = gτ +
∫ t

−∞
dt ′ exp

[
− t − t ′

τ

][
u(t ′, x(t ′)) − u(t, x(t ))

τ

]
, (3)

where we rearranged the terms so that the right-hand side (RHS) provides the velocity of the drift
with respect to the local flow. The drift has a contribution due to the sedimentation velocity gτ and
the inertial lag behind the flow. For the study of the RHS we start with instructive case of negligible
gravity.
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A. Drift velocity at negligible gravity

Here we consider the self-consistency of the assumption Rep � 1 in the case of negligible
gravity, Fr → ∞.

Case of St � 1. Provided that the local Stokes number τ
√

ε/ν is much smaller than one, we have
the Maxey formula [13]

v − u(t, x(t )) = −τa(t, x(t )) + O

(
τ 2

τ 2
ν

)
, a ≡ ∂t u + (u · ∇)u,

1

τν

≡
∣∣∣∣1

a

da

dt

∣∣∣∣, (4)

where we introduced the field of Lagrangian accelerations of the fluid particles a(t, x) and local
time of variations of viscous scale eddies τν . The above formula is readily confirmed by using
Taylor expansion of velocity difference in the integrand in Eq. (3) at t ′ = t . The equation breaks
down for fast vortices with τν � τ . However, we demonstrated in the Introduction that, in the limit
of large Reλ, both the RDF and the collision kernel are determined by vortices with τν ∼ τ . We
conclude that for clouds Eq. (4), despite that it is true in most of the space, see the Introduction,
is irrelevant even for St � 1 (the equation could still be used for calculating the collision kernel of
droplets with extremely small St; however, this would not have practical relevance).

We see from the above that we cannot estimate the drift velocity with the help of Eq. (4). The
velocity is estimated by observing that the relevant vortices with τν ∼ τ cause the particles to move
with respect to the flow at velocity of order

√
ν/τ . This is the typical velocity of the (local) viscous

scale eddies with turnover time τ (this assumes the usual phenomenology of turbulence [8] which
is not obviously true at any Reλ, cf. above and [17]). We conclude that the Reynolds number Rep =
2|v − u(t, x(t ))|a/ν of relevant flow perturbations due to the particle is of order

√
a2/ντ . Using

the Stokes formula τs(a) = 2a2ρ/(9νρa) and τ ∼ τs(a) we find that the condition Rep � 1 gives√
ρa/ρ � 1. Here ρa is the density of air and ρ is the droplet density. This condition is independent

of the particle radius a and it is obeyed by liquid droplets in air. We remark that the obtained
condition

√
a2/ντ � 1 coincides with the condition that a is much smaller than the local viscous

scale
√

ντ of vortices with timescale τ .
We conclude that Eqs. (1) are valid at St � 1 for all relevant vortices. Moreover we can

asymptotically continue this conclusion to St ∼ 1 since at St ∼ 1 the statistics is still determined
by vortices with τν ∼ τ . Thus, at zero gravity and St � 1 the usage of the equation of motion seems
valid, up to reservations described above.

Case of St 
 1. It remains that we consider the case of St 
 1 and negligible gravity where the
timescale τ belongs in the inertial range of turbulence (there could also be the case of τ comparable
or larger than the eddy turnover time of the integral scale turbulence. However, this case does
not seem to have applications in the rain formation problem and will not be considered). If Reλ

is moderate so that intermittency is negligible, then we can use the dimensional Kolmogorov-
type estimate

√
ε0τ for the drift velocity [28]. This gives Rep = √

ε0τ (a/ν) = √
St(a/η) which

might not be small for large St particles. At higher Reλ, where intermittency is relevant, we
can use Landau-type argument [8]. Within it, the velocity is estimated by changing ε0 with the
local energy dissipation rate ε, i.e., is given by

√
ετ . The resulting changes depend on which

flow fluctuations are relevant in the collision kernel at St 
 1. Theoretical study is yet to be
done.

Our conclusion is that Rep � 1 is self-consistent for particles with not too large St. However,
for certain St > 1, whose value depends on the intermittency, we have Rep � 1 for relevant
fluctuations of turbulence, the flow perturbation due to the particle is nonlinear and Eqs. (1) break
down.

B. Reynolds number of flow perturbation Rep at Fr � 1 and definition of St

We consider the full Eqs. (3) in the case of nonnegligible gravity. We assume Fr � 1 aiming at
asymptotic description of the clouds, as explained in the Introduction. In this case the drift velocity
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is given in the leading order by the sedimentation velocity in the still air, v − u[t, x(t )] ≈ gτ ; see
Ref. [10]. This can be readily demonstrated at St � 1 where the particles’ acceleration v̇ is of
the order of the acceleration of the fluid particles. This, by definition of Fr � 1, is much smaller
than g, so that the left-hand side (LHS) of the velocity equation in Eqs. (1) is negligible, giving
v − u[t, x(t )] ≈ gτ . At St � 1 we use that Eq. (3) implies |v − u(t, x(t )) − gτ | ∼ |u(t − τ, x(t −
τ )) − u(t, x(t ))| where we estimate the integral as the velocity difference in the particle frame at
time lag τ . This difference is either due to turbulence’s changes in time or in space. The former are
given by the typical velocity

√
ε0τ of eddies with timescale τ ; see Ref. [8]. In turn, the variations

in space are caused by the particle crossing during time τ of the distance gτ 2 due to sedimentation.
At moderate Reλ with negligible intermittency, this contributes to |u(t − τ, x(t − τ )) − u(t, x(t ))|
the Kolmogorov velocity difference (ε0gτ 2)1/3 between spatial points separated by gτ 2. We find the
estimate

|v − u(t, x(t )) − gτ | ∼ max[
√

ε0τ , (ε0gτ 2)1/3] ∼ √
ε0τmax[1, St1/6Fr−1/3]. (5)

We conclude from this formula by using Fr � 1 and St � 1 that the drift velocity is gτ by using

|v − u(t, x(t )) − gτ |
gτ

∼ max[FrSt−1/2, Fr2/3St−1/3] � 1, (6)

which proves v − u(t, x(t )) ≈ gτ . At higher Reynolds numbers where intermittency is relevant,
significant changes might be necessary. Their implementation demands the currently missing
knowledge of which type of intermittent fluctuations, whose values by themselves cover a wide
range of orders of magnitude, are relevant.

We find that the Reynolds number Rep of the flow perturbation by the particle, Rep = 2|v −
u(t, x(t ))|a/ν equals 2agτ/ν. This number is small at sizes smaller than thirty microns where τ

in Eqs. (1) is the Stokes time τs(a) = (2/9)(ρ/ρa)(a2/ν), given by the droplet’s mass 4πρa3/3
divided by the coefficient of the Stokes force 6πρaνa. In contrast, at radii from 30 to 60 microns we
have Rep � 1. There an effective function τ (a), different from τs(a) must be used as τ in Eqs. (1);
see Refs. [1,34]. It is with the help of this function that we define the Stokes number St(a) =
τ (a)

√
ε0/ν, which determines the strength of the droplets’ inertia, and not τs(a), cf. Refs. [10,21,34].

The times τ (a) and τs(a) are of the same order in the size range of interest; the use of τ (a) in
equation of motion, as compared with the use of τs(a), was found to decrease the collision kernel of
larger droplets by up to 26 percent [34].

C. Range of considered parameters

In the rest of the paper, unless told otherwise, we assume that St � 1, since there is already
a well-developed theory for droplets whose size obeys St(a) � 1. The traditional small St theory
relies on Eq. (4), see Refs. [4,13]. However, in some cases Eq. (4) does not hold at St � 1 because of
the gravity; see the study of all possibilities in Ref. [10]. We remark that other sets of dimensionless
parameters, different from our St, Fr and Reλ are in use, cf., e.g., the studies in Refs. [1,34] which use
the parameter Sv = gτ (a)/(εν)1/4 = St/Fr, which is the ratio of the gravitational settling velocity
of the particle and the velocity of turbulent eddies at the Kolmogorov scale. This parameter mixes
characteristics of particles, gravity, and turbulence and is much larger than one in the range of
Fr � 1 and St � 1 that we study.

In clouds the velocity at the integral scale of turbulence L is much larger than the sedimentation
velocity. Thus, we assume that the first term in v(t ) ≈ u(t, x(t )) + gτ dominates the sum, that is the
typical value of the integral scale velocity (ε0L)1/3 is much larger than gτ for relevant τ (for the limit
where v(t ) is dominated by sedimentation and gτ 
 (ε0L)1/3 see Ref. [13] and also Refs. [25,26]).
We must keep gτ in v(t ), despite that it is much smaller than u(t, x(t )) since it dominates at small
scales where the clustering occurs, exceeding the Kolmogorov scale velocity. The approximation
v(t ) ≈ u(t, x(t )) + gτ is equivalent to stating that the droplets are transported by the flow u(t, x) +
gτ . This flow is incompressible and would bring no clustering. Inclusion of further corrections to
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this approximation is necessary for the description of inhomogeneous spatial distribution of the
droplets in the steady state.

D. Direct numerical simulations

To test below the theoretical predictions we performed DNS of the particle-laden isotropic
turbulence. The Navier-Stokes equation was numerically solved on 1283 grids using a spectral
method on the periodic cubic domain to describe the homogeneous isotropic turbulence at Reλ = 70.
The equation of particle motion [Eq. (1)] was solved by taking into account the linear Stokes drag
and gravity together. The initial positions and velocities of the particles are random and local
fluid velocities, respectively. Information of fluid quantities at the particle position was obtained
using the fourth-order Hermite interpolation scheme [35,36]. The details of the numerics can
be found in Refs. [37–40]. The same code has been used in various studies of particle-laden
isotropic turbulence [41–47]. Typical snapshots of the particles’ distribution in the steady state
are shown in Fig. 1. The angle dependence of the RDFs was computed in a statistically steady
condition with five different populations of Np = 9, 971, 200 particles for each Froude number,
Fr = 0.0125, 0.0167, 0.025, 0.033, 0.05. The Stokes number is fixed at St = 1. Here, Np was
determined by Nη = 2.33, which is the average number of particles within a sphere with radius
η. For the estimation of the correlation codimension α using Eq. (44), the Lyapunov exponents
were computed by releasing many pairs of particles. The initial distance between the particles is
set to 10−4η, and the change in distance between two particles, the area between three particles,
and the volume constructed from four particles were measured on the basis of Gram-Schmidt
renormalization for a period of 80τη after the transient period due to the arbitrary initial condition.
There are 10 000 sets of pairs released in one flow field, and data are collected over a total of
12 flow fields. The same method was used in our earlier works on droplets and bubbles [10,48].
In our simulations the only parameter which we changed was the gravity acceleration that
changed Fr.

III. LYAPUNOV EXPONENTS, COLUMNS, AND THEIR DISAPPEARANCE AS Reλ GROWS

In this section we study exponential separation of two particles in the viscous range. This is
probably the shortest path to deriving the small-scale columnar structure formed by the particles. We
provide a concise formula for the Lyapunov exponent λ1 of the droplets via the energy spectrum of
turbulence E (k). These results were obtained in Ref. [10] where also further references are provided.
Here we use a simpler approach, similar to Ref. [28], cf. Ref. [26]. This allows us to address the
breakdown of the theory at increasing Reynolds number. The breakdown implies that the columns
that were observed in the direct numerical simulation might disappear if Reλ is increased at fixed
Fr and St. We also provide the Lyapunov exponent in a range of nonsmall Fr, that was not derived
previously.

It is a direct consequence of the equation of motion (1), that for r deep inside the viscous range,
the separation vector of the equal-size droplets r obeys

ṙ = V , V̇ = −V − sr
τ

; sik (t ) = ∇kui(t, x)|x=x(t ), (7)

where sik is the matrix of gradients of turbulent flow in the frame of one of the particles whose
trajectory is designated by x(t ). We will use this equation for the calculation of λ1 which will be
seen to be determined by vortices whose size Lc is in the inertial range and much larger than the
Kolmogorov scale η. Therefore, the result can be applied to the evolution of r(t ) as long as r(t ) � Lc

and not under the more stringent r � η.
We first consider Eq. (7) at moderate Reynolds numbers with weak intermittency where rigorous

study of Fr → 0 limit is possible. The impact of intermittency on our considerations will be
considered later (it must be observed however that Lc 
 η is a manifestation of intermittency. Our
detailed assumption will be seen below).
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A. Derivation at moderate Reλ

We study the parameters’ range of Fr � 1 and St � 1 assuming that Reλ is moderate so that
several quantities in the study below obey the Kolmogorov-type estimates [8]. The particle moves
with respect to the local flow at the velocity gτ , as explained above. This implies [4] that the
correlation time of the matrix sik (t ), providing velocity gradients in the frame of the droplet, is
the minimum of the Kolmogorov time τK and the time τg ≡ η/(gτ ). Here τg is the time during
which the droplet moving through the flow at velocity gτ crosses the correlation length of the
turbulent velocity gradients, the Kolmogorov scale η. Observing that τg/τK = Fr/St is small in
the considered range of parameters (Fr � 1 and St � 1) we conclude that in our case sik (t ) varies
in time at the timescale τg. During this timescale, which is much less than the turnover time of the
viscous scale eddies τK , the field of the velocity gradients does not change in time appreciably
if considered in the frame of the fluid particles. Therefore, the temporal correlation function
〈∇kui(t, x(t ))∇rup(t ′, x(t ′))〉 equals the spatial correlation function 〈∇kui(t, x(t ))∇rup(t, x(t ) +
gτ (t ′ − t ))〉. Moreover, the product of the typical value of sik (t ), which is τ−1

K , and of the corre-
lation time τg of s(t ) is small. Considering this product as a small parameter, the leading order
approximation is the limit of zero correlation time where s(t ) in Eq. (7) can be replaced by white
noise [28].

We demonstrate in detail how the white noise description of the effect of s on the evolution of r
and V in Eq. (7) arises. We observe that Eq. (7) gives

V (t ) = V (0) exp

(
− t − t ′

τ

)
+ 1

τ

∫ t

0
exp

(
− t − t ′

τ

)
s(t ′)r(t ′)dt ′. (8)

We concentrate on the phenomena where the particles stay inside the viscous scale for times much
larger than τ . There the above equation holds at t 
 τ and the first term can be neglected. There
are physical phenomena that occur on a timescale τ or smaller so that for them t 
 τ is not the
range of interest. An example is the sling effect [4] where the particles detach from the flow at the
time of the beginning of the sling effect, taken to be t = 0, and then move ballistically toward each
other so that the first term in Eq. (8) dominates V (t ). In this case, despite that r � η and the Taylor
expansion of the velocity difference made in Eq. (7) holds, what changes the distance between the
particles is not the difference of the turbulent flow velocities at the positions of the particles, which
is given by sr, but their inertia. The sling effect lasts for times of order τ and is not describable by
the limit of t 
 τ .

Phenomena that happen at times larger than τ include separation of two infinitesimally close
trajectories in the six-dimensional phase space. This defines the first Lyapunov exponent λ1 that
describes the growth of the separation vector (r, v) between the trajectories via

λ1 = lim
t→∞

1

2t
ln

(
r2(t ) + τ 2V 2(t )

r2(0) + τ 2V 2(0)

)
, (9)

where the dimensional factor τ is irrelevant and used only for having a dimensionally uniform
expression. Here, besides that r(0) � η, also the initial velocity difference is small so that r(t )
stays much smaller than η during times much larger than τ . The limit above exists and is given
by the same constant for almost all trajectories (i.e., with possible exception of initial positions
with zero volume in the phase space) [49]. Therefore, disregarding the initial period of evolution
of duration of order τ (or simply setting V (0) = 0 using that the limit is independent of the vector
(r(0),V (0)) as long as this vector is nonzero) we can use instead of Eq. (8) the simplified equation

V (t ) = 1

τ

∫ t

−∞
exp

(
− t − t ′

τ

)
s(t ′)r(t ′)dt ′. (10)

We study the regime determined implicitly by the condition λ1τg � 1, whose explicit form will
be provided later by obtaining λ1. We introduce a separation time �t that obeys τg � �t �
min[λ−1

1 , τ ]. This �t exists because we assumed λ1τg � 1 and because τg/τ = Fr/St2 is small
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by Fr � 1 and St � 1. Then we can write

V (t ) ≈ 1

τ

∫ t

−∞
exp

(
− t − t ′

τ

)
s�t (t

′)r(t ′)dt ′, s�t (t ) ≡
∫ t+�t

t
s(t ′)

dt ′

�t
, (11)

where s�t is s(t ) coarse-grained over timescale �t . We used that �t is smaller than both the
characteristic time of variations of r(t ), which is λ−1

1 and the characteristic time of variations of
the exponent τ .

We observe that s�t is proportional to the integral of the random process s(t ) over a time-interval
which is much larger than the correlation time of this process, τg. This implies by the central limit
theorem (CLT) that the statistics of s�t is Gaussian. Indeed, we can write the integral in the definition
of s�t as sum of contributions of many intervals whose duration is the correlaton time τg, i.e.,
s�t (t ) = (�t )−1 ∑N

i=1

∫ t+iτg

t+(i−1)τg
s(t ′)dt ′ where N = �t/τg is much larger than one (we can use in

these considerations �t that is an integer multiple of τg). Then, since the contributions of different
intervals are independent, we find that s�t is sum of a large number of independent random variables
and the CLT applies. A more rigorous proof can be constructed by applying the cumulant expansion
theorem [50] to the characteristic function of s�t . We conclude that the distribution of s�t (t ) is fully
determined by the mean and the dispersion that fix a Gaussian distribution uniquely.

It can be checked that the mean of s is negligible, see Ref. [10] and Appendix A (we remark that
the usual argument which uses that 〈sik〉 is proportional to δik due to isotropy of the small-scale
turbulence fails in this case. Gravity makes the statistics anisotropic). Therefore, the statistics
of s�t (t ) coincides with the statistics of

∫ t+�t
t sK (t ′)dt ′/(�t ) where sK (t ) is a Gaussian matrix

process with zero mean and zero correlation time which dispersion is picked so that dispersions of∫ t+�t
t sK (t ′)dt ′/(�t ) and s�t (t ) agree. The white noise matrix process sK (t ) arises in the Kraichnan

model of the turbulent transport as indicated by the superscipt [29]. It is readily seen that our
condition on the dispersion of sK (t ) demands that

∫ ∞
−∞〈sik (t )spr (t ′)〉dt ′ equals

∫ ∞
−∞〈sK

ik (t )sK
pr (t

′)〉dt ′.
Finally, using our previous consideration of correlations of sik (t ) we find

〈
sK

ik (t )sK
pr (t

′)
〉 = δ(t − t ′)κikpr, κikpr ≡

∫ ∞

−∞
dt

〈∇kui(0)∇rup(x)
〉|x=gτ t , (12)

where the correlation function in the integrand is the equal-time correlation function of turbulent
velocity gradients. Calculation of κikpr made in Ref. [10] reveals that in the leading order sK

ik is a
2 × 2 random matrix since all the entries of the matrix that contain index z vanish. This 2 × 2 matrix
obeys the usual statistics of two-dimensional Kraichnan model determined by restriction of κikpr to
indices different from z

καβγ δ = D(3δαγ δβδ − δαβδγ δ − δαδδγβ ), Dτ = π
∫ ∞

0 E (k)kdk

8g
∼ Fr, (13)

where E (k) is the energy spectrum of turbulence, cf. Ref. [28]. Here and below, the Greek indices
take values of 1 or 2 and summation over repeated indices is implied (no confusion can be caused
between α as index and α as exponent). Two-dimensional Kraichan model v̇⊥ = −(v⊥ − sK r⊥)/τ ,
where the subscript stands for horizontal components of the vectors, is well studied [51,52]. It is
seen from the formula above that Dτ ∼ Fr � 1. This corresponds to the limit of small inertia where
the approximation ṙ⊥ ≈ sK r⊥ holds. Thus, the problem reduces to solved evolution of distance
between the two fluid particles in the Kraichnan model [29]. This gives immediately the spectrum
of the Lyapunov exponents λi defined by asymptotic growth rates of hypersurfaces composed of
particles. Thus, λ1, λ1 + λ2, and

∑3
i=1 λi provide the asymptotic logarithmic growth rates of the

infinitesimal line, surface, and volume elements at large times, respectively [29]. We have λ1 = −λ3,
that describes behavior of r⊥ and λ2 = 0 that describes conservation of the vertical component
of r. Here vertical refers to the direction of gravity, suggesting that the small-scale structure of
particles is two-dimensional in the horizontal plane. Stretching in one direction and compression in
another direction in the horizontal plane with vertically conserved distance would indicate a vertical
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FIG. 2. Lyapunov exponents: theory vs measurement, (a) linear and (b) log-log plots. The small Fr theory
of Ref. [10] is valid at smallest Fr, however breaks down at increasing Fr. The linear growth |λ3|τ = 1.5Fr
predicted in Ref. [10] is observed. However, λ1, predicted to be equal to −|λ3|, obeys a different behavior,
describable by the fit λ1τ = 1.5Fr0.9 (we used in the text that λ1τ = 1.5Fr is valid at Fr � 0.033). The ratio
(|λ3| − λ1)/λ1, that vanishes in the leading order of the theory, grows roughly linearly with Fr remaining
reasonably small at Fr = 0.033; however, its value � 0.5 at Fr = 0.05 indicates the theory breakdown.
Similarly, the compressibility ratio CKY ≡ | ∑3

i=1 λi/λ3| deviates from the predicted linear dependence on Fr
at Fr = 0.05, remaining, as predicted, quite small. The exponent λ2 corresponds to vertical separation of the
particles and it remains small at all Fr with max[λ2/λ1] = 0.05 and max[λ2/|

∑3
i=1 λi|] = 0.11, both attained

at Fr = 0.05. Thus, λ2 can be neglected in
∑3

i=1 λi. Compressibility of the flow grows with Fr because the
horizontal flow, described by λ1 and λ3, becomes more compressible.

sheet. However, the stretched distance is less pronounced than the compressed distance, making the
columnar structure visible.

However, the described structure of the spectrum of Lyapunov exponents corresponds to trans-
forming small balls into horizontal cigars. This however does not mean that typical observed
structure of particles is cigars as could be thought from the experience in studying passive scalar
problem [29]. This is because there is no source that would constantly inject (roughly) balls of
passive scalar as in that problem. Here we consider the problem without a source, where the
spectrum signifies that vertical configuration of particles is similar to attractor, resulting in columnar
structures as observed.

The value of λ1 is [10,29]

λ1 = D = π
∫ ∞

0 E (k)kdk

8gτ
. (14)

Self-consistency of the derivation demands that the obtained λ1 obeys λ1τg � 1. This gives the
condition Dτ � 1 which is equivalent to Fr2/St2 � 1. The inequality holds in the studied range
of parameters proving the self-consistency. The above prediction was confirmed in Ref. [10]
numerically by direct numerical simulations of the motion of inertial particles in the Navier-Stokes
turbulence with Reλ = 70. The result was found to be quantitatively accurate for Fr � 0.05, where
linear dependence on Fr holds, and reasonably good for Fr � 0.1; see Fig. 2. For higher Fr the
equation’s validity depends on St. The higher the St is, the more accurate the above formula is.

The general validity condition of the effective white-noise description above is Fr/St � 1. This
condition guarantees that correlation time of velocity gradients in the particle’s frame is τg. It also
ensures that both λ1τg � 1 and τg/τ = Fr/St2 � 1 hold, allowing to pass from Eq. (10) to Eq. (11).

We observe that Fr/St � 1 can hold also for nonsmall Dτ ∝ Fr if St 
 1. Since the Froude
number in clouds can be of order one then the case of St 
 Fr ∼ 1 might have practical applications.
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Therefore, we provide the results in this case for possible future use. We assume nonsmall Froude
number, Fr � 1, and St 
 Fr, so that the white noise description holds. If Dτ � 1, then λ1 of the
Kraichan model can be written as λ1 = D1/3τ−2/3λ̃1[(Dτ )−1/3]. Here λ̃1 is a function that takes
values of order one at Dτ � 1 slowly changing with its argument from 0.5 at Dτ = 1 to 2 at zero
argument corresponding to Dτ = ∞; see Ref. [28] and references therein. We find then that the
self-consistency condition λ1τg � 1 holds by λ1τg ∼ Fr4/3/St2. We conclude that

λ1 = 1

τ

(
π

∫ ∞
0 E (k)kdk

8g

)1/3

λ̃1

⎡
⎣(

π
∫ ∞

0 E (k)kdk

8g

)−1/3
⎤
⎦, 1 � Fr � St. (15)

Testing this prediction in the DNS is left for future work.
The above results imply that the droplets will form columns in space. Indeed, in the leading order

the droplets separate horizontally keeping their vertical separation conserved. Once the random
trajectories of the particles bring one of the particles on the top of the other, this pair configuration
is preserved in time indefinitely (more precisely for long time due to instability). The particles
form metastable bound states and after some time the space will be divided into columns of
particles that would coalesce and form a single column. In reality the next order corrections cause
gradual dissolution of the vertical pair configuration so that columns are only the more probable
configuration of the particles. This phenomenon is quantitatively described in later sections by
studying the angular dependence of the radial distribution function.

B. Implications of dissipation range statistics and breakdown at large Reλ

Here we assume that Fr is fixed at a value much smaller than 1 and study the impact of
increasing intermittency at growing Reλ on the considerations above. The increase of Reλ can have
twofold effect on λ1. It can influence the estimate λ1τ ∼ Fr, implied by Eqs. (14) and (15), and it
can also invalidate the assumptions made in the derivation. We start from considering the former
effect.

Comparison with Lyapunov exponent of tracers. It is useful to make comparison with first
Lyapunov exponent of tracer particles in the Navier-Stokes turbulence λt

1. The dimensionless
product λt

1τK , decays with Reλ. This was predicted by using the multifractal model in Ref. [53] and
confirmed numerically in Ref. [54]; see also Ref. [55]. The reason for the decay is that increasing
intermittency of turbulence increases size of regions with quiescent quasilaminar turbulence where
the separating pair of particles consequently stays longer [8]. This depletes chaos as measured by
the dimensionless Lyapunov exponent [53]. We consider if there is a similar dependence of λ1 in
Eq. (14) on Reλ.

Influence of nontrivial structure of the dissipation range. The dimensionless Lyapunov exponent
λ1τ obeys

λ1τ = π
∫ ∞

0 E (k)kdk

8g
= c0Fr, c0 ≡ πν1/4

∫ ∞
0 E (k)kdk

8ε
3/4
0

, (16)

where we defined dimensionless constant c0. The integral in c0 is determined by the form of
the turbulence energy spectrum E (k) in the dissipative range. Therefore, it can be assumed to be
independent of the large-scale forcing so that c0 is a dimensionless function of Reλ. It can be seen
from the numerical data of Ref. [10] and Fig. 2 that c0 ≈ 1.5 at Reλ = 70. The existing data on the
spectrum can be used to study the dependence of c0 on Reλ. It was found in Ref. [56,57] that the
dissipation range spectrum observed in their DNS was well described with

E (k) = C(kη)α̃ exp[−βkη], (17)
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where C, α̃, and β are functions of the Reynolds number Reλ. We find assuming that the contribution
of smaller wave numbers can neglected and using the equation above that

c0 = π
∫ ∞

0 E (k)kdk

8η
∫ ∞

0 E (k)k2dk
= π

∫ ∞
0 k1+α̃ exp[−βkη]dk

8η
∫ ∞

0 k2+α̃ exp[−βkη]dk
= πβ

8(2 + α̃)
, (18)

where we used
∫ ∞

0 E (k)k2dk = ε0/ν and η = ν3/4/ε
1/4
0 . The calculation is self-consistent provided

that α̃ > −2 since otherwise
∫ ∞

0 k1+α̃ exp[−βkη]dk diverges at small k where Eq. (17) does not
apply. Moreover 2 + α̃ must be not too small since otherwise the contribution of small wave
numbers would still be appreciable. The measurement of α provided in Ref. [56] and described by
the fit α = 7.3Re−0.47

λ − 2.9 gives that the condition α̃ > −2 is obeyed by Reλ smaller than about
85. For Reλ = 70 we have 2 + α = 0.09 which is too small for the calculation to be self-consistent
so the fits for α and β provided in Refs. [56,57] cannot be used for evaluating c0. However, these
fits give unequivocal indication that c0 has appreciable growth with Reλ. For further details on the
spectrum see Ref. [57] for the DNS aspects and Ref. [58] for the theory.

Correlation length of gradients of particles’ flow is much larger than the Kolmogorov scale.
Further insight into λ1 is reached by rewriting the above prediction for the Lyapunov exponent as

λ1 = D = καβαβ

8
= 1

8

∫ ∞

−∞
〈∇βuα (0)∇βuα (x)〉|x=gτ t dt = 1

4gτ

∫ ∞

0
〈∇βuα (0)∇βuα (zẑ)〉dz, (19)

where ẑ is directed upwards. The RHS is similar to the dispersion of the finite-time Lyapunov
exponent studied in Ref. [53], which behaves as time integral of the different time Lagrangian
correlation function of velocity gradients

∫ ∞
−∞〈∇kui(0)∇kui(t )〉dt . The last integral can be written

as 2tc/τ 2
K where tc ≡ ∫ ∞

0 〈∇kui(0)∇kui(t )〉dt/〈(∇u)2〉 is the effective correlation time and we use
notation similar to Ref. [53] for transparency. It was found in the shell model simulations of Ref. [53]
that tc/τK obeys rather strong increase with the Reynolds number given by Reκ

λ with κ ∼ 0.6 (here
in recalculating Ref. [53] into our notations we assume that Reλ scales as square root of ordinary
Reynolds number). This qualitatively agrees with the numerical observations of the Navier-Stokes
turbulence in Ref. [54]. The authors of Ref. [53] explained the observations. Due to intermittency,
at increasing Reλ the regions of moderate velocity gradients of order τ−1

K become larger both in
space and in time, see Refs. [8,9,53]. This results in power-law increase of tc with Reλ. This makes
it highly probable that also the spatial correlation length Lc defined by

Lc ≡
∫ ∞

0 〈∇βuα (0)∇βuα (zẑ)〉dz

〈∇βuα∇βuα〉 = 5ν
∫ ∞

0 〈∇βuα (0)∇βuα (zẑ)〉dz

2ε0
, (20)

increases with Reλ so that Lc/η ∝ Re�λ

λ with �λ at least 0.1 (the recalculation of spatial and
temporal scaling laws of intermittency is yet to be studied). Here the power-law dependence is
probably valid quantitatively at large Reλ and at moderate Reλ is valid qualitatively only. Here we
used that small-scale isotropy, incompressibility and spatial homogeneity imply that single-point
statistics of turbulent velocity gradients obeys

〈∇kui∇rup〉 = ε0

30ν
(4δipδkr − δikδpr − δirδpk ), 〈∇βuα∇βuα〉 = 2ε0

5ν
. (21)

(This formula is found by differentiation of the velocity pair correlation function in Ref. [59].) We
find from Eq. (19) that

λ1τ = ε0Lc

10gτν
= Fr

Lc

10η
, (22)

which would give λ1τ ∼ FrRe�λ

λ on assuming the power-law dependence of Lc/η on Reλ. Using
λ1τ = 1.5Fr, which was observed in the simulations of Ref. [10] at Fr � 0.033, see Fig. 2, we
find that Lc = 15η at Reλ = 70. The large numerical factor demonstrates failure of dimensional
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estimates. The reason for this factor is the nontrivial structure of the energy spectrum in the
dissipation range. Indeed, Lc is proportional to c0 considered previously.

Theory breakdown at large Reλ. The observation that the scale of relevant flow configurations Lc

is much larger than η and grows with Reλ as Lc/η ∝ Re�λ

λ implies breakdown of the assumptions of
the theory at large Reλ. The derivation of λ1 assumed that the correlation time of velocity gradients
in the frame of the particle is the time during which the droplet crosses the spatial correlation length
η. However, the correlation length of relevant gradients is Lc and not η, which is much larger than
η already at moderate Reλ = 70. Using in the previous considerations Lc/(gτ ) as the correlation
time of s(t ), we find that the condition that s�t is a sum of large number of independent random
variables demands that Lc/(gτ ) � τ and Lc/(gτ ) � λ−1

1 . We observe that the former condition
is stronger because λ1τ is never large, λ1τ � 1, at Stokes numbers of order one considered here.
Indeed, inertia causes the Lyapunov exponent of the particles, that tend to move ballistically, to be
smaller than the Lyapunov exponent of tracer particles λt

1. Therefore, λt
1τ ∼ St implies λ1τ � 1.

We conclude that the condition of the theory applicability boils down to Lc/(gτ ) � τ . We find
assuming the power-law dependence of Lc/η on Re that our derivation of λ1 holds provided
that

Lc � gτ 2, 15

(
Reλ

70

)�λ

� St2

Fr
. (23)

We observe that there is large numerical factor in Eq. (23). This limits the theory’s applicability
to rather small Fr: at Reλ = 70 deviations from the prediction for λ1 are observed at Fr as
small as 0.05; see Ref. [10]. The increase of Reλ will further decrease Fr at which the theory
applies.

We saw that increase of Reλ makes our calculation of λ1 inconsistent starting from Reλ for
which Lc ∼ gτ 2. However, Eqs. (14) and (15) could also become invalid because of breakdown
of the assumed Gaussianity of s�t (t ) in Eq. (11), despite �t being much larger than the correlation
time of s(t ). This could happen because cumulants of order higher than two, which the Gaussian ap-
proximation neglects [50], involve higher-order moments of the velocity gradients. These moments
due to intermittency would contain higher powers of Reλ. This would invalidate their discarding at
large enough Reλ. The resulting criterion is similar to Eq. (23) and brings the same conclusion that
the derivation breaks down at increasing Reλ.

We describe how the predictions of the effective white-noise description are used in practice
assuming that the validity conditions hold and St ∼ 1. The first step is to derive D from the
spectrum of turbulence by using Eq. (14) and check if Dτ � 1. If yes, then D is the predicted
value of the Lyapunov exponent. If not, then the white-noise description fails and other treatment
is necessary. Thus, if we consider λ1τ as a function of Reλ at fixed Fr � 1 and St ∼ 1, then
λ1τ increases with Reλ until λ1τ becomes of order one. It is seen that this happens when the
correlation time Lc/(gτ ) ∼ λ1τ

2
K of s(t ) is of order τK . It seems that at further increase of Reλ

the correlation time, which cannot be larger than τK , gets fixed at the Lagrangian correlation
time τK and the statistics of s(t ) becomes similar to the isotropic statistics of turbulent velocity
gradients. This would lift anisotropy of particles’ distribution in space and make columnar structures
disappear.

We conclude that the above considerations indicate that increase of Reλ would smear the
columnar structure and make it to disappear altogether at the high Reλ holding in clouds. In
fact we demonstrate below that Lc and gτ 2 provide horizontal and vertical dimensions of the
particles’ columns respectively. Here Lc must be considered as the correlation length of the ve-
locity gradients of the particles’ flow which need not and is not the same as its counterpart for
turbulence. Starting from Reλ for which Lc ∼ gτ 2, which is where the calculation of λ1 becomes
invalid, vertical and horizontal dimensions of the columns become similar, the particles’ structures
are isotropic and columns are no longer preferential. Numerical studies of dependence of Lc

on Reλ would provide further insight into the discussion of this section and are left for future
work.
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IV. PREDICTIONS FOR FR → 0 LIMIT AND CONFIRMATION

In this section we revisit predictions of Ref. [10] preparing the ground for the study of how
intermittency affects validity of Ref. [10] performed in the next section. The main observation of
Ref. [10] is that smallness of Lagrangian acceleration of the fluid particles in comparison with g
results in the smooth spatial motion of the droplets. The particles’ velocities after transients are
uniquely determined by their spatial positions on which they depend in a differentiable manner.
This conclusion is reached by estimating the accelerations with the typical value ε

3/4
0 /ν1/4. The

smoothness holds irrespective of the Stokes number, which is significant since droplets in the clouds
often have St � 1 where without gravity particles’ motion would not be spatially smooth.

The limitations of the above observation are in the usage of typical accelerations which might not
be relevant in view of intermittency of small-scale turbulence. Thus, at Reλ = 690, which is much
smaller than Reλ of the clouds, the accelerations’ flatness of 55 was observed in Ref. [60]. It is then
not obvious at all if the estimation of the role of gravity by using typical turbulent accelerations is
adequate in the clouds.

The above issue can be studied similarly to the case of negligible gravity, Fr = ∞, and St � 1,
considered in the Introduction and [4]. Despite large fluctuations of dissipation, at Fr � 1 the flow
domain consists of major part, where turbulent accelerations are much smaller than gravity, and
rare regions of vigorous turbulence where turbulent accelerations are larger or comparable with g.
For qualitative considerations we can estimate local turbulent acceleration of the fluid particles as
ε3/4/ν1/4, cf. Ref. [61]. The local Froude number ε3/4/(gν1/4) is small in most of the space. In this
calm major part of the space the droplets form a smooth spatial flow as explained in Ref. [10]. In
contrast, in regions with local Froude number of order one, sling effect with particles’ jets holds. The
rate of collisions is then given by the sum of contributions of the large calm region of turbulence,
where smooth flow holds, and widely spaced regions of jets. This decomposition is identical to that
at weak gravity and small inertia, see the Introduction and [4].

For small enough Fr, however large Reλ is, the collision kernel is due to the major volume fraction
with smooth flow and the theory of Ref. [10] applies. In contrast, if we fix Fr and increase Reλ

then the characteristic acceleration of relevant vortices of the smooth portion of the flow increases
until it becomes of order g (the sling effect would become nonnegligible already at smaller Reλ, cf.
Ref. [4]). At higher Reλ the collisions due to both smooth flow and sling effect, occur predominantly
in the rare regions of “resonant” vortices with acceleration of order g and the theory of Ref. [10]
does not apply. We provide details on this noncommutativity of Fr → 0 and Reλ → ∞ limits below.

A. Theory of Ref. [10]: Predictions, confirmation, contradiction

We describe the results for the spectrum of the Lyapunov exponents λi of spatial motion of the
particles in the light of more detailed numerical simulations performed for this work; see Fig. 2.
It is immediate consequence of the white noise description introduced in the previous section that
the spectrum has time-reversal symmetry [29]; that is λ1 = −λ3 and λ2 = 0. Here the vanishing
of λ2 describes conservation of the vertical component of the separation in the leading order, see
above. This approximation provides the linear order term of the dependence of λi in Fr. The first
Lyapunov exponent vanishes at Fr = 0 where the particles’ trajectories in space stop to be chaotic.
This is because they become effectively the trajectories of particles sedimenting in still air. This is
not completely trivial because the particles’ velocity in the leading order is still the local turbulent
flow u(x(t ), t ).

To linear order in Fr the sum of the Lyapunov exponents
∑3

i=1 λi, which is a main measure
of clustering, is zero and there is no clustering. The leading order term in

∑3
i=1 λi is quadratic

in Fr and it was derived in Ref. [10] via the energy spectrum of the turbulent flow E (k). The
theoretical predictions are confirmed in Fig. 2. The Figure also shows that |∑3

i=1 λi| grows with
Fr not because of the growth of λ2 but rather because of growing compressibility of the horizontal
flow, max(λ2/|

∑3
i=1 λi|) � 1.
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FIG. 3. Shown are the DNS values of the correlation codimension α, obtained from numerical observations
of the RDF, twice the Kaplan-Yorke (Lyapunov) codimension CKY, fixed from the numerical observations of
the Lyapunov exponents, and the low-Fr theory prediction 3π

∫ ∞
0 E (k)kdk/(2g) that gives 13Fr. All figures in

the paper use St = 1 and Reλ = 70.

The main application of the Lyapunov exponents to the distribution of the particles is to the
calculation of the Kaplan-Yorke codimension CKY, i.e., the difference of the space dimension and the
Kaplan-Yorke dimension. It can be seen by using λ1 + λ2 > 0 and

∑3
i=1 λi < 0 in the dimension’s

definition in Ref. [62] that in our case CKY = |(∑3
i=1 λi )/λ3|. The codimension in this case has

interpretation of compressibility ratio and it is small because of the flow’s weak compressibility. The
results of Ref. [12] for attractors of weakly compressible flows give that the steady state fluctuations
of the particles’ concentration are lognormal and the rest of fractal dimensions can be obtained from
the Kaplan-Yorke dimension. For instance, the so-called correlation codimension α, that is defined
as the scaling exponent in the power-law r−α for the RDF (probability to find a pair of droplets at
distance r; see the Introduction) obeys

α = 2CKY = 2
∣∣∑3

i=1 λi

∣∣
|λ3| , (24)

cf. Ref. [4]. It is significant for the sequel that this is a universal relation that holds for any weakly
compressible flow [12]. This explains the central role of the effective spatial flow of the droplets in
the theory.

We determined the RDF numerically, which was not done in Ref. [10], to test Eq. (24), see below
and Fig. 3. The usage in the above formula of the (corroborated) formulas of Ref. [10] that provide
λi via E (k) gives,

α = 3π
∫ ∞

0 E (k)kdk

2g
, Fr → 0. (25)

We find by comparison with Eqs. (14) and (22) that

α = 12λ1τ = Fr
6Lc

5η
. (26)
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These are remarkably simple formulas that must however be taken with a grain of salt: it is an
asymptotic result and at high Reλ its validity may demand unpractically small Fr as in the discussion
of λ1 above, see also below.

We observe that α predicted by Eq. (25) is independent of the Stokes number: it is a property of
turbulence and not of particles. The reason for the particle size independence is that the stretching
rate and compression rate of infinitesimal volumes of particles, which ratio determines the fractal
dimensions, have identical dependence on St. Thus, statistics of attractors of particles with different
sizes is identical. This does not tell that these attractors coincide in space. Spatial locations of these
attractors differ and only their average properties agree.

Comparison with other works. The above size-independence explains the observations of
Ref. [26] in the relevant range; see also Ref. [11]. It was found in Ref. [26] that at St � 1
the correlation codimension is St−independent, which was explained by further developing the
formalism of Ref. [28]. The authors managed to demonstrate that α = CFr where C is a constant
prefactor which is independent of St. The calculation of C was not provided and it could be plausibly
thought that C ∼ 1. However, Ref. [10] demonstrated that Eq. (25) gives C � 13 at Reλ = 70. This
is a large value that would be difficult to obtain without calculation. This large numerical factor
implies that clustering, whose strength is measured by α, can be strong at very small Fr.

Highest Fr describable by [10]. The predictions of the Fr → 0 theory allow detailed comparison
with the DNS data. It was observed in Ref. [10] that, as already mentioned, at Reλ = 70, the
predictions for the Lyapunov exponents hold at Fr � 0.033. However, some of them break down
already at Fr = 0.05; see Fig. 2 where data, more detailed than in Ref. [10], are presented. At
the same time, for some quantities, the theory was found to apply at larger Fr also. This is because
deviations of different quantities may compensate each other as happens to be the case of CKY/(λ1τ )
predicted in Ref. [10] to be equal to six, independently of the details of turbulence, of Fr and of St.
This quantity is accidentally close to the theoretical value at all Fr within fifteen percent discrepancy.
The prediction α = 2CKY ∝ Fr holds within four percent discrepancy up to Fr = 0.05; see Fig. 3.
Moreover, the data of Ref. [10] demonstrate that the theoretical predictions for CKY and λ1 hold
at St = 1 or St = 2 up to Fr � 0.1 and break down only at Fr = 0.2. In contrast, at St = 0.5 the
prediction for λ1 fails at Fr = 0.1. These observations are in agreement with [26] who observed
different behavior at St � 1 and St < 1 for Fr = 0.05.

Examination of the claim that [10] is invalid. The success of the theory of Ref. [10] is evident
from the above. However, [11] observed that Eq. (25) does not work at St = 1 and Fr = 0.052 and
concluded that the equation is wrong. This is despite that the equation was confirmed in Ref. [10]
(strictly speaking [10] confirmed CKY = 3π

∫ ∞
0 E (k)kdk/(4g) which together with α = 2CKY,

confirmed in the present work, validates Eq. (25) at Reλ = 70). The discrepancy however is the
indication of incorrect use of Eq. (25), rather than its invalidity. The calculations of Ref. [10] are
rigorous asymptotic calculations at Fr → 0 and can be checked. Their application depends on the
Reynolds number, since the theory holds nonuniformly in Reλ as we stress in this work. In the
case of Ref. [11] the discrepancy is both due to factor of 2 mistake in the formula and testing of the
theory at Fr which was already claimed to be beyond the theory in Ref. [10]. The simple rule of the
thumb is that the theoretical prediction for α applies provided that α � 1, cf. below. Since α studied
in Ref. [11] does not obey the inequality then the observed deviation is more than reasonable, cf.
above.

V. THEORY’S LIMITATION: CLASH OF FR → 0 AND REλ → ∞ LIMITS

In this section we provide detailed exposition of the theory of Ref. [10] to demonstrate that
increase of the Reynolds number at fixed Fr invalidates this theory. The main observation of
Ref. [10] is that in the Fr → 0 limit, one can define the field va(t, x), which provides the velocity of
the droplet of radius a located at time t at point x(t ):

ẋ = va(t, x(t )), ∂tva + (va · ∇)va = −va − u
τ (a)

+ g, (27)
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where the partial differential equation (PDE) on va(t, x) is implied by the equation of motion on
differentiating ẋ = va(t, x(t )) over time [4]. Below we omit the subscript of va(t, x) unless the
radius to which the flow pertains needs to be referred. The flow is introduced implicitly as the
solution of the above PDE. An explicit formula for v(t, x) via u(t, x), similar to the small Stokes
numbers’ Eq. (4), is unavailable. The solution can only become a well-defined single-valued field
after transients, lasting for times of order τ (a), during which the initial condition is forgotten.
Indeed, one can devise initial conditions for Eq. (27) producing multivalued flow after a short time.

It is readily seen that at finite Fr the assumption of single-valued field is inconsistent due to the
blowup (sling) events at which ∇v explodes. Indeed, spatial differentiation of Eq. (27), and the
passage in the resulting equation to the frame moving with the particle, gives a closed matrix ODE
for the gradients σik (t ) ≡ ∇kvi(t, x(t )) [4],

σ̇ + σ 2 = −σ − s

τ
, (28)

where sik (t ) ≡ ∇kui(t, x(t )). If the quadratic term in the LHS is not small then it would cause
finite-time explosion of the gradients. That explosion would signal the breakdown of the flow
description due to the flow becoming multivalued [4,21]. In contrast, if σ 2 in Eq. (28) is small,
then, in the leading order, the gradients of the droplets’ flow in the particle frame are given by the
finite expression,

σ ≈ σl , σl ≡
∫ t

−∞
exp

(
− t − t ′

τ

)
s(t ′)

dt ′

τ
, (29)

where the subscript stands for linearization of Eq. (28).
We first disregard intermittency as in our study of the Lyapunov exponent. As in that study, the

correlation time of sik (t ) is given by the smallest of the Kolmogorov time τK and the sedimentation
time τg = η/gτ . We find as previously that the time is τg due to τg/τη = Fr/St � 1. Moreover, we
have τg/τ = Fr/St2 � 1; therefore, the effective integration interval τ in Eq. (29) is much larger
than the correlation time of s(t ). Thus, σ is effectively a sum of large number of independent
identically distributed random variables and is Gaussian, cf. the study of λ1.

The Gaussianity implies that the condition that the probability of sling events is small is
tantamount to the condition that the dispersion 〈σ 2

l 〉 is much smaller than 1/τ 2 since the bulk of the
probability is determined by the dispersion (in writing matrix as a scalar, as σ 2

l , the characteristic
value is implied). Here we disregard the nonzero average of sik that exists due to the combination
of preferential concentration and anisotropy. This average can be excluded by considering σl − 〈σl〉
instead of σl and observing that smallness of 〈σl〉 makes it irrelevant in the estimates here and below;
see Appendix A. Averaging the square of Eq. (29), it is found that 〈σ 2

l 〉τ 2 ∼ Fr, see Ref. [10] and
Eq. (40) below. Therefore, in the leading order in Fr � 1, the nonlinear term in Eq. (28) can be
self-consistently neglected. The flow is single-valued and well-defined in most of the space. This
does not guarantee though that the rare regions of slings cannot provide appreciable contribution to
some quantities, see the Introduction and Ref. [4].

We observe that the effective domain of integration in Eq. (29) is (t − τ, t ) so that σl (t )τ ∼∫ t
t−τ

s(t ′)dt ′. Then the considerations of the last paragraph imply that σl is statistically similar to
instantaneous turbulent flow gradient ∇u averaged over spatial interval of order gτ 2 passed by
sedimenting particle in time τ . This object resembles a similar average of local energy dissipation
rate, which is a standardly measured quantity [63]. The measurements of Ref. [64] indicate that this
quantity must undergo strong fluctuations in clouds. The fluctuations, that are weak at Reλ = 70
considered in Ref. [10], destroy the particles’ flow at larger Reynolds numbers.

A. Flow breakdown at increasing Reλ

The Kolmogorov-type estimates used after Eq. (29) are changed profoundly by intermittency.
Below we perform order of magnitude calculations only, not writing the matrix indices.
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Condition for well-defined flow of the particles. It is immediate consequence of our study in
Sec. III that the relevant spatial scale in the calculation of 〈σ 2

l 〉 is Lc and not η. We have assuming
that Lc/(gτ ) � τ , cf. Eq. (23)

〈
σ 2

l

〉
τ 2 ∼

∫ t

t−τ

dt1dt2〈s(t1)s(t2)〉 ∼ τ

τ 2
K

Lc

gτ
= Fr

Lc

η
∼ 15Fr

(
Reλ

70

)�λ

, (30)

where we observed that
∫ 〈s(0)s(t )〉dt is estimated as the product of characteristic value τ−2

K of
s2 and the correlation time Lc/(gτ ) and we used notations of Sec. III. We observe that for St ∼ 1
the condition 〈σ 2

l 〉τ 2 � 1 coincides with the validity condition of the calculation of λ1 given by
Eq. (23). Since the last condition is Lc/(gτ ) � τ then our assumption Lc/(gτ ) � τ made in the
calculation for Eq. (30) is self-consistent. If 〈σ 2

l 〉τ 2 � 1 holds then, by Chebyshev’s inequality,
the probability of the sling effect, |σl |τ ∼ 1, is small and motion in most of the space is smooth, cf.
the discussion after Eq. (23). In contrast, at high Reλ obeying FrRe�λ

λ � 1, the sling effect is typical.
Due to St ∼ 1 the particle strongly interacts with vortex correlated over the correlation length Lc

and the flow description breaks down. We consider it highly plausible that this transition happens at
Re lower than those in the clouds.

B. Strong anisotropy of the particles’ flow at small scales

We have introduced in Sec. III B the scale Lc which is the spatial scale of turbulent flow gradients
that determine the Lyapunov exponent. We indicated that this scale must be understood as the
correlation length of the particles’ flow gradients. Here we refine this statement by demonstrating
that this is the correlation length only for generically oriented distances between the points where
correlations are studied. For vertical distances the correlations are of longer range. As a result
gradients of the particles’ flow are correlated over spatial region similar to a vertically oriented
column. This anisotropy leaves direct mark on the multifractal distribution of particles, considered
later, where the multifractal structures extend over similar columns.

The flow of the particles integrates nontrivially the turbulent flow via Eq. (27). This implies that
spatiotemporal properties of v(t, x) and u(t, x) are quite different. We consider pair correlations of
∇ivk (x) at t = 0. We have according to Eq. (29) that

∇ivk (x) ≈
∫ 0

−∞
exp

(
t

τ

)
sik (t )

dt

τ
, sik (t ) ≡ ∇kui(t, q(t, x)), (31)

where we introduced the Lagrangian trajectories of the particles’ flow q(t, x). These are particles’
trajectories that pass x at t = 0. The flow’s existence implies that these trajectories are unique and
solve

∂t q(t, x) = v(t, q(t, x)), q(t = 0, x) = x. (32)

We have

〈∇ivk (0)∇lvm(x)〉 ≈
∫ 0

−∞
exp

(
t1 + t2

τ

)
〈∇kui(t1, q(t1, 0))∇l um(t2, q(t2, x))〉dt1dt2

τ 2
. (33)

The exponential decay factor in above integral effectively cuts the integration domain off at times |ti|
smaller or of order τ . However, in the studied regime the particles’ separation during times of order
τ is negligible due to λ1τ ∼ Fr � 1; see Sec. III. Thus, we have q(t, x) − q(t, 0) ≈ x for |t | � τ .
The trajectories’ positions with respect to each other are determined by the gravitational sweeping,
similarly to the previous sections, and we may write

〈∇ivk (0)∇lvm(x)〉 ≈
∫ 0

−∞
exp

(
t1 + t2

τ

)
〈∇kui(gτ t1)∇l um(x + gτ t2)〉dt1dt2

τ 2
, (34)

where the angular brackets here stand for usual spatial averaging. We see that, provided that |x|
is much smaller the correlation length Lc of typical turbulent velocity gradients that determine
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the above average, we can omit x in the above equation. We find that 〈∇ivk (0)∇lvm(x)〉 ≈
〈∇ivk (0)∇lvm(0)〉 for x � Lc. In contrast, if x 
 Lc, then, for a generic direction of x, the
arguments of ∇u in Eq. (34) are separated at all relevant ti by distance much larger than Lc

and the correlation function 〈∇ivk (0)∇lvm(x)〉 is much smaller than 〈∇ivk (0)∇lvm(0)〉. There is
however an exception. If the “initial” separation x is vertical and much smaller than gτ 2, then
within time much smaller than τ the argument x + gτ t2 becomes similar to gτ t2 and we still have
〈∇ivk (0)∇lvm(x)〉 ≈ 〈∇ivk (0)∇lvm(0)〉. It is readily seen that these considerations extend to those
x that, besides the vertical component smaller than gτ 2, have a nonzero horizontal component that
is smaller than Lc. We conclude that velocity gradients are correlated over cylinders (columns) with
height of order gτ 2 and radius of the base of order Lc (of course the shape is not sharply defined).
The cylinder is elongated, with height larger than diameter by a large factor studied in detail later.

The significant difference in spatial correlations of flows of the fluid and of the particles indicates
that most probable gradients of droplets’ flow are not created by the most probable gradients of
turbulence, because the connection between the gradients is not local in time. Rather gradients of
the particles’ flow are created by eddies with local viscous scale of order Lc.

C. Breakdown of Gaussianity due to intermittency

The other effect of the intermittency is that it destroys Gaussianity of σl . This can occur when
the probability of the sling effect, as measured by 〈σ 2

l 〉τ 2, is still small, 〈σ 2
l 〉τ 2 � 1. In that case the

flow description applies however the flow gradients are non-Gaussian. We demonstrate breakdown
of Gaussianity by considering the fourth moment. We have using Eq. (29)

〈
σ 4

l

〉
τ 4 ∼ 3

∫ t

t−τ

〈s(t1)s(t2)〉〈s(t3)s(t4)〉dt1dt2dt3dt4 +
∫ t

t−τ

〈s(t1)s(t2)s(t3)s(t4)〉cdt1dt2dt3dt4, (35)

where we decomposed the fourth-order correlation function of s(t ) into the sum of the reducible
part, given by the first term in the RHS, and the irreducible part or the cumulant [50], designated by
the subscript c and given by the last term. We have using properties of the different-time correlations
of s(t ), described previously, the estimate∫ t

t−τ

〈s(t1)s(t2)〉〈s(t3)s(t4)〉dt1dt2dt3dt4 ∼ Fr2Re2�λ

λ . (36)

If intermittency is negligible [so that Re�λ

λ ∼ 1 and the last term in Eq. (35) obeys Reλ−independent
estimate τ (η/gτ )3/τ 4

K ∼ Fr3/St2), then the last term in Eq. (35) would be smaller than the term
coming from the reducible part of the correlation function by the factor of η/(gτ 2) ∼ Fr/St2. Indeed,
the irreducible correlation function 〈s(t1)s(t2)s(t3)s(t4)〉c decays quickly when the separation of any
pair of ti becomes larger than the correlation time η/(gτ ). Thus, the effective domain of integration
over ti is smaller than for the reducible contribution by Fr/St2, the fact that lies at the origin of the
Gaussianity considered previously.

The intermittency causes the probability of s much larger than the root-mean square (rms) value
τ−1

K to be nonnegligible. Thus, equal-time fourth order moment of s is proportional to τ−4
K times a

positive power of Reλ. As a result, at large Reλ, the fourth order-cumulant is larger than the reducible
contribution 3〈s2〉2 ∼ τ−4

K by a power of the Reynolds number. Since correlation time also depends
on Reλ then it is not completely obvious, however very plausible, that the last term of the LHS of
Eq. (35) contains a higher power of Reλ than Re2�λ

λ of the reducible contribution. We obtain∫ t
t−τ

〈s(t1)s(t2)s(t3)s(t4)〉cdt1dt2dt3dt4∫ t
t−τ

〈s(t1)s(t2)〉〈s(t3)s(t4)〉dt1dt2dt3dt4
∼ FrRe�

λ

St2
, (37)

where the exponent � is positive and absorbs all dependencies on Reλ. Then the increase of Reλ

at fixed Fr and St causes the irreducible contribution in 〈σ 4
l 〉 to become dominant. This happens at

Re�
λ ∼ St2/Fr which at St ∼ 1 occurs when the flow is still well-defined provided that � > �λ, cf.

124303-25



FOUXON, LEE, AND LEE

the comment after Eq. (30). Thus, in this case we will have a flow with non-Gaussian statistics of
the gradients similarly to the turbulence itself. In contrast, if � < �λ, then, as long as the flow is
well-defined at all, the gradients’ statistics is Gaussian. Similar observations hold for higher-order
moments 〈σ 2n

l 〉 with n > 2. The converse of the above statements is that decrease of Fr, at fixed St
and however large Reλ, causes the statistics of σl to become Gaussian and makes the flow description
valid.

VI. RADIAL DISTRIBUTION FUNCTION AT FR → 0:
SPATIAL CORRELATIONS AND SUM RULE

We have considered above the general properties of the flow of the particles and how increase in
the intermittency due to growth of the Reynolds number can change its properties. The rest of the
paper is devoted to the case of Fr so small that the flow description is valid. This range depends on
St and Reλ as explained above.

In this section we consider the radial distribution function (RDF). Since the flow is weakly
compressible then, generally, the RDF obeys scaling below the correlation length of the gradients
of the droplets’ flow [12]. We saw in Sec. V B that the gradients are correlated over columns whose
height is of order gτ 2 and diameter of order of Lc. Here we demonstrate numerically that, indeed,
the scaling of the RDF holds over these columns, all of whose dimensions are much larger than the
Kolmogorov scale η. This effect is solely due to gravity: multifractality at negligible gravity and
small inertia holds below the same correlation length η as the turbulent velocity gradients have [4].
We also derive here a sum rule demonstrating that despite that the RDF, due to strong anisotropy,
has a nontrivial angular dependence, still the angle-averaged RDF is rather simple.

A. Small-scale flow is two-dimensional

Main properties of the droplets’ flow at Fr → 0 are weak compressibility and small scale two-
dimensionality. The weak compressibility can be seen by taking the trace of Eq. (29) and using trs =
0. This gives that in the leading order trσ = 0 and the droplets’ flow is incompressible. Clustering
occurs due to small compressible component of the flow. The leading order term for trσ can be
found by taking the trace of Eq. (28). The solution of the obtained equation gives (this equation in
Ref. [10] contains a typo with a wrong sign that is irrelevant for the calculations there)

trσ (t ) = −
∫ t

−∞
dt ′ exp

(
− t − t ′

τ

)
trσ 2(t ′)dt ′s ≈ −

∫ t

−∞
dt ′ exp

(
− t − t ′

τ

)
trσ 2

l (t ′)dt ′, (38)

where the last term is estimated as τσ 2
l . We find that compressibility ratio trσ/σl is of order τσl � 1.

Droplets’ flow at small scales is described by the Taylor expansion of the velocity difference
below the smoothness scale ηp(θ ) of the particles’ flow (θ is the polar angle of r, with z axis directed
upwards)

v(x2) − v(x1) ≈ (r · ∇)v(x1), r � ηp(θ ), r ≡ x2x1. (39)

Here we introduced the angle-dependent correlation length ηp(θ ). The study that we performed
in Sec. V B implies that ηp(θ ) ∼ Lc for θ 
 Lc/(gτ 2) and ηp(θ ) ∼ gτ 2 for θ � Lc/(gτ 2). Here
Lc/(gτ 2) � 1, see below, and 0 � θ � π/2 [the range of π/2 � θ � π is obtained by interchange
of xi in Eq. (39)].

The matrix ∇ivk is a Gaussian 2 × 2 matrix in the leading order in Fr. This observation was made
in Ref. [10] for the Lagrangian statistics in the particle frame, see also Sec. III. We demonstrate in
Appendix B that the same proof applies for the Eulerian statistics at a fixed spatial point. One finds
that ∇v does not have vertical components or derivatives of horizontal components in the vertical
direction in the leading order in Fr. The statistics of planar gradients is Gaussian so that they are
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described fully by zero mean and the dispersion,

〈∇kvi∇rvp〉 = c0Fr(3δipδkr − δikδpr − δirδkp)

2τ 2
, (40)

where c0 is defined in Eq. (16). This formula confirms the order of magnitude estimate 〈(∇v)2〉τ 2 ∼
Fr made above. Taking its trace over x and y gives 〈(∇xvx + ∇yvy)2〉 = 0 so that the planar flow
is incompressible. There are only three random variables that describe the gradients given by the
components of the zero trace 2 × 2 matrix. We stress that these properties describe small scales
only: the absolute motion of the droplet is three-dimensional, resembling that of the tracer, by our
assumption that the droplet velocity is dominated by large-scale turbulence.

B. RDF

The RDF, designated by g12(r), determines the probability density function (PDF) P12(r) of
finding a droplet of radius a2 at a distance r from a droplet with radius a1. The PDF is proportional
to the mean concentration 〈n2〉 so that we can write P12(r) = 〈n2〉g12(r) where g12(r) is a property of
the two-particle motion. Here and below ni(x, t ) is the concentration of droplets with radius ai. The
RDF also provides the pair-correlation function of concentrations, 〈n1(0)n2(r)〉 = 〈n1〉〈n2〉g12(r),
see Appendix C.

Pair correlations of concentration 〈n1(0)n2(r)〉 are determined quite similarly to the pair correla-
tion function of passive scalar in incompressible turbulence in the presence of the scalar source [29].
The reason is that the continuity equation ∂t n + ∇ · (vn) = 0, obeyed by the droplets’ concentration
n, can be written as

∂t ln n + (v · ∇) ln n = −∇ · v. (41)

We see that the flow’s divergence, whose correlation length is ηp, can be considered as the source of
concentration fluctuations. In the case of passive scalar the pair correlation is determined by the time
that the particles spent below the correlation length of the source before the observation, when the
correlations accumulate [29]. Similarly here 〈n1(0)n2(r)〉 is determined by the mean duration t∗

12(r)
of the time interval that the particles spent below the correlation length of the source ηp before they
the decreasing distance between them reaches r where r � ηp (here ηp is much smaller than the
vessel size which is of order of integral scale of turbulence or larger).

The relevance of t∗
12(r) is seen by considering motion of only two droplets of radii a1 and a2 in

a finite-size vessel over long time. The droplets’ separation is most of the time of order of the size
of the vessel and is much larger than ηp. At these scales the flow is incompressible so that there is
no build-up of correlations—the particles approach or separate with the same probability without
creating large-scale inhomogeneities of the concentration. However, occasionally the particles get
close and become separated by a small distance r. This happens after the distance between them
passes the threshold distance ηp. The mean time between the last two events is t∗

12(r) and during this
time-interval the particles have effective attraction because they experience the same local gradient
of the flow whose divergence, on average, is negative, which leads to correlations’ growth [32].

The explicit representation of g12(r) via t∗
12(r) is found by starting from straightforward gen-

eralization of the formula of Ref. [12] that uses cumulant expansion theorem and weakness of
compressibility

ln g12(r) =
∫ 0

−∞
dt1dt2〈∇ · v1(t1, q1(t1, 0))∇ · v2(t2, q2(t2, r))〉, (42)

where vi(t, x) is short-hand notation for vai (t, x), see Eq. (27), and qi(t, x) are the Lagrangian
trajectories of the flow vi(t, x), see Eq. (32). Here in the leading order in the small compressibility
we can use for qi the Lagrangian trajectories of the solenoidal component of vi which guarantees
that 〈∇ · vi(t, qi(t, r))〉 = 0 (otherwise dispersion must be used in the above equation, see Ref. [12]).
We consider first the case of a1 = a2. This is the only case where g12(0) is infinite because the
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trajectories qi(t, 0) coincide causing divergence of the integral in Eq. (42) at r = 0. We find from
Eq. (42) by using the formula of Ref. [65] for the sum of Lyapunov exponents

∑
λi at weak

compressibility that [12]

ln g(r) = 2
∣∣∣∑ λi

∣∣∣t∗(r), 2
∣∣∣∑ λi

∣∣∣ =
∫ ∞

−∞
〈∇ · v(t, q(0, 0))∇ · v(t, q(t, 0))〉dt, (43)

where g(r) = g11(r) and q(t, r) ≡ q1(t, r). Here the time t∗(r) ≡ t∗
11(r) can be defined as the time of

backward in time divergence of trajectories starting at distance r to a distance ηp, which is equivalent
to the definition above. Beyond t∗(r) velocity divergence factors in Eq. (42) decorrelate and the
integral converges rapidly. We use that the PDF of t∗(r) is strongly peaked at the average value
so the fluctuations of t∗(r) can be neglected, see Ref. [12] and below. We also observe that since
the product of concentration and infinitesimal volume is the conserved mass then |∑ λi| is also
asymptotic growth rate of the concentration. This can be used to show that g(r) equals squared
density accumulated by compression of initially unit density from volume of size ηp during time
t∗(r), see Ref. [4,10].

Since the divergence of the trajectories backward in time is horizontal, then here ηp is an
appropriately defined correlation length lc of ∇ · v in the horizontal direction. We saw that lc must
be of order Lc and we keep it as a free parameter for fitting numerical results. The time t∗(r) diverges
logarithmically at small r since the divergence of the trajectories is exponential. Therefore, due to
exponentiation, the divergence of g(r) at small r is a power law; see Eq. (43).

To find the law of divergence of g(r) at small r, we use that the fluctuations of time t∗(r) defined
as solution of |q(t, r) − q(t, 0)| = lc are weak. Indeed, similarly to the limit for the Lyapunov
exponent in a forward in time flow, we also have a realization-independent limit for the first
Lyapunov exponent of the time-reversed flow limt→−∞ limr→0 |t |−1 ln(|q(t, r) − q(t, 0)|/r). This
logarithmic rate of backward in time separation can be obtained by considering time-reversed
evolution of small volumes of particles, and using the compressibility smallness. It is found that
the rate equals the same |λ3| that characterizes the rate of particles approach forward in time, see
details in Refs. [10,12,29,29,32]. Thus, at large finite |t | we have, with probability close to one,
|t |−1 ln(|q(t, r) − q(t, 0)|/r) ≈ |λ3| (we saw previously that |λ3| ≈ λ1). Moreover, in the leading
order the separation is two-dimensional and is determined by the horizontal component r sin θ of
the initial separation, so that |q(t, r) − q(t, 0)| ≈ r sin θ exp(|λ3|t ) (the vertical component r cos θ

is conserved). We obtain at t < 0 the separation law |t |−1 ln(|q(t, r) − q(t, 0)|/r sin θ ) ≈ |λ3| which
gives t∗(r) ≈ |λ3|−1 ln(lc/r sin θ ). We find from Eq. (43)

g(r) =
(

lc
r sin θ

)α

, θ 
 θ∗, α = 2

∣∣∣∣∣
∑3

i=1 λi

λ3

∣∣∣∣∣ = 3π
∫ ∞

0 E (k)kdk

2g
= 12c0Fr. (44)

Here we introduced a lower threshold for the above considerations, a small angle θ∗. If the backward
in time separation of q(t, r) and q(t, 0) was rigorously two-dimensional, then the form of g(r) in
Eq. (44) would hold at any θ , producing divergence at θ = 0. In fact the next order corrections
make the separation weakly three-dimensional. Thus, particles that are initially separated vertically
disperse due to the components of σ neglected in Eq. (40). This regularizes the divergence and
introduces the lower limit θ∗ of applicability in Eq. (44). The small angle θ∗, studied in Sec. VII,
is defined by the condition that the separation velocities due do horizontal and vertical components
of the separation vector are of the same order when the particle separation forms angle θ∗ with the
vertical. Equation (44) was derived in Ref. [10] using the smoothness scale of turbulence, the viscous
scale η, instead of the smoothness scale of the droplets’ flow lc. The difference is insignificant at
Fr → 0 where α is so small that (lc/η)α ≈ 1 and the formulas coincide. However, when larger
Fr are considered, the difference becomes relevant, see below. We stress that the formula for α

is independent of the particle size and holds for droplets driven by the Navier-Stokes turbulence
without approximations [10]. In this work we provide the numerical confirmation of the prediction
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FIG. 4. Angle dependence of the RDF at fixed distance r between the particles deep in the smoothness
range, (a) normalized RDF and (b) sin θ∗(Fr). The smoothness range is about 10η, and the considered range
of r was an order of magnitude smaller. The calculations were performed separately for r in small windows
centered around different values of r, and the results for different r produced identical angle dependence.
Numerical observations for five different Fr at fixed St = 1 are presented by different colors and compared
with the sin−α θ law (solid line), that holds in the range of angles near π/2 as predicted asymptotically in
Ref. [10]. The indefinite growth of the RDF toward smaller θ is stopped at angles where separation rates
dictated by the vertical and horizontal components are of the same order. This causes flattening of the RDF at
the characteristic angle θ∗ determined from g(r, 0)/g(r, π/2) = sin−α θ∗ studied in Sec. VII.

(which was not done in Ref. [10]); see Fig. 4. We also observe the large numerical factor of 12
above.

C. Correlation dimension and angle-averaged RDF: Sum rule

The angle-averaged (equal-size) RDF can be derived from the result of Ref. [10] that the
concentration nr coarse-grained over scale r, which is much smaller than lc, obeys〈

n2
r

〉
〈n〉2

=
(

lc
r

)α

, r � lc; nr (x) =
∫

|x′−x|<r
n(x′)

dx′

4πr3/3
. (45)

This result holds provided that α � 1 so that concentration fluctuations at r = lc are weak [12]. It
derives from the observation that mass

∫
|x′−x|<r n(x′)dx′ observed in the ball at t = 0 is compressed

by the flow effectively from an ellipsoid whose initial mass is given by the mean field’s estimate
〈n〉 times the volume and whose largest dimension is lc. The axes of the ellipsoid change during the
compression to become equal to r at t = 0. The concentration of the mass is then due to fluctuations
of the two smaller axes of the initial ellipsoid, see details in Refs. [10,12].

We remark that the correlation length is a quantity defined up to some factor f of order one. This
indeterminacy does not prohibit us from writing equality in Eq. (45) because α � 1 guarantees
that f α ≈ 1. Thus, as remarked above, [10] used η instead of lc in Eq. (45) since the distinction
between lc and η, even though it constitutes an order of magnitude, is irrelevant at Fr → 0 where
α → 0. However, at finite Fr the difference of lc and η is significant already at Fr = 0.033 as we
demonstrate below using the DNS. The usage of lc in Eq. (45) is significant.

Correlation dimension of the multifractal attractor of droplets is defined [66] with the help of
mass in ball of radius r. It is readily seen from the definition that Eq. (45) tells that α is the correlation
codimension of the droplets’ attractor, that is the difference between the space dimension three and
the correlation dimension. Thus, Eq. (44) tells that correlation codimension is twice the Kaplan-
Yorke codimension [4,10,12] as claimed in Eq. (24).
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It is quite obvious that Eq. (45) implies that angle-averaged RDF g̃(r) defined by [we use g(r, π −
θ ) = g(r, θ )]

g̃(r) ≡
∫

g(rr̂)
dr̂

4π
=

∫ π/2

0
g(r, θ ) sin θdθ, r̂ ≡ r

|r| , (46)

obeys the same scaling r−α law. The RDF g̃(r) describes probability of finding a pair of particles
at distance r irrespective of the angle between the pair orientation and the vertical. We perform the
calculation of proportionality constant in g̃(r) ∝ r−α . We have by squaring the definition of nr in
Eq. (45) and averaging,〈

n2
r

〉
〈n〉2

=
∫

x1<r, x2<r
g(x2 − x1)

dx1dx2

[4πr3/3]2
=

∫
|x2−x|<r, x2<r

g(x)
dxdx2

[4πr3/3]2

=
∫

x<2r
g(x)dx

π (4r + x)(2r − x)2

12[4πr3/3]2
. (47)

We used the formula for the volume of intersection of two balls of radii r whose centers are separated
by x. We find

16

3

〈n2
r 〉

〈n〉2
= 1

r6

∫ 2r

0
x2(4r + x)(2r − x)2g̃(x)dx =

∫ 2

0
y2(4 + y)(2 − y)2g̃(ry)dy, (48)

where y = x/r. The above connection between the second moment of nr and the angle-averaged
RDF is general. The solution of this equation for the moment given by Eq. (45) with α � 1 (that
fails for α ∼ 1) is

g̃(r) =
(

lc
r

)α

, r � lc. (49)

We call this relation “sum rule” because it provides global information on the angle-dependence of
the RDF. In fact, it demonstrates that contribution of angles θ � θ∗ into g̃(r) is negligible since the
integral for g̃(r) in Eq. (46) is determined by θ 
 θ∗. We have from Eq. (44) using α � 1 that∫ π/2

θ∗
g(r, θ ) sin θdθ =

(
lc
r

)α ∫ π/2

θ∗
sin1−α θdθ ≈

(
lc
r

)α

, (50)

where the integral is independent of θ∗ by θ∗ � 1. This implies that the probability of finding a pair
of particles at distance r is determined by the events of horizontal approach to angles θ 
 θ∗.

The theoretical considerations above hold for α � 1 and cannot predict the value of lc. It is
anticipated that the power law will hold also for α ∼ 1 and we would like to see whether the
prediction for α � 1 can be extended. These issues are dealt with numerically.

D. Comparison with the DNS

The results of the simulations for the angle-averaged RDF are shown in Fig. 5. It is seen that
the power law extends inside the inertial range of turbulence holding up to the scale lc = 10η.
Here the same cutoff scale lc, which can be considered as the smoothness scale of the particles’
flow, describes a range over which Froude numbers vary significantly. The scale is of order Lc

independently of Fr because the same turbulent fluctuations with characteristic scale Lc determine
the RDF, see above. For r < 10η the data are described perfectly by the power-law exponent α =
2| ∑3

i=1 λi/λ3|. Here λi are determined numerically, in accord with Eq. (44). For r > 10η the RDF
relaxes to the asymptotic value g(r = ∞) = 1 which describes lack of pair correlations beyond lc.

The DNS are performed at a finite Fr and this demands refinements of the theory. It was observed
previously that order of one uncertainty in the definition of the correlation length does not influence
the RDF in Fr → 0 limit due to smallness of α. However, a correction factor c must be introduced
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FIG. 5. The angle-averaged RDF for the five considered values of Fr and St = 1. We use α =
2| ∑3

i=1 λi/λ3|, where the Lyapunov exponents were determined numerically and lc = 10η.

at a finite Fr, when α is not so small, changing Eq. (49) to

g̃(r) = c

(
lc
r

)α

, r � lc. (51)

The effectiveness of this fit of the RDF is known since [67]. The factor c is a result of fluctuations
and incomplete determinacy of the smoothness scale. The theory then tells that c = 1 in the limit of
Fr → 0. Figure 5 confirms this.

It was already demonstrated in Ref. [10] that the Lyapunov exponents are accurately described by
the formulas via E (k) for Fr � 0.033. This implies, by combining with the above, that the formula
for α via E (k) in Eq. (44) can be used for Fr < 0.05. For Fr = 0.05 the spectral formula is not
accurate; however, α = 2|∑3

i=1 λi/λ3| is still valid. Finally, we stress that usage of η instead of
lc in Eq. (45) would give wrong results. For instance, there would be factor of three mistake at
Fr = 0.033, where we have 10α ≈ 3.

VII. ANGLE DEPENDENCE OF THE RDF FOR EQUAL-SIZE PARTICLES

In the previous section we described the RDF at not too small angles and also provided the
sum rule which describes the angle dependence globally. Here we complete the study in the case
of equal-size particles by providing the theory of the angle dependence of the RDF. This is done
by calculating t∗(r) in Eq. (43). This time describes separation of trajectories backward in time.
However, we demonstrated previously that small-scale flow is time-reversible in the leading order.
This allows us to find t∗(r) by studying forward in time separation of particles to distance ηp starting
from initial separation r. We designate the positions of the particles by x(t ) and x(t ) + r(t ) so that
r(0) = r. Then, r � ηp implies that in the distance equation ṙ = v(t, x + r) − v(t, x), we can use
the Taylor expansion that gives

ṙ = σ r, σik (t, x0) = ∇kvi[t, x(t )]. (52)

124303-31



FOUXON, LEE, AND LEE

It is useful to separate the evolution into the evolution of the distance r and orientation described by
unit vector n̂. We have using r = rn̂ that

d ln r

dt
= n̂σ n̂,

dn̂

dt
= σ n̂ − n̂[n̂σ n̂]; n̂ ≡ r

r
. (53)

In the leading order the horizontal separation r⊥(t ) is identically zero for particles that are initially
separated only vertically, n̂(t = 0) = ẑ, since the small-scale flow is planar. However, higher-order
corrections cause r⊥(t ) to increase until it reaches a crossover value at which the leading order
horizontal separation takes over. During the transient we have n̂ ≈ (n1, n2, 1), where |nα| � 1 (here
|n̂| = 1 holds in linear order in |nα|). The angle θ between r and ẑ equals the magnitude

√
n2

1 + n2
2

of (n1, n2). In the leading order from Eq. (53), we have

ṅα ≈ σαz + σαβnβ, (54)

where we use |σzz| � |σαβ | (remember that the Greek indices are used for 1 or 2). The form
of this equation is identical with that for the two-dimensional separation vector (n1, n2) of two
particles whose motion is the superposition of diffusion and the flow with local gradient σαβ .
Here, the diffusion is given by the white noise σαz, with the diffusion coefficient κ obeying
4κ = ∫ 〈σαz(0)σαz(t )〉dt = καzαz, where κikpr is defined in Eq. (12). This equation is well studied;
see, e.g., Ref. [68]. The diffusive term dominates at small nα and the gradient term dominates
at large nα . Therefore, if the growth starts from small separations, then it is initially diffusive
nα (t ) − nα (0) ≈ ∫ t

0 σαz(t ′)dt ′. The crossover to the regime of separation due to the gradients σαβnβ

occurs at the “diffusive scale” θ∗ = √
κ/λ1, where λ1 is the Lyapunov exponent of σαβ , which was

calculated in Ref. [10] and Sec. III. We have

θ∗ ∼
√

καzαz

καβαβ

� 1, (55)

where we used λ1 ∼ καβαβ , which was derived previously, and the smallness of καzαz/καβαβ . The
time of reaching the crossover scale θ∗ is of order 1/λ1, independently of κ . Direct inference of θ∗
from the above formula demands the calculation of καzαz which is a formidable task. The estimate
for θ∗ is obtained below differently.

Distance evolution. It is useful to consider the evolution to the crossover directly in terms of r.
We observe that due to the smallness of the z components of σik , the stretching exponent in the
z direction is much smaller than λ1. Therefore, during the time tc ∼ λ−1

1 , we can consider z as a
constant. The approximate law of evolution until the crossover is

ṙα = σαzz, z = const, 〈r2
⊥(t )〉 = z2καzαzt, t � λ−1

1 , (56)

where r2
⊥(0) is assumed to have θ much less than θ∗. On using n̂α n̂α ≈ r2

⊥(t )/z2 the above repro-
duces diffusive growth of n̂α . This evolution continues until the neglected last term in the complete
equation ṙα = σαzz + σαβrβ becomes of the order of the first term. Subsequently, the growth of
〈r2

⊥(t )〉 switches from diffusive growth as in Eq. (56) to exponential growth at the rate ∼λ1. We find
by equating the two contributions to the rate of change of r2

⊥ that, in accord with the considerations
in terms of θ , the crossover time tc obeys the estimates

dr2
⊥

dt
∼ z2καzαz + λ1r2

⊥, z2καzαz ∼ λ1r2
⊥(tc), tc ∼ 1

λ1
, r⊥(tc) ∼ z

√
καzαz

λ1
∼ θ∗z. (57)

The above results show that at t 
 λ−1
1 the evolution of r occurs horizontally starting from effective

initial separation θ∗z. It will be useful later to have a description of this observation via the Jacobi
matrix W defined by

∂tW = σW, Wik (0) = δik, r(t ) = W (t )r(0), ṙ = σ r. (58)
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The previous results for the evolution [W (t )ẑ]i = Wiz(t ) of initially vertical separation ẑ can be
written as

Wαz(t ) ≈ θ∗ exp(λ1t )(cos θ (t ), sin θ (t )), Wzz(t ) � Wαz(t ), t 
 λ−1
1 , (59)

where by isotropy of small-scale turbulence θ (t ) is uniformly distributed over [0, 2π ].
We conclude that at small horizontal separations, the change in r consists of rotational diffusion.

This is given by the diffusion of the two-dimensional vector ni obtained by dropping the last
term in Eq. (54). The steady-state distribution corresponding to diffusion is uniform so that g(r, θ )
is constant at θ � θ∗. In contrast, g(r, θ ) monotonously decreases with θ at θ∗ � θ � π/2. Put
differently, for the time t∗(r) in Eq. (43), we have, for θ � θ∗,

t∗(r) ∼ c′

λ1
+ t∗(r, θ∗) ≈ t∗(r, θ∗), (60)

where the first term gives the time of reaching θ∗ with c′ ∼ 1. The actual value of c′ is irrelevant due
to t∗(r, θ∗) 
 c′/λ1. We find that t∗(r), and thus also g(r, θ ), are independent of θ at θ � θ∗. This
corresponds to asymptotic relation g(r, θ ) ∼ g(r, θ∗) at θ � θ∗ or flattening of g(r, θ ) below θ∗. The
matching of the asymptotic regions θ � θ∗ and θ 
 θ∗ is beyond the scope of this paper, since the
region of θ ∼ θ∗ is small and gives negligible contribution in the collision kernel which is our main
interest. The region θ ∼ θ∗ becomes relevant at larger Fr though, where θ∗ is not so small.

DNS and separability of the RDF. The angle dependence of the RDF was shown to be separable,
i.e., given by a product of functions of r and θ , at θ > θ∗, see Eq. (44). We have also seen that g(r, θ )
becomes constant at θ < θ∗. Thus, it is plausible that the RDF is separable at all θ . This is indeed
confirmed by the DNS so that, e.g., g(r, θ )/g(r, π/2) is r-independent. The angular dependence of
g(r, θ )/g(r, π/2) at a fixed distance r in the smoothness range is shown in the left panel of Fig. 4.
The figure also confirms that the dependence of the RDF on θ is ∼ sin−α θ (solid lines) for θ > θ∗,
separable from r.

Further insight into the separability is attained by considering the dependence of the RDF on r
for three representative angles θ = 0, 1 and π/2. The DNS results, shown in Fig. 6, demonstrate
clearly that the dependence of g(r, θ ) on r is ∼r−α for all Froude numbers. The cutoff scale at
which the power-law dependence on r breaks down depends on θ . We estimated the cutoff scale
as the scale where the RDF starts to deviate from the power-law dependence by 10 percent of the
RDF value. For θ � θ∗, the cutoff scale is found to be fit well by gτ 2; see Fig. 7. This scale can
be understood by observing that it is the length that a particle sedimenting at speed gτ passes in its
velocity relaxation time τ . Thus, the particle reacts to flow averaged in z direction over the length gτ 2

which must then provide the smoothness scale in the vertical direction. The cutoff scale gτ 2 scales
inversely proportional with Fr. In contrast for θ � θ∗ the cutoff scale, as discussed previously, does
not depend much on Fr. The scale is θ independent and is about ten times larger than η, i.e., of
order Lc, as shown in Fig. 7. Thus, correlations exists over the same region as the correlations of the
gradients of the particles’ flow do, see Sec. V B and cf. the general theory in Ref. [12].

Finally, the direct dependence of g(r, θ )rα on θ is demonstrated for Fr = 0.05 in Fig. 8, which
clearly shows the collapse of g(r, θ )rα for five different r. Similar collapse was observed for the
other Froude numbers as well. A juxtaposition of the above data produces the final result fitting all
the data

g(r, θ ) = r−αh(θ ); h(θ ) =
(

lc
sin θ

)α

, r < lc = 10η, θ 
 θ∗;

h(θ ) = (gτ 2)α, r < gτ 2, θ � θ∗. (61)

Here lc is of order of Lc and lc = 10η is an empirical observation that holds at the considered range
of Fr with α � 1. The refinements at α ∼ 1 are considered later.

124303-33



FOUXON, LEE, AND LEE

FIG. 6. Plots of g(r, θ ) versus r at representative angles θ = 0, 1, π/2 and (a) Fr = 0.0125, (b) Fr =
0.0167, (c) Fr = 0.03, and (d) Fr = 0.05. For all the three angles at each given Fr, the plots contain linear
pieces whose slopes coincide with the numerical accuracy. Similar properties hold if other values of θ are used.
This allows us to conclude that g(r, θ ) is r−α times a function of θ , which is confirmed directly in Fig. 8. In
contrast, the cutoff defined scale at which the power-law dependence on r breaks down depends on θ . The
presented data and data for other angles confirm that the cutoff scale for θ > θ∗ is lc, and for θ < θ∗, the scale
is of order gτ 2.

Estimate of θ∗. The asymptotic matching at θ � θ∗ gives a possible definition of θ∗ as

1

sinα θ∗ ≡ g(r, θ = 0)

g(r, θ = π/2)
=

(
gτ 2

lc

)α

, sin θ∗ = lc
gτ 2

= Fr

St2
lc
η

; (62)

see Eq. (61). Since lc = 10η then for St = 1 the above formula implies that θ∗ � 1 demands quite
small 10Fr � 1. Our theory assumes θ∗ � 1 which is empirically observed to hold at Fr � 0.033
where θ∗ = 10Fr/St2 can be considered as a small number. However, already Fr = 0.05 gives a
nonsmall θ∗.

Sum rule and θ∗. As an example of the use of the above results we demonstrate that contribution
of angles θ � θ∗ into the angle averaged RDF is the negligible as we demonstrated implicitly in
Eq. (50). The reason is that despite that the RDF is maximal at zero angle, the weight of these angles,
proportional to sin θ makes their contribution negligible. We have

∫ θ∗

0 h(θ ) sin θdθ ∼ (gτ 2)α (θ∗)2
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FIG. 7. The cutoff scale ηp(θ ) in radial variable for g(r, θ ) ∝ r−α law. The cutoff is considered for θ = 0,
1, and π/2. The behavior of the cutoff scale agrees with the angular dependence of the correlation length of
velocity gradients. For vertical separation, the cutoff scale is very close to gτ 2 = η/Fr (we use St = 1). For
separations that are not close to the vertical, the correlation length lc does not depend much on Fr and is about
ten times larger than η. The asymptotic matching condition provided after Eq. (61) gives lc/(gτ 2) ∝ θ∗ ∝ √

Fr
which agrees with the observations.

which is much smaller than the contribution of θ > θ∗ given by lα
c due to θ∗ ∼ lc/(gτ 2) � 1 and

α � 1. We have from Eqs. (46) and (61) that

rα g̃(r) =
∫ θ∗

0
h(θ ) sin θdθ +

∫ π/2

θ∗
h(θ ) sin θdθ ∼ lα

c

∫ π/2

θ∗
sin1−α θdθ ≈ lα

c . (63)

However, for not too small Fr and α the angles θ � θ∗ become relevant as measured by the deviation
of d ≡ ∫ π/2

0 sin1−α θdθ from 1 shown in Fig. 5.
Correlations in the inertial range. The correlations extend significantly into the inertial range for

reasons explained previously; see Fig. 9.

VIII. BIDISPERSE RDF

In this section, we consider the RDF g12(r) of droplets of different radii a1 and a2 where �τ =
τ2 − τ1 is finite. Here, in contrast with the τ1 = τ2 case, g12(0) is finite. The reason is that particles
at the same point have finite velocity difference g�τ . Thus, the trajectories xi(t, 0) in Eq. (42)
diverge, making the integral finite. The consideration in this section differs from Ref. [4] due to the
anisotropy of the flow.

We demonstrate that position correlations are appreciable for particles with close sizes only. A
straightforward generalization of Eq. (43) is (it is shown in a moment that

∑3
i=1 λi of the flow with

any τi can be used here)

ln g12(r) = 2

∣∣∣∣∣
3∑

i=1

λi

∣∣∣∣∣t∗
12(r), (64)
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FIG. 8. Direct demonstration that g(r, θ ) is the product of r−α and a function of θ at Fr = 0.05. The
existence of this function is demonstrated as a collapse of the curves g(r, θ )r−α for different r onto a single
curve that depends on θ .

where we introduce the average time t∗
12(r) that the distance r(t ) ≡ x2(t, r) − x1(t, 0) spends inside

the range of correlations of ∇ · vi. Since g12(r) is maximal at zero then we can use g12(0) − 1 as the
measure of preferential concentration: if g12(0) − 1 � 1 then there is no preferential concentration
and vice versa. We observe that due to the difference in sedimentation velocities g|�τ |, the
correlation length gτ 2 of ∇ · v in the vertical direction is passed in time τ 2/|�τ |. Therefore, t∗

12(0)
cannot be larger than τ 2/|�τ |. We find from Eq. (64) that deviations of g12(r) from one can be
appreciable only for |�τ | obeying |∑ λi|τ 2/|�τ | � 1. However, it was demonstrated in Ref. [10]
that | ∑ λi|τ ∝ Fr2. We conclude that the deviations from g12(r) ≈ 1 can be appreciable only for
|�τ |/τ � Fr2 � 1. For |�τ | � τ1 the attractors of the particles with relaxation times τ1 and τ2 are
significantly displaced with respect to each other so that there are no positive correlations in the
particles positions.

The above implies that we can limit the consideration to the case of |�τ | � τ1. Thus, we can
use either of τ1 or τ2 for both

∑3
i=1 λi and the correlations’ range above, or use their symmetrized

versions. We have from Eq. (81) where the half sum of the flow gradients can be taken as σ ≡ ∇v1

ṙ = σ r + g�τ. (65)

The solution can be written with the help of the Jacobi matrix defined in Eq. (58) as

r(t ) = W (t )r(0) − g�τ

∫ t

0
W (t )W −1(t ′)ẑdt ′. (66)

We observe that W (t )W −1(t ′) is the matrix that describes the evolution of distances from
time t ′ to t : for any vector f , the vector f (t ) ≡ W (t )W −1(t ′) f obeys ḟ = σ f with f (t ′) = f .
Thus, considering times larger than λ−1

1 , we can use Eq. (59) for W (t )W −1(t ′)ẑ with t − t ′
instead of t . For the horizontal component, using that λ1τ = Frlc/(10η), see Eq. (22), we find
that

g�τ

[∫ t

0
W (t )W −1(t ′)ẑdt ′

]
⊥

∼ rc exp (λ1t ); rc ≡ g|�τ |θ∗

λ1
∼ St2

Fr3/2

|�τ |
τ

10η2

lc
, (67)
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FIG. 9. Angle dependence of the RDF in the inertial range at fixed St = 1 and increasing Fr of (a) Fr =
0.0125, (b) Fr = 0.0167, (c) Fr = 0.0333, (d) Fr = 0.05.

where the vertical component is much smaller and we introduced the crossover scale rc. The hori-
zontal component of this contribution to r(t ) becomes of the order lc in time t∗

12(0) ≈ λ−1
1 ln(lc/rc)

as found by setting r(0) = 0 in Eq. (66). This gives

g12(0) =
(

lc
rc

)α

; (68)

see Eqs. (44) and (64). The order one indeterminacy in the definitions of the scales lc and rc is
irrelevant by α � 1, cf. previous considerations. We consider the condition g12(0) > κ for having
appreciable preferential concentration of different size particles. Here we introduced the threshold
κ > 1 defined by the condition that the preferential concentration in the case of interest is considered
negligible for g12(0) < κ . The condition g12(0) > κ gives

|�τ |
τ

� l2
c Fr3/2

10η2St2
κ−1/α, (69)

where lc/η ∼ 10, cf. with the less detailed condition in the beginning of the section. We see that
since the condition of applicability of both flow description and white noise approximation, given
by Eq. (23), implies that (lc/η)Fr/St2 � 1 then the above condition implies |�τ |/τ � 1.
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We find from Eq. (66) that r(t ) grows as r(t ) ∼ max[r(0), rc] exp(λ1t ). In other words finite
difference of relaxation times creates the minimum separation time λ−1

1 ln(lc/rc) so that t∗
12(r) is the

minimum of λ−1
1 ln(łc/rc) and the separation time for τ1 = τ2. We find from Eq. (64) that

g12(r) =
(

lc
r sin θ + rc

)α

, θ 
 θ∗; g12(r) =
(

lc
r sin θ∗ + rc

)α

, θ � θ∗, (70)

where the precise way of matching at r sin θ ∼ rc (or r sin θ∗ ∼ rc at smaller θ ) is irrelevant. This
inaccuracy or the inherent inaccuracy in the definition of rc (which is defined up to a factor of order
one) does not change the answer appreciably since α � 1, cf. above and similar formula in Ref. [4].
However, the extension of this theory to higher Fr and α might demand refinement of the matching.
We have the interpolation formula

g12(r) =
(

lc
r sin(θ + θ∗) + rc

)α

. (71)

We see that the difference in τi produces effective smoothening of the multifractal at the angle-
dependent scale rc/ sin(θ + θ∗). At this scale, for each θ , the power law in r stops at decreasing
r. This smoothening scale appears also in the theory at small St and no gravity [4] however here
it depends on the angle due to the anisotropy. This scale characterizes the spatial displacement
of the random attractors of droplets with radii a1 and a2 due to the difference in their inertia, cf.
Refs. [69–71]. For the observability of the multifractal at all, it is necessary that the smoothness
scale is much smaller than the correlation length of the steady state fluctuations of the particles
concentration. It is readily seen that for θ 
 θ∗ this gives the condition rc � lc and for vertical
direction θ � θ∗ it gives the same condition. The condition rc � lc is weaker that the condition of
significant preferential concentration given by Eq. (69). We remark that for having g12(r) symmetric
in τi, as it must, we can symmetrize the exponent α in Eq. (70) with respect to τi using (α1 + α2)/2.
This does not change the answer appreciably in the considered limit.

We sum up the picture of separation of two particles of different sizes implied by the above study.
For initial separations larger than rc, the separation coincides with that of particles with identical
size. For initial separations much smaller than rc, the separation occurs in two stages. In the first
stage occurring at times smaller than λ−1

1 , we have linear growth of separation with time according
to r(t ) = r(0) + �τgt ; see Eq. (66). This growth continues until t ∼ λ−1

1 when r(t ) becomes of
order rc. Then, after a transient whose duration is of order λ−1

1 , the growth becomes exponential
with an exponent of λ1. Finally, we stress that g12(0) is finite. It diverges at coinciding particle sizes
according to g12(0) ∼ |�τ |−α; see Eq. (68).

IX. GEOMETRIC COLLISION KERNEL AT FR → 0: REDUCTION TO RDF

In this section, we derive the formula for the geometric collision kernel γ12 that describes
geometrical cross section of the droplets’ collisions. This kernel is defined as the rate per unit
volume at which the droplets with radii a1 and a2 approach each other by the distance a1 + a2,
if the hydrodynamic interactions occurring at small separations are neglected. The passage to the
physical rate of collisions is realized with the help of the collision efficiency; see, e.g., Ref. [4]. The
formula for a polydisperse solution is then obtained by integrating over a1 and a2; see Ref. [30].

Here we provide the formula for γ12 in terms of statistical properties of turbulence and the
RDF. The reduction to the RDF holds thanks to the existence of the particles’ flow. There are
simplifications in comparison with the case of incompressible flow of particles; see Refs. [30,34,72].
Thanks to Gaussianity of the gradients of the droplets’ flow the reduction does not involve unknown
factors.

We demonstrate in Appendix C that concentration fields ni in the well-known formula [30],

γ12 = −
∫

wr<0,r=a1+a2

〈n2(0)n1(r)wr (r)〉dS; wr (r) ≡ [v1(r) − v2(0)] · r/r, (72)
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can be considered as exact microscopic concentrations, given by sums of δ functions, without
employing coarse-graining. Here wr is the radial component of the velocity difference of collid-
ing droplets (hereafter “collision” refers to particles’ separation decreasing down to the distance
a1 + a2). The integral in Eq. (72) is taken over the surface of the ball of radius a1 + a2 centered at
the origin, and the angular brackets stand for the spatial averaging, which we assume to be equal
to the average over the statistics of velocity by ergodicity (strictly speaking space average includes
about (L/lc)3 independent realizations of the averaged random variable where L is the linear size
of the system. This might leave some inaccuracies which can be removed by further averaging over
time, cf. Ref. [9] and references therein). Changing the integration variable in Eq. (72) from r to −r
the symmetry γ12 = γ21 is verified. In the case where the fluctuations of concentration are negligible,
Eq. (72) reduces to the formula of Ref. [30], that describes the total inward flux of particles with
radius a1 through the sphere of collision with radius a1 + a2 in unit volume.

We simplify Eq. (72) by using the fact that ni obeys the continuity equation

∂t ni + ∇ · (nivi ) = 0, (73)

where i = 1, 2. In the steady state (we make standard Smoluchowski-type assumption that all colli-
sions occur in the quasi-steady state, cf., however, Ref. [73]), this equation implies the stationarity
condition

0 = −∂t 〈n1(t, x)n2(t, x′)〉 = ∇ · 〈n1n2v1〉 + ∇′ · 〈n1n2v2〉 = ∇ · 〈n1(x)n2(x′)
(
v1(x) − v2(x′)

)〉,
(74)

where we used spatial homogeneity of the statistics. In this equation, the nabla operators ∇ and
∇′ stand for derivatives over x and x′, respectively. For identical size particles, this identity is the
counterpart of the Monin-Yaglom relation of the passive scalar turbulence [29]. By taking x = r and
x′ = 0, we find that

∇ · 〈n2(0)n1(r)[v1(r) − v2(0)]〉 = 0. (75)

Finally, by integrating over the volume of the ball with radius a1 + a2 and using the divergence
theorem, we find that ∫

〈n2(0)n1(r)wr〉dS = 0. (76)

Thus, we can write Eq. (72) in the form

γ12 = 1

2

∫
r=a1+a2

dS〈n2(0)n1(r)|wr |〉. (77)

The derivation of a similar identity in the incompressible isotropic case was done in Ref. [30]. This
identity is useful because averaging conditioned on the sign of wr is more difficult. When there is
no flow description of the motion, Eqs. (72) and (77) differ.

A. Monodisperse case

First, we consider the mono-disperse case, a1 = a2 = a, where we designate n1 = n2 = n, v1 =
v2 = v. Using for wr in Eq. (77), the approximation wr ≈ 2ar̂σ r̂ holding because of r � η with
σik = ∇kvi(0), we have

γ11 = a
∫

r=2a
dS〈n(0)n(r)|r̂σ r̂|〉. (78)

We observe that there is separation of the timescales of variations of the concentration and velocity
gradients due to which we can perform independent averaging over n(0)n(r) and |r̂σ r̂| in Eq. (78).
Indeed, the characteristic time of the variations of the concentration is the inverse of the modulus
of the sum of Lyapunov exponents |∑ λi|. The correlation time of σ is τ , see Eq. (29), which is
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smaller than |∑ λi|−1 by a factor of Fr; see Ref. [10]. Thus, conditioning on an instantaneous value
of σ does not change much the distribution of n(0)n(r) and these quantities can be considered as
independent giving,

γ11 = a
∫

r=2a
dS〈n(0)n(r)〉〈|r̂σ r̂|〉, (79)

cf. Ref. [4]. We can readily study 〈|r̂σ r̂|〉 using the Gaussianity of σ considered in the previous
section. Using the average of the modulus of the Gaussian random variable with zero mean, we
have from Eq. (40) with σ = ∇v,

〈(r̂σ r̂)2〉 = c0Fr sin4 θ

2τ 2
, 〈|r̂σ r̂|〉 =

√
c0Fr

πτ 2
sin2 θ, (80)

where θ is the polar angle. This formula is only valid for separation vectors that are not too
close to the vertical. Indeed, for vertical separations, the leading order approximation of the flow
gradients matrix by the horizontal components gives zero [see Eq. (80) at θ = 0], necessitating
higher-order corrections. It is demonstrated in the following section on the angular structure
of the radial distribution function that Eq. (80) holds for θ much larger than the cutoff angle
θ∗ � 1 (of order

√
Fr) and breaks down at θ � θ∗, cf. Eq. (44) and Ref. [10]. However, the

contribution of angles smaller than θ∗ in the integral in Eq. (79) is negligible. The reason is
that the increase of 〈n(0)n(r)〉 at small θ , derived below, does not compensate for the smallness
of the considered region of integration, see the sum rule in the previous section, and velocity
difference at θ � θ∗ is depleted. Thus, γ11 can be approximately calculated with the help of Eq. (80)
which effectively gives a complete description of the dependence of γ on the velocity of the
collision.

B. Bidisperse case

To obtain the velocity difference of colliding droplets with different sizes, we consider the
difference in velocity fields at nearby points separated by r, where r � ηp,

v1(x + r) − v2(x) ≈ (r · ∇)[v1(x) + v2(x)]/2 + g�τ, (81)

where �τ = τ1 − τ2 and we used symmetrized version of Eq. (39). The decomposition shows that
the velocity difference of colliding particles is caused by both the difference in spatial positions at
the time of the collision and the difference in flows of different-size particles g�τ . We have using
independence of concentration and velocity difference in Eq. (77),

γ12 = 1

2

∫
r=a1+a2

δv12(θ )〈n2(0)n1(r)〉dS, δv12 = 〈|y|〉, y = (a1 + a2)r̂σ sr̂ − g�τ cos θ, (82)

where σ s is a symmetrized matrix (σ1 + σ2)/2 and σi is the matrix of the derivatives of vi. Since
the sedimentation velocity of the particle is assumed to be much larger than the Kolmogorov
scale velocity then it is readily seen that gravity dominates the radial components of the velocity
difference: y ≈ −g�τ cos θ at not too small |�τ |/τ . Indeed, we observe from Eq. (80) that the first
term in y is of order (a1 + a2)

√
Fr/τ (we use Kolmogorov theory in the estimates otherwise there

is a power of Reλ). Thus, we have

y ≈ −g�τ cos θ ;
|�τ cos θ |

τ

 ε0, ε0 ≡ (a1 + a2)

√
Fr

gτ 2
=

(
a1 + a2

η

)
Fr3/2

St2
� 1. (83)

Thus, in the first term in y, we can assume that |�τ |/τ � ε0 � 1 and set τ1 = τ2 [the angles with
very small cos θ give negligible contribution into the integral in Eq. (82) and can be neglected].
Using the previously proved Gaussianity of ∇v, we find that y can be considered as a Gaussian
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random variable with nonzero mean. The averaging of its modulus gives

δv12(θ ) = exp

(
− (g�τ cos θ )2τ1τ2

c0Fr(a1 + a2)2 sin4 θ

)√
c0Fr

πτ1τ2
(a1 + a2) sin2 θ

+ erf

(
g�τ cos θ

√
τ1τ2√

c0Fr(a1 + a2) sin2 θ

)
g�τ cos θ, (84)

where erf(x) is the error function, see the cumbersome calculation in Appendix D. The symmetry
δv12(θ ) = δv21(π − θ ) guarantees γ12 = γ21. We have for equal-size particles and for velocity
difference δv0

12(θ ) at g = 0, respectively,

δv11(θ ) = 2a1

√
c0Fr

πτ 2
1

sin2 θ, δv0
12(θ ) =

√
c0Fr

πτ1τ2
(a1 + a2) sin2 θ, (85)

where δv11(θ ) reduces to Eq. (80) on observing that δv(θ ) = 2a〈|r̂σ r̂|〉. We can rewrite Eq. (84)
more compactly

δv12(θ ) = exp

(
− (g�τ cos θ )2

π (δv0
12(θ ))2

)
δv0

12(θ ) + erf

(
g�τ cos θ√
πδv0

12(θ )

)
g�τ cos θ. (86)

The exponent in the first term above decays very rapidly with the growth of |�τ |, effectively
becoming nonzero only for a very narrow vicinity of θ = π/2. Similarly, the error function becomes
equal to the sign of �τ cos θ for not too small �τ cos θ . We find refinement of Eq. (83),

δv12(θ ) ≈ δv0
12(θ ) + (g�τ cos θ )2

πδv0
12(θ )

,
|g�τ cos θ |

δv0
12

� 1;

(87)

δv12(θ ) ≈ |g�τ cos θ |, |g�τ cos θ |
δv0

12


 1,

where we performed in Eq. (85) expansion of the exponent in the first term and of the error function
in the second term using that erf(x) ≈ 2x/

√
π at small |x|. We observe from the first term that the

leading order correction due to the difference of settling velocities of droplets of different sizes is
quadratic in g. The asymptotic forms match at |g�τ cos θ | ∼ δv0

12 and roughly we have δv12(θ ) =
max[δv0

12(θ ), |g�τ cos θ |], cf. Eq. (82).
The correlation function of concentration 〈n1(0)n2(r)〉 is equivalent to the RDF g12(r) by

〈n1(0)n2(r)〉 = 〈n1〉〈n2〉g12(r); see Appendix C. Thus, we can rewrite Eq. (82) as (γ12 = γ21)

γ12 = 1

2

∫
r=a1+a2

δv21(θ )〈n1(0)n2(r)〉dS

= π (a1 + a2)2〈n1〉〈n2〉
∫ π

0
δv21(θ )g12(a1 + a2, θ ) sin θdθ. (88)

The increase of the collision rate due to the multifractality of the distribution is described by positiv-
ity of g(r) − 1 at small r. If the droplets were distributed in space uniformly, then g(r) would be one.
In fact, this value holds for separations in the inertial range, g12(r) ≈ 1 at r � ηp(θ ), because the
droplets are effectively independent at these scales, cf. Fig. 5. However, for collisions, scales a1 + a2

that are much smaller than ηp are relevant, increasing the rate of collisions by weighted integral
of g12(a1 + a2, θ ) over θ . For equal-size particles the g factor describes preferential concentration
on the same random multifractal attractor. For different size particles g describes decay of the
preferential concentration since particles are on different attractors in space the distance between
which increases with size difference, cf. Ref. [71].
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X. COLLISION KERNEL FORMULA

In the previous sections, we have derived the limiting Fr → 0 form of all quantities that enter
the collision kernel under the condition of validity of the flow description. This description applies
at Fr � 0.033; however, it does not apply at Fr = 0.05 (so that the upper limit of applicability is
between 0.033 and 0.05). The obtained formulas can be readily used to write down the collision
kernel. Here, as an illustration, we calculate the collision kernel for equal-size particles and
demonstrate that collision rate is formed by purely horizontal collisions.

We have from Eq. (88) for a1 = a2 = a and δv(θ ) = 2a〈|r̂σ r̂|〉 [see remark after Eq. (85)] that
collision kernel of equal-size droplets with radius a obeys

γ = 16πa3〈n〉2(2a)−α

∫ π/2

0
〈|r̂σ r̂|〉h(θ ) sin θdθ, (89)

where we used Eq. (61). We saw in Sec. VI C that
∫ π/2

0 h(θ ) sin θdθ is determined by angles larger
than θ∗. The velocity difference 2a〈|r̂σ r̂|〉 further decreases the role of θ � θ∗, since at these angles
the velocity is predominantly tangential, see Sec. VII, and more generally the velocity difference
is an increasing function of θ , cf. Eq. (80). Thus, in the integral in Eq. (89) we can neglect angles
θ � θ∗. We find using Eqs. (80), (40), and (61) that

γ11 = 16πa3〈n〉2

(
lc
2a

)α
√

c0Fr

πτ 2

∫ π/2

0
sin3−α dθ ≈ 16πa3〈n〉2

3τ

(
lc
2a

)α
√∫

E (k)kdk

2g

= 16πa3〈n〉2

3τ

(
lc
2a

)α√
α

3π
, (90)

where we used the definition of the Froude number and α � 1. Thus, 2−α ≈ 1 (see discussion in
Sec. VI C); factor of two in the denominator is kept for transparency and asymptotic continuation to
nonsmall α. Since the contribution of θ � θ∗ in the collision kernel is small then we conclude that
collision angles are predominantly much larger than θ∗, which by the results of Sec. VII implies
that the collisions occur horizontally. This result is intuitive since the particles’ separation changes
mainly horizontally.

The collision kernel provided by Eq. (90), for particles of fixed size (and thus fixed τ ), depends on
Fr via the preferential concentration ∝ (lc/2a)α and change of collision velocity

√
α. Remarkably

both dependencies reduce to one parameter α, which is a nontrivial prediction that could hardly be
obtained otherwise, cf. Ref. [26] (remember that the dependence of lc on Fr is weak in the considered
range of Fr, see Fig. 7). For considering the numerical values of γ we observe that the Kolmogorov
scale [8] for air is a single-valued function of Fr,

1

η3
= ε3/4

ν9/4
= Frg

ν2
; η = Fr−1/3280 μm, (91)

where we used the air viscosity ν = 0.15 cm2/s, e.g., η = 760 μm for Fr = 0.05 and η = 873 μm
for Fr = 0.033. We find using that lc is order of magnitude larger than η that lc/2a ∼ 100.
Correspondingly the values of the product (lc/2a)α

√
α can be quite large. Using as a reference

the collision kernel of Ref. [30] for tracers γt we have for the parameter dependence of the ratio,

γ

γt
∼ 1

St

(
lc
2a

)α√
α. (92)

We find at St = 1 (where the tracers’ kernel must be understood as no more as a reasonable unit
for measuring the collisions rate) and a = 50 μm that for Fr = 0.033 the ratio is larger than three,
see Ref. [26] for other information on the collision kernel. The collision kernel formula, given
by Eq. (90), can be used at Fr � 0.033. Our previous considerations indicate that this formula
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applies at Fr = 0.05 provided St � 1. Finally, the formula can be interpolated to higher Fr, possibly
demanding higher St for its validity, which is left for future work.

XI. FACING THE HIGH REYNOLDS NUMBER LIMIT

We demonstrated that increase of Reynolds number at fixed St and Fr destroys the applicability
of the flow description of particles’ motion. This happens because the characteristic size of turbulent
vortices affecting the particles increases with Reλ. At some critical Reynolds number Recr, it
reaches gτ 2 which is the length traversed by the sedimenting particle within its reaction time τ .
At Reλ � Recr a single vortex can affect the particle’s motion significantly. This creates situations
where geometrical centers of the particles would intersect at the same point when having different
velocities, the sling effect not describable by the flow. The value of Recr depends on Fr and St. It
seems quite certain that for Fr and St relevant for the rain formation problem, Recr (Fr, St) is much
smaller than the Reynolds numbers that actually hold in clouds. Thus, theoretical description of
behavior of droplets in clouds demands that we face the problem of describing the collision kernel
in Reλ → ∞ limit.

We consider the RDF’s scaling exponent α as a function of Reλ at fixed Fr and St. It seems
inevitable that this is an increasing function however we will only assume that it has monotonous
behavior. Then since 0 � α � 3 there is a finite limit (we assume that the RDF obeys a power law
at any Reλ)

α∗(Fr, St) ≡ lim
Reλ→∞

α(Fr, St, Reλ). (93)

It is plausible that α that holds in clouds is α∗, i.e., Recr
λ (Fr, St) at which the limit saturates, defined

by

α(Fr, St, Reλ) ≈ α
(
Fr, St, Recr

λ

) ≈ α∗(Fr, St), Reλ � Recr
λ (Fr, St), (94)

is much smaller than Reλ ∼ 104 holding in the clouds. In fact, at Fr = 0.05, St = 1, the value
of α = 0.588 that we observed and Reλ = 70 is indistinguishable from that observed by [26] at
Reλ = 460 (these authors report the correlation dimension which equals 3 − α). Similarly the data
of Ref. [11] for Fr = 0.052 and St = 1 demonstrate that α does not depend significantly on Reλ for
a set of Reynolds numbers ranging from 90 to 398. Moreover, in the same range, Ref. [11] observe
essentially no dependence on Reλ for 0 � St � 3. Some data are given also for Reλ = 597 where
the same conclusion holds.

The data described above indicate that it is plausible that the dependence of α(Fr, St, Reλ) on
the Reynolds number saturates at quite low Reλ. If true, then measurements at low Reλ would allow
to predict the RDF for the high-Reynolds number turbulence in the clouds. Moreover, our low-Reλ

could, at least in some cases, provide then an accurate prediction for α in clouds. This recalls the
observations of Refs. [16,56]. These works studied the dependence of moments of turbulent velocity
gradients on Reλ. They found that the power-law dependence, which is predicted to become valid
asymptotically at large Reynolds numbers [8], sets in already at Reλ ∼ 100.

However, a word of caution is in order. Numerical measurements of Refs. [56,57] of the dissi-
pation range spectrum, see Eq. (17), show the possibility of very slow dependencies on Reλ. Since
the dissipation range spectrum determines α, at least under conditions of moderate intermittency,
see Eq. (16), then this makes it quite plausible also that there is a slow dependence of α on Reλ that
simply cannot be detected over the range of Reλ studied thus far. For instance, this would imply
that at Fr = 0.05 and St = 1, the value of α in clouds could differ appreciably from α = 0.588,
cf. above. Present level of knowledge does not allow to decide which of the possibilities described
holds.

In both cases, whether the dependence of α on Reλ saturates at low Reλ or is slow, it seems that
the low-Fr theory’s prediction α = 3π

∫ ∞
0 E (k)kdk/(2g) is a good estimate for the actual value in
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clouds. For instance, using the fit for α provided in Fig. 3, would propose that α = 13Fr is a good
estimate for clouds at least for Fr � 0.05.

XII. CONCLUSIONS AND OUTLOOK

In this work, we propose to use as a starting point for the study of collision kernel of droplets in
warm clouds the moderate Reynolds number theory at small Fr. Indeed, it seems to us most natural
to employ smallness of Fr to get insight into what happens in clouds, since this is the only small
parameter of this problem. The Froude number of cloud turbulence is smaller than one even for
strong turbulence with ε = 2000 cm2/s3 where Fr = 0.5.

Reference [10] showed that a detailed study of Fr → 0 limit is realizable. Smallness of Fr implies
that the droplet sweeps fast through many turbulent vortices before their impact on its motion
is appreciable. In other words, action of one vortex on the particle is negligible and only many
vortices are able to have a finite effect on the particle motion. This recalls the ordinary Brownian
motion where the Brownian particle does not change appreciably its momentum in one collision
with particle of the fluid, and many collisions are necessary to produce a finite change of the
momentum. Thus, similarly, an effective white noise description is possible. The present work
completes Ref. [10], both by providing the remaining pieces of the theory and by confirming the
theory by direct numerical simulations of the Navier-Stokes equations.

By itself, the above is remarkable, since quantitative predictions for problems involving the
Navier-Stokes turbulence are feasible only very rarely. Here these are made possible thanks to
the effective white noise features described above. The white noise is determined by one constant
only—the amplitude, which is why universality ensues. However, this progress must be taken with
a grain of salt. The theory applies only when intermittency of turbulence is negligible, i.e., when
the Reynolds number is moderate. Increasing intermittency of turbulence destroys the theory not
via stronger bursts, but rather via increase of characteristic sizes of regions of calm and quiescent
flow. We remind the reader that these two aspects of intermittency go together: increase of regions
of calm flow and at the same time increased probability of strong bursts [8]. Here we do not mean
at all that bursts are irrelevant for collisions, in fact, they might have decisive role at high Reλ of
clouds [74].

A. Current status of small Fr theory of weakly intermittent turbulence

We summarize the theory at small Froude number. In the leading order, the particle velocity
is a sum of the local velocity of the turbulent flow and the sedimentation velocity in still air gτ .
This gives velocity of the particle as a function of its position and thus defines a flow. However,
it is necessary to consider corrections to this approximation since the flow provided by it, is
incompressible and leads to no clustering of particles in space. The theory of Fr → 0 limit stands
on the observation that these corrections are due to accumulated action of many vortices. More
precisely these are vortices encountered by the particle along vertical path with length gτ 2 made
during relaxation time τ due to sedimentation at the speed gτ . Within Kolmogorov theory the
number of the encountered vortices is estimated as (gτ 2/η) ∼ St2/Fr. Velocity of all vortices on
this path is averaged which has the effect of creating velocity that smoothly depends on coordinates.
Moreover, as in the case of Brownian particle whose velocity changes due to many independent
collisions with the particles of the fluid, the motion allows a Langevin-type description. This
description is quantitatively accurate allowing to consistently study the impact that intermittent
features of turbulence have on the particles. This produces a significant result: the motion is
influenced most by large quiescent regions of turbulence whose size Lc is much larger than the
Kolmogorov scale. These larger vortices are able to interact longer with the sedimenting particles
and are still not too rare so that the probability of encountering them can be neglected. The increase
of Reλ at fixed Fr increases the probability of larger regions and the size Lc due to intermittency.
Thus, the larger Reλ is, the larger the size of the vortices that interact with the particles is. When the
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size becomes of order gτ 2 the theory breaks down because the number of vortices encountered by
the sedimenting droplet along the path of length gτ 2 is of order one.

The quantitative manifestation of the above picture is that Fr, for which the asymptotic theory
holds, obeys the phenomenological condition Fr � c(Reλ/70)−�λ with 0.033 < c < 0.05. This
condition derives from observation that validity condition behaves as a power of Reλ and that at
Rλ = 70 the theory is accurate at Fr = 0.033 and less accurate at Fr = 0.05. The exponent �λ here
is obtained from the Reynolds number scaling of a correlation length of velocity gradients Lc which
is defined in Eq. (20), where Lc is the effective size of regions of quiescent turbulence described
above.

The small Fr theory of moderately intermittent turbulence is defined as the theory that holds
under the assumption that the condition above is obeyed. This theory can be considered proved by
the numerical simulations. These are the simulations of this work, of the previous work [10] and of
Refs. [11,26] at Fr = 0.01. Despite that this theory does not apply in clouds, it might find uses in
other cases.

The theory needs to be considered only for droplet sizes with St � 1, since St � 1 (at Fr < 1)
was studied in detail, see all cases in Ref. [10]. The condition of the theory validity at Reλ = 70,
given by Fr � 0.033 confines the mean energy dissipation rate to values smaller than 50 cm2/s3.
Stratiform clouds with so weak turbulence are usually nonprecipitating so the consideration is
mainly a theoretical limit. The theory predicts and the simulations confirm that the correlation
codimension α of the multifractal, formed by droplests in space, is twice the Kaplan-Yorke codi-
mension |∑3

i=1 λi/λ3|. Moreover, a spectral formula holds that provides α as an integral of the
energy spectrum.

The spectral formula does not hold at Fr = 0.05 where the white noise description of the
interaction of the droplet with the turbulent vortices is inaccurate. However, we found that the
correlation codimension is still twice the Kaplan-Yorke codimension, as characteristic of weakly
compressible flows [4,12]. Checking if α = 2|∑3

i=1 λi/λ3| extends to Fr > 0.05 is significant
since the Lyapunov exponents and Kaplan-Yorke dimension are fundamental characteristics of
Lagrangian chaos. Thus, we performed preliminary simulations at Fr = 0.5 and St = 1. We found
α = 0.664 that within five percent accuracy agrees with the observed value of 2|∑3

i=1 λi/λ3|. This
hints that α = 2|∑3

i=1 λi/λ3| might hold for all combinations of St and Fr with Fr � 0.5. The testing
of this hypothesis will be published elsewhere.

We have derived here the angular dependence of the RDF which is strong in the considered range
of Fr � 0.05; see Fig. 4. Considered as a function of θ the RDF has a peak at θ = 0 with width θ∗
of order Fr. The vertical alignment ratio g(r, θ = 0)/g(r, θ = π/2), that characterizes “preferential
vertical alignment” [25] of particle pairs, is given by (gτ 2/Lc)α , as can be seen from Eq. (61) (thus if
Re grows so that Lc becomes of order gτ 2, the distribution becomes isotropic, cf. above). It is greater
than one and reaches maximum of about two at all considered Fr; see Figs. 4 and 8. This anisotropy
is however of not much influence on the rate of collisions. The collisions, of course, happen at all
angles and the contribution of angles smaller than θ∗ into the total collision rate is negligible due to
smallness of θ∗.

1. Outlook on the droplets behavior at small Fr

We describe the outlook on the droplets behavior at small Fr (defined as Fr for which the flow
description works) and the results of the present work in this context. The flow of droplets v, as the
driving homogeneous turbulence flow u, is homogeneous. The two flows coincide on large scales,
however, are very different on small scales. The small-scale flow of droplets is strongly anisotropic.
We demonstrate here that v has an angle-dependent smoothness scale, the scale below which
velocity differences are obtained from derivatives and ∇v are roughly constant. Smoothness holds
over a stripe whose vertical dimension is gτ 2 and horizontal dimension is Lc. Both dimensions are
much larger than the smoothness scale of turbulence [8], the Kolmogorov scale η. These properties
hold due to gravity and differ much from the case of St � 1 and negligible gravity.
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The other difference of v and u is that v is much calmer at small scales [10]. The gradients of
v are smaller than those of u by

√
Fr/St, at St � 1. Moreover, fluctuations of ∇v are much less

vigorous than those of ∇u: the particle-vortex interaction is short so the droplets’ flow gradients are
sums of independent effects of large number of turbulent vortices. As a result, ∇v are Gaussian.
This is much different from the intermittent statistics of ∇u.

Here we use the Gaussianity for finding the velocity difference of colliding droplets, overcoming
the old calculational problem [30], and reduce the geometric collision kernel to the RDF. This kernel
describes geometric cross-section and is defined as the rate at which the droplets with radii a1 and
a2 reach touching distance a1 + a2, if the hydrodynamic interactions, occurring at close distances,
are neglected. The passage to the actual rate of collisions, modified by the interactions, is done by
multiplying with the collision efficiency factor; see Ref. [2] for numerical tables and the modern
discussion and also [3]. Theoretical calculation of the collision efficiency is hardly realizable:
the flow perturbation due to the droplets does not necessarily have a small Reynolds number and
also [75] hydrodynamic interactions of droplets at very close distances are very different from the
well-studied interactions of rigid particles [75], cf. Ref. [76]. In fact, the recent observations of
Refs. [77,78] of increased preferential concentration of droplets in turbulence at scales comparable
with the particle size might be holding due to this difference, which study is beyond the scope of
this work.

It is readily seen [11,79] and briefly rederived here that the geometric collision kernel (below
simply collision kernel) involves the radial component of the relative velocity of droplets at the
collision, conditioned that the velocity is negative. This conditional average is not convenient in
theoretical calculations however. For incompressible flow it was demonstrated that the average
absolute value of the velocity divided by two can be used instead of the conditional average [30].
Here, we demonstrate similar reduction for the compressible droplets’ flow using Yaglom-type
relation [29]. Generally, this useful passage from conditional to unconditional averaging does not
hold and it is desirable to compare these quantities numerically, cf. Refs. [34,80].

The angle-dependent RDF g(r, θ ) gives probability to find a pair of droplets at a given distance r
and polar angle θ , where the z axis is directed upwards. Thus, g(r, θ )r2 sin θdrdθ is proportional to
the fraction of pairs whose separation vector r has spherical coordinates belonging to the intervals
(r, r + dr) and (θ, θ + dθ ). We use the usual normalization where g(r) = 1 at large r, beyond
the correlation length of the particle density. The axial symmetry implies independence of the
RDF of the azimuthal angle. It was demonstrated in Ref. [10] that since the particle separation
is in the leading order horizontal, then the RDF depends on r and θ only via the product r sin θ

that provides the horizontal component of the separation. Moreover the dependence on r must
obey a power law with a negative exponent α, introduced above, because of multifractality. This
gives [10] that the RDF must be proportional to (r sin θ )−α . However, this formula cannot be true
at any θ : it gives unphysical divergence of the RDF at θ → 0 and fixed finite r. We derive here
how the divergence is regularized by the next order corrections. These destroy the conservation of
the vertical distance causing g(r, θ ) to flatten at angles below the critical angle θ∗ of order Fr, cf.
Ref. [11]. We demonstrate theoretically and numerically that at Fr � 0.033 the asymptotic behavior
of the RDF at small r is separable as described by Eq. (61). The scale lc in that equation is of
order of the correlation length Lc describing spatial extent of correlations of turbulent velocity
gradients, see Eq. (20). This scale is observed to be about ten times larger than the Kolmogorov
scale η and ten times smaller than gτ 2 in the considered range of Fr. The last inequality guarantees
matching of the asymptotic forms of h(θ ) at θ ∼ θ∗, that demands θ∗ ∼ lc/(gτ 2) ∼ FrSt−2lc/η,
see Eq. (62). For parameters of our simulations this gives θ∗ ∼ 0.1 in complete accord with the
observations.

The power-law dependence of the RDF on r is the manifestation of multifractality and, on general
grounds, it must hold in the range of correlations of gradients of the particles’ flow [12]. Indeed, we
observed that the cutoff scale, where the power-law dependence on r breaks down, depends on θ .
It is lc for all θ 
 θ∗ and the much larger scale gτ 2 at θ � θ∗ which coincides with the range of
correlations of the flow gradients.

124303-46



INTERMITTENCY AND COLLISIONS OF FAST …

Separability of g(r, θ ) is predicted by the theory. However, we observed numerically that g(r, θ )
is separable also at Fr = 0.05 where the theory does not apply. Here h(θ ) has behavior similar to
that in Eq. (61), with neither α (about 0.588) nor θ∗ (about 0.266) much smaller than one. The
scales lc and Lc are of the same order and can be used interchangeably in Eq. (61) when α � 1. At
Fr = 0.05 the difference is appreciable and lc = cLc must be used in Eq. (61) with c ∼ 1.

The behavior described by Eq. (61) is very different from St � 1, no gravity, case where g(r) ∼
(η/r)α

′
holds isotropically at r � η, see the derivation of α′ in Ref. [4]. The power-law scaling

holds in the range of smoothness of the droplets’ flow, whose anisotropy can be seen by observing
that the sedimenting droplet integrates information on the flow on timescale τ during which it passes
through the flow the distance gτ 2. Thus, the gradients of the droplets’ flow are roughly instantaneous
gradients of turbulence averaged in space over an interval gτ 2 in the z direction. Therefore, in the
vertical direction, the gradients of the droplets’ flow change on the scale gτ 2. For horizontal scale of
variations, we observe that another particle at horizontal distance of order η interacts with different
turbulent vortices. However, this does not tell that the smoothness scale in the horizontal direction
is η. Indeed, the averaging smoothens the difference between the vortices observed by the particles
since these obey the same statistics (if the average is over an infinite interval, the two particles
would experience effectively the same average action of the flow on them). Thus, we find from the
DNS that gτ 2 ∼ 10lc and lc ∼ 10η in Eq. (61). At Fr = 0.05 the increase of the smoothness scale
of the flow from η to lc increases the angle-averaged RDF and the collision kernel by the factor of
(lc/η)α � 2. The described smoothness properties hold beyond the flow description framework and
must be included in the future studies.

The RDF g(r) is proportional to the pair correlation function 〈n(0)n(r)〉 and the above properties
imply strong anisotropy of the steady state density n. The transition from the power-law behavior in
r in Eq. (61) to the large-scale behavior g(r) ≈ 1 is sharp and occurs in less than a decade. Therefore,
the cutoff scales in Eq. (61) are also the correlation scales of the fluctuations on n. We find that the
correlation length of n is lc for θ 
 θ∗ and gτ 2 for θ � θ∗. Independencies of 〈n(0)n(r)〉 of z at
θ 
 θ∗ and of θ at θ � θ∗ along with its increase in vertical direction provide different aspects of
columns that are formed by particles. Our study here implies that characteristic height of columns
is gτ 2 and their horizontal dimension is of order lc. This multifractal structure is very different
from St � 1, no gravity case, where the multifractal is isotropic and there are no simple preferred
structures. The weak compressibility of v allows for full description [12] of the statistics of n via
the considered 〈n(0)n(r)〉.

Theory of Fr � 1 case provides a useful reference point to compare the results with. For
instance, this theory, that holds at Fr � 0.033, predicts that α is independent of properties of the
particles as measured by St. However, in Ref. [26], it was observed that α is independent of St
also at Fr = 0.05 provided that St � 1 in the considered range of Stokes numbers (for St = 0.5
deviations were observed in Ref. [10]). This agrees with [10] who observed that for St � 1 and
Fr = 0.05 the Lyapunov exponents are well described by the St dependence of the small Fr theory
via E (k).

We make a conjecture on the behavior of α as a function of Fr at a fixed St. We make an analogy
with mulitfractality’s dependence on St at negligible gravity (Fr = ∞). At Fr = ∞ the correlation
codimension α increases quadratically with St at St � 1 where the flow exists [4,32]. It reaches
maximum at St ∼ 1 where the flow description breaks down. Then α decreases to zero, vanishing
identically starting from a finite St where the multifractality breaks down [81] (the results of
Ref. [26] demonstrate that α is still positive at St > 6). Similarly, for a fixed St � 1 we can propose
that α grows linearly with Fr at Fr � 1, reaches a maximum at Fr ∼ 0.1 where the flow description
breaks down and then decreases with Fr until it becomes zero where the multifractality of droplets
distribution disappears. This picture is consistent with data of Ref. [26] at St > 2 (for smaller St
inertial effects complicate the picture) who find that α at Fr = 0.3, that is weakly dependent on
St, is smaller than its value at Fr = 0.05. Thus, at Fr = 0.3 the correlation codimension already
passed the maximum. The low Fr theory also provides good qualitative and reasonable quantitative
description of the DNS’s results for the RDF provided in Ref. [72]. Qualitatively, Ref. [72] give that
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the RDF does not change with numerical accuracy between 50 and 60 microns which agrees with
the size independence of α (we use that variations of the size, which also determine the RDF, do
not change the RDF appreciably by α � 1). The theory also explains the change of the qualitative
dependence of the RDF on size at about 30–40 microns: in this range the ratio of τ and the time
of passage through one turbulent vortex due to sedimentation passes one. Thus, the limit of flow
description explains many observations.

B. Interpolation to clouds

Stronger intermittency associated with higher Reλ creates more of large, spatially extended
vortices which the sedimenting droplet cannot pass during the velocity relaxation time τ . Individual
interaction with such vortices is strong and it destroys the flow description at increasing Reλ, thereby
making smallness of Fr unusable. This seemingly signifies that the low-Reλ theory described here
would be useless at high Reλ, including those of the warm clouds. However, the validity of this
conclusion depends on the quantity considered.

We recall that some properties characterizing high Reynolds number turbulence can be measured
at rather moderate Reλ. Besides the scaling exponents of the structure functions of velocity in the
inertial range, which are less relevant to the problem at hand, these are scaling properties of the
dissipation statistics. Thus, Refs. [16,56] observed that intermittency exponents of moments of
the dissipation field can be observed in the flow that by itself is only weakly intermittent having
Reλ ∼ 100. It was demonstrated that the moments obey power-law dependence on Reλ with constant
exponents.

Similarly, here we observe that the existing data indicate that the scaling exponent of the RDF
is independent of the Reynolds number in the 100–500 range, at least. This independence can
be understood by assuming the validity of our conjecture that the exponent is well-described by
α = 2| ∑3

i=1 λi/λ3|. The Lyapunov exponents λi probably depend on Reλ appreciably however their
ratio might be constant, cf. Ref. [55]. Thus, if λi obey a power-law dependence on Reλ, then this de-
pendence is identical, see discussion in Ref. [82], and the resulting α is constant. Thus, the exponent
α, derived at moderate Reλ theoretically in Ref. [10] and proved numerically here, might be the same
as α in clouds where the high Reλ invalidates the theory [e.g., α(tFr = 0.05, St = 1) = 0.588]. Of
course, a slow dependence of α on Reλ can be also envisioned and extensive numerical simulations
are required to study the conjecture.

The application of the theory to droplets’ behavior in warm clouds demands extension of results
to higher Reλ and higher Fr, the former discussed above. The extension to higher Fr involves the
inclusion of the sling effect—existence of rare regions of space where several streams of particles
meet and the flow description breaks down, see the Introduction. The observations of Ref. [26]
demonstrate that the multifractality in space still holds at Fr � 0.3, and our preliminary data
indicate that the multifractality holds also at Fr = 0.5. Thus, seemingly, the spatial distribution
of droplets is multifractal for all Fr of interest. In this situation, the decomposition of space into
regions of sling effect and smooth flow (see the Introduction) can be effective. Recent progress
in the study of the sling effect [74] opens the perspective of theoretical predictions for Reλ of
clouds, that cannot be accessed by the numerical simulations or laboratory experiments. Another
issue, that needs to be dealt with in the extension to higher Fr, is the decomposition of the
collision kernel into the product of the average magnitude of velocity of the colliding particles
and the RDF. That relies on the flow description and needs a correction, which can be studied
numerically.

A number of issues were left out of the study. These include the possible significant role of
hydrodynamic interactions [77,78], two-way coupling, see, e.g., Ref. [33], and direct effect of
collisions [83]. It is not obvious to what extent all the possible relevant physical mechanisms can be
studied theoretically. Here we propose to concentrate on the limited number of mechanisms that are
present in the full problem, with the purpose to eventually derive a formula that would fully describe
the effect of those mechanisms. Resolution of the described questions might eventually produce such
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a well-working formula for the collision kernel of droplets in clouds, capable of helping us in rain
prediction.

C. Resume

The small Froude number theory of motion of particles in turbulence is exact. It gives quantita-
tive, proved results for the Navier-Stokes turbulence with moderate Reynolds numbers. Therefore,
we hope that, as it is usual with such results, this theory, developed in Ref. [10] and here, will
become a significant reference point in the future studies. The application to the problem of droplet
collisions in warm clouds demands interpolation from the moderate Reλ theory to the high Reλ

in clouds. We demonstrated here that, at least for the radial distribution function, the interpolation
seems feasible and conjectured the numerical value of the RDF’s scaling exponent.
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APPENDIX A: SEPARATION OF CLOSE DROPLETS

Here we consider the separation of droplets of the same size when the separation vector r(t ) is
in the viscous range, r � η. In fact, it is demonstrated in the main text that the scale of smoothness
of the flow Lc is larger than η so that the described evolution has a larger region of validity. We
demonstrate that the separation can be described quantitatively with the help of white noise. We
formulate the Fokker-Planck equation on the evolution of the probability density function of the
distance. This equation provides the Lyapunov exponent of the droplets. The exposition here is a
somewhat more detailed formulation of Ref. [10], which allows us to provide more details for some
quantities needed in the main text.

The separation below the smoothness scale of v is exponential. We designate the positions of
the particles by x(t ) and x(t ) + r(t ). Then, r � η implies that in the distance equation ṙ = v(t, x +
r) − v(t, x), we can use the Taylor expansion that gives

ṙ = σ r, σik (t, x0) = ∇kvi[t, x(t, x0)]. (A1)

We defined x(t, x0) as the trajectory that passes through x0 at t = 0. Below, we often omit x0 in
writing. It is seen from Eq. (29) that σ are turbulent flow gradients averaged over the interval of
order gτ 2 in the vertical direction. Thus, the gradients σ vary over scales gτ 2 in the vertical direction
and, as demonstrated in the main text, over Lc in the horizontal direction. The uniform applicability
of Eq. (A1) for all directions of r demands r � Lc, however, for vertical separations, much larger r
can be considered.

The rate of change in the distance r = |r| is given by the radial component of the velocity σ r;
therefore,

d ln r

dt
= n̂σ n̂, n̂ ≡ r

r
,

1

t
ln

(
r(t )

r(0)

)
= 1

t

∫ t

0
n̂σ n̂dt ′. (A2)

The equation for orientation n̂ is obtained by using the above equation in ṙ = ṙn̂ + rdn̂/dt = σ r,
which gives

dn̂

dt
= σ n̂ − n̂[n̂σ n̂]. (A3)
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The law of large numbers (or rather ergodicity; see below) implies that with probability one, the last
term in Eq. (A2) tends to a constant, given by statistical average, in the limit t → ∞

λ1 = lim
t→∞

1

t
ln

(
r(t )

r(0)

)
= lim

t→∞〈n̂(t )σ (t )n̂(t )〉. (A4)

The limit t → ∞ in the RHS is needed because it takes finite time for the statistics of n̂(t )σ (t )n̂(t )
to become stationary. To clarify this point, consider the average at t = 0:

〈n̂σ n̂〉(t = 0) = 〈σik (t = 0)〉〈n̂i(t = 0)n̂k (t = 0)〉 = 0,

where we considered n̂(t = 0) independent of σ and used 〈σik (t = 0)〉 = 〈∇kvi(x, 0)〉 = 0 by
spatial uniformity. In contrast, 〈n̂σ n̂(t )〉 �= 0 when t > 0, both because σ and n̂ become correlated
and because 〈σik (t )〉 becomes nonvanishing. To see the latter point in the simplest context, consider
the trace of the average 〈trσ (t )〉, which vanishes at t = 0 by 〈∇ · v(x, 0)〉 = 0. When t > 0, since
the particles move to regions with negative ∇ · v and out of regions with positive ∇ · v (preferential
concentration), 〈trσ 〉 becomes negative in the particle’s frame [32].

The average in Eq. (A4) is the time-average of the process n̂(t )σ (t )n̂(t ), which becomes sta-
tionary at large times. Since n̂(t )σ (t )n̂(t ) is uniquely determined by x0 and n̂(t = 0), the average
could depend on the latter. However, it is usually the case that the limit is independent of both x0

and n̂(t = 0). This independence holds up to the set of x0 and n̂(t = 0) with zero volume; that is,
the spatial volume of x0 for which the independence does not hold is zero, and the area of the unit
ball covered by n̂(t = 0) for which the independence does not hold is zero. Disregarding the latter,
which does not contribute to the statistical averages of nondegenerate observables, we find that λ1

provides global characteristics of the separation of infinitesimally close trajectories independently
of where the trajectories start and what their initial orientation was. These results are implied by
the generalization of the Oseledets theorem [49]. The theorem establishes constancy of the limit
for almost all points with respect to the natural measure (steady-state density) and not the spatial
volume. However, the statistics with respect to the natural measure and the volume coincide [84];
therefore, the constancy holds for almost all x(0) in space [84].

With regard to finding λ1, we observe that the distance r does not change much over the
correlation time τ of σ in Eq. (A1). This is the consequence of the condition of definability of
the flow τ 2〈σ 2〉 � 1. We integrate the equation of r from t to t + δt ,

r(t + δt ) = r(t ) +
∫ t+δt

t
σ (t ′)r(t ′)dt ′.

If δt is much smaller than the inverse of the typical value σc of σ , then the last term is small.
The asymptotic series in σcδt � 1 is obtained by solving the equation by iterations. Neglecting the
higher-order terms, we have

r(t + δt ) = r(t ) +
∫ t+δt

t
σ (t ′)dt ′r(t ). (A5)

We impose the condition δt 
 τ , which is possible due to σcτ � 1. Since by causality r(t ) is
determined by σ at times earlier than t , then it can be considered independent of σ (t ′) in the integral
in Eq. (A5), except for t in the vanishingly small vicinity of t = −δt of the order of the correlation
time τ of σ . Neglecting this vicinity, we can consider the integral

∫ t+δt
t σ (t ′)dt ′ and r(t ) in Eq. (A5)

as statistically independent. Since the integral is taken over a time interval much larger than the
correlation time τ , it is roughly the sum of a large number of δt/τ independent identically distributed
random variables. We conclude that the statistics of

∫ t+δt
t σ (t ′)dt ′ is Gaussian (the proof can be

obtained using the cumulant expansion theorem [50]). The latter is determined uniquely by the
mean and dispersion; therefore, we can introduce the effective description of the evolution with the
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white-noise random matrix ξ ′,

dr
dt

= ξ ′r, (A6)

where the integrals
∫ t+δt

t σ (t ′)dt ′ and
∫ t+δt

t dt ′ξ ′(t ′) have the same statistics, that is, the same mean
and dispersion.

1. The mean

We demand 〈ξ ′
ik〉 = 〈σik〉, where

〈σik〉 = lim
t→∞〈σik[t, x(t, x0)]〉 = −

∫ ∞

0
〈trσ (0)σik (t )〉cdt .

Here, we used the formula for Lagrangian averages via the correlation function [65,85]. We
introduced the unnecessary cumulant or dispersion, designated by c, to avoid the divergent integrals
shown below: we have 〈trσ (0)〉 = 0, so 〈trσ (0)σik (t )〉c = 〈trσ (0)σik (t )〉. Using Eq. (38), we find
a leading order in weak compressibility:

〈σik〉 =
∫ ∞

0
dt

∫ 0

−∞
dt ′ exp

(
t ′

τ

)〈
trσ 2

l (t ′)(σl )ik (t )
〉
c
.

Since the correlation time of σ is τ , we find τ |〈σik〉| ∼ [〈σ 2〉τ 2]3/2 ∼ Fr3/2 � 1. There can be a
further factor of smallness when i or k equal z; see the next subsection. Here, we are only interested
in the estimate from above. Parity and axial symmetry confine the possible form of the average to

〈σik〉 = aδik + bẑiẑk, (A7)

where a and b are constants. The term proportional to εikl ẑl , which is consistent with the axial
symmetry, is forbidden by parity. By performing similar transformations for 〈trσ 〉 and using
Eq. (38), we have

τ 〈trσ 〉 = −τ

∫ ∞

0
dt

∫ 0

−∞
dt ′

∫ t

−∞
dt ′′ exp

(
t ′ + t ′′ − t

τ

)〈
trσ 2

l (t ′)trσ 2
l (t ′′)

〉
c ∝ Fr2 � τ 〈σik〉. (A8)

This is of a higher order in Fr � 1 than a general component of 〈σik〉. Thus, in the leading order,
〈σik〉 is traceless:

〈σik〉 = a[δik − 3ẑi ẑk], a ∼ Fr3/2/τ. (A9)

We conclude that the average multiplied by τ is at most of order Fr3/2. This makes the average
negligible in comparison with the dispersion by a factor of Fr1/2. However, for possible future
extensions of the theory to the region where Fr is small (however, not too small), Fr1/2 ∼ 1, the
mean must be considered.

2. Dispersion

The dispersion is given by〈[∫ t+δt

t
dt1σik (t1)

][∫ t+δt

t
dt2σpr (t2)

]〉
c

≈ δt
∫ ∞

−∞
dt[〈σik (0)σpr (t )〉st − 〈σik〉〈σpr〉], (A10)

where the steady-state correlation function of σ in the particle’s frame is given by

〈σik (0)σpr (t )〉st = lim
t ′→∞

〈σik[t ′, x(t ′, x0)]σpr[t
′ + t, x(t ′ + t, x0)]〉. (A11)

The limit t → ∞ is necessary for σ (t ) (which is degenerate at t = 0 where its average is zero) to
become stationary. However, at weak compressibility, we can use the above Lagrangian trajectories
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of the solenoidal component of the flow instead of x(t ′, x0). Then, by performing spatial averaging
over x0 passages to the variable x(t ′, x0), we find

〈σik (0)σpr (t )〉st ≈ 〈σik (0)σpr (t )〉, (A12)

where the RHS is the usual spatial average. The average in the RHS tends to zero at large
times since 〈σik (0)σpr (t )〉 ≈ 〈σik (0)〉〈σpr (t )〉 and 〈σik (0)〉 = 0. However, if we put Eq. (A12) into
Eq. (A10), then the integral becomes divergent: at large t , nonzero 〈σik〉〈σpr〉 is compensated by the
nonzero infinite time limit of 〈σik (0)σpr (t )〉st, which we neglected due to small compressibility. The
consistent approximation to the considered order gives〈[∫ t+δt

t
dt1σik (t1)

][∫ t+δt

t
dt2σpr (t2)

]〉
c

≈ δt
∫ ∞

−∞
dt〈σik (0)σpr (t )〉. (A13)

This is consistent with 〈σ 〉2τ 2 ∼ Fr3 derived in the previous subsection and 〈σ 2〉τ 2 ∼ Fr derived
in Eq. (30). The mean is much smaller than dispersion: 〈σ 〉2/〈σ 2〉 ∼ Fr2 � 1. We find that the
statistics of r can be described quantitatively by Eq. (A6), with ξ ′ written as the sum of average (A7)
and dispersion ξ ,

ṙ = a[r − 3rzẑ] + ξr, 〈ξik (t )ξpr (t
′)〉 = κikprδ(t − t ′), κikpr =

∫ ∞

−∞
dt〈σik (0)σpr (t )〉, (A14)

where κikpr is defined in Eq. (B5). The mean is smaller than dispersion by Fr1/2, and it can be
neglected (for instance, the mean would change λ1τ below by Fr3/2, which is negligible by λ1τ ∼
Fr). Thus, the growth of separation predominantly occurs in the horizontal plane, with rz staying
constant (or rather growing parametrically slower) and r⊥ = (x, y) obeying the closed equation
ṙ⊥ = ξ⊥r⊥, where ξ⊥ is the confinement of ξ to the plane. We found the evolution of r⊥ in the well-
studied incompressible Kraichnan model in two dimensions [1]. The probability density function
P(y, t ) of y(t ) = t−1 ln(r⊥(t )/r⊥(0)) obeys

P(y, t ) =
√

t

2πD
exp

[
− t (y − D)2

2D

]
, lim

t→∞ P(y, t ) = δ(y − λ1), λ1 ≡ D, (A15)

where λ1 is the Lyapunov exponent and D is defined in Eq. (B7). Due to the approximate incom-
pressibility, we have, for the third Lyapunov exponent, λ3 ≈ −λ1. The second Lyapunov exponent
in this approximation is determined by the vertical direction and is vanishing. The nonzero

∑3
i=1 λi

appears in the higher-order approximation [10].
Therefore, we wrote the Lyapunov exponent in terms of the spectrum E (k) (which defines D),

which characterizes the instantaneous statistics of turbulence instead of different time statistics,
which determines the Lyapunov exponent of passive tracers. This fits the physics of the description:
the particles’ drift through the flow makes them pass many correlation lengths η of the turbulent
gradients during their relaxation time τ . As a result, the particles react to the accumulated action of
a large number of independent turbulent vortices, considering turbulence as a frozen Gaussian field,
which is completely characterized by the power. The power is the integral of the pair-correlation
function of gradients as “seen” by the particle falling at speed gτ , which is what determines κikpr .

APPENDIX B: GAUSSIAN STATISTICS OF GRADIENTS

Here we demonstrate that in contrast to the complex statistics of the gradients of the transporting
turbulent flow of the fluid, which is intermittent and very non-Gaussian [8], the statistics of the
gradients of the particle flow is Gaussian. This observation was made in Ref. [10]; here, we provide
a somewhat different formulation. From Eq. (29), we have

∇kvi(0, x) =
∫ 0

−∞
sik (t ) exp

[
t

τ

]
dt

τ
, (B1)
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where sik (t ) = ∇kui[t, x(t )] is the gradient of the turbulent flow taken in the frame of the particle
that passes through x at t = 0. It was observed in Ref. [10] that the integral has Gaussian statistics.
Indeed, we have ∫ 0

−∞
sik (t ) exp

[
t

τ

]
dt

τ
∼

∫ 0

−τ

sik (t )dt

τ
. (B2)

The RHS is the sum of a large number τ/τg of independent random variables, implying Gaussianity
by the central limit theorem (The statistics of sik (t ) at |t | � τg is somewhat different due to the final
condition that the trajectory passes through x at t = 0. This does not change the distribution of ∇v

similarly to how the distribution of the sum of a large number of independent random variables does
not depend on several terms in the sum.) A more formal proof can be obtained using the cumulant
expansion theorem [50] for the characteristic function of the RHS of Eq. (B1).

Thus, at st2 
 Fr, the statistics of ∇kvi is fixed uniquely by the average and dispersion that
determine the Gaussian distribution. The average of ∇kvi(0, x) is zero by spatial homogeneity. The
dispersion is

〈∇kvi∇rvp〉 ≈
∫ 0

−∞

dt1dt2
τ 2

exp

[
t1 + t2

τ

]
〈sik (t1)spr (t2)〉. (B3)

Since τg is much smaller than τ , we can put t2 ≈ t1 in the exponent and change the limits of
integration:

〈∇kvi∇rvp〉 ≈
∫ 0

−∞

κikprdt1
τ 2

exp

[
2t1
τ

]
= κikpr

2τ
, (B4)

where the tensor κikpr is defined by

κikpr =
∫ ∞

−∞
〈sik (0)spr (t )〉dt =

∫ ∞

−∞
〈∇kui(0)∇rup(gτ t )〉dt . (B5)

This tensor coincides with a similar tensor introduced in Ref. [28] to describe the separation of
heavy inertial particles when sedimentation is negligible but they move fast through the flow due to
large inertia. The correlation function in the last line of Eq. (B5) is the spatial correlation function
taken at the separation gτ t , not the different time correlation function in the first line. The tensor
κikpr was found in Ref. [10]. We describe the properties derived there. We have κikpr = 0 if one of
its indices is the index of the vertical coordinate z. Thus, in the leading order in the Froude number,
the flow is horizontal: it does not have vertical components or derivatives of horizontal components
in the vertical direction. This implies that the distance r between droplets inside the viscous range,
which obeys ṙ = (r · ∇)v, changes only horizontally in the leading order [10]. The z component of
the separation is preserved in time in this order. When all the indices differ from z, we have

κikpr = D(3δipδkr − δikδpr − δirδkp), (B6)

where D can be written via the energy spectrum of turbulence E (k) as

D = π
∫ ∞

0 E (k)kdk

8gτ
= c0Fr

τ
; c0 ≡ πν1/4

∫ ∞
0 E (k)kdk

8ε3/4
, (B7)

where c0 is introduced in Eq. (40). Thus, we find that for the horizontal components of the flow
gradients (that is, x or y derivatives of the x or y components of the particles’ flow), the covariance
matrix � defined by 〈∇kvi∇rvp〉 = �ik,pr is

�ik,pr = π
∫ ∞

0 E (k)kdk(3δipδkr − δikδpr − δirδkp)

16gτ 2
. (B8)
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This matrix is degenerate �ii,pr = �ik,pp = 0 because in this order, ∇xvx + ∇yvy = 0. Thus, there
are only three random variables that describe the gradients given by the components of the zero
trace 2 × 2 matrix. The above results can be written as Eq. (40).

APPENDIX C: GEOMETRIC COLLISION KERNEL

Here we consider the rate of collisions in a bidisperse solution of droplets with radii a1 and a2.
The solution is assumed to be dilute so the collisions are pairwise. In accord with the disregard of
hydrodynamic interactions in the geometric collision kernel, the droplets are considered to move
independently obeying Eq. (27) until their centers are at a distance of a1 + a2 when the “collision”
occurs. We have

dxi

dt
= v1(t, xi(t )),

dxk

dt
= v2(t, xk (t )), (C1)

where xi are coordinates of droplets with radius a1, xk are coordinates of droplets with radius a2,
and vi(x, t ) are the corresponding radius-dependent flows. Droplet i with radius a1 collides with
droplet k with radius a2 in the time interval (t, t + �t ), provided that at time t , we have (vi − vk ) ·
(xi − xk ) < 0 and (xi − xk )2 − (a1 + a2)2 < −2(vi − vk ) · (xi − xk )�t [this is readily seen from
d (xi − xk )2/dt = 2(vi − vk ) · (xi − xk )]. Thus, the total number dN of collisions that occur in time
interval �t is

dN =
∑

ik

θ [(vk − vi ) · (xi − xk )]θ [(ai + ak )2 − 2(vi − vk ) · (xi − xk )�t − (xi − xk )2], (C2)

where θ (x) is the step function, and the sum is taken over all droplets with radius a1 indexed by i
and with radius a2 indexed by k. Taking the derivative over �t , we find that the total rate �12 of
collisions of droplets with sizes a1 and a2 is

�12 = 2
∑

ik

(vk − vi ) · (xi − xk )θ [(vk − vi ) · (xi − xk )]δ[(ai + ak )2 − (xi − xk )2]. (C3)

This gives the rate of collisions in the whole volume of the flow. We can write it differently by
introducing the concentration fields:

n1(t, x) =
∑

i

δ[xi(t ) − x], n2(t, x) =
∑

k

δ[xk (t ) − x]. (C4)

We observe that by introducing integration over the unit vector r̂,∫
dr̂

∫
dxn2(x, t )n1[x + (a1 + a2)r̂, t]

=
∑

ik

∫
dn̂δ[xk (t ) + (a1 + a2)r̂ − xi(t )] =

∑
ik

2δ{(a1 + a2)2 − [xi(t ) − xk (t )]2}
a1 + a2

, (C5)

where we used the identity ∫
δ(x − rr̂)dr̂ = δ(x − r)

x2
= 2δ(x2 − r2)

x
. (C6)

This equation is readily proved by multiplying both sides with r2 and integrating over r using∫
δ(x − rr̂)r2drdr̂ = 1, where r2drdr̂ = dr with r = rr̂. Using Eq. (C5) we can rewrite Eq. (C3)

as

�12 =
∫

wr<0
(a1 + a2)2|{v1[x + (a1 + a2)r̂]v2(x)} · r̂|n2(x)n1[x + (a1 + a2)r̂]dr̂dx. (C7)

Division by the total volume � gives Eq. (72) of the main text. The formalism presented here
is useful for writing the probability density function P12(r) of finding a droplet of radius a2 at a
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distance r from a droplet with radius a1. We have

P12(r) =
∑

k

〈δ(xk − xi − r)〉 = 〈n2〉g12(r). (C8)

By using definition of concentration in Eq. (C4), we have

〈n1(0)n2(r)〉 =
∫

dx
�

n1(x)n2(x + r) =
∑

ik

〈δ(xk − xi − r)〉
�

= 〈n1〉
∑

k

〈δ(xk − xi − r)〉 = 〈n1〉〈n2〉g12(r), (C9)

which we provided in Sec. VI.

APPENDIX D: VELOCITY DIFFERENCE IN BIDISPERSE CASE

We have from Eq. (B1) for the symmetrized velocity gradient introduced after Eq. (82),

σ s
ik (x) =

∫ 0

−∞

dt

2

(
s1

ik (t ) exp [t/τ1]

τ1
+ s2

ik (t ) exp [t/τ2]

τ2

)
,

where sl
ik is ∇kui taken on the trajectory of the droplet with relaxation time τl , passing through x

at t = 0 with l = 1, 2. The statistics of σs, similar to that of σi, is Gaussian with zero mean. The
dispersion is found using Eq. (B4), and the τ -independent dimensionless tensor κ̃ikpr ≡ τκikpr is
introduced as

〈
σ s

ikσ
s
pr

〉 = κ̃ikpr

8τ 2
1

+ κ̃ikpr

8τ 2
2

+ I

2
, I =

∫ 0

−∞

dt1dt2
τ1τ2

exp

[
t1
τ1

+ t2
τ2

]〈
s1

ik (t1)s2
pr (t2)

〉
. (D1)

We consider I . Since the correlation time τg of s is much smaller than τ , we can write

I =
∫ 0

−∞

dt1
τ1τ2

exp

[
t1

(
1

τ1
+ 1

τ2

)] ∫ t1

−∞

〈
s1

ik (t1)s2
pr (t2)

〉
dt2

+
∫ 0

−∞

dt2
τ1τ2

exp

[
t2

(
1

τ1
+ 1

τ2

)] ∫ t2

−∞

〈
s1

ik (t1)s2
pr (t2)

〉
dt1,

where the contributions are symmetrized in I . In contrast to the monodisperse case, the correlation
function 〈s1

ik (t1)s2
pr (t2)〉 depends on both t1 and t2 − t1, and not only on the difference t2 − t1. This

is because the trajectories of the droplets starting at the same point diverge in time because of the
size difference. Thus, we consider the divergence of the trajectories. The distance r between two
droplets with size a1 and a2 obeys

ṙ = v1(x + r) − v2(x) ≈ σ sr + g�τ, (D2)

where we assumed r � ηp. At times of order τi the σ s term cannot produce significant changes in r
because the typical value of σ sτ of order

√
Fr is assumed to be much smaller than one; see Eq. (80).

Therefore, we can assume that the distance between the trajectories in the integrand of I obeys r(t ) =
g�τ t . Correspondingly, we have r(t ∼ τ ) ∼ gτ�τ � (a1 + a2)

√
Fr, where we used the condition

on �τ for which we perform the calculation. We have r(t ∼ τ ) � η, so the displacement of the
trajectories at times relevant in I is negligible. Using κprik = κikpr , we find that

I =
∫ 0

−∞

dt1
2τ1τ

2
2

exp

[
t1

(
1

τ1
+ 1

τ2

)]
κ̃ikpr +

∫ 0

−∞

dt2
2τ 2

1 τ2
exp

[
t2

(
1

τ1
+ 1

τ2

)]
κ̃prik = κ̃ikpr

2τ1τ2
.
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By using Eq. (D1), we conclude that

〈
σ s

ikσ
s
pr

〉 = κ̃ikpr

8

(
1

τ1
+ 1

τ2

)2

. (D3)

For τ1 = τ2 = τ , this reduces to the previously derived Eq. (B4). We conclude using Eq. (B6) that
the dispersion of y is

〈y2〉c = c0Fr(a1 + a2)2 sin4 θ

8

(
1

τ1
+ 1

τ2

)2

, (D4)

where c0 is defined in Eq. (B7). By using the average of the modulus of the Gaussian variable with
nonzero mean,

δv12 =
√

c0Fr

π

(a1 + a2)(τ1 + τ2) sin2 θ

2τ1τ2
exp

[
− 4g2τ 2

1 τ 2
2 (�τ )2 cos2 θ

c0Fr(a1 + a2)2(τ1 + τ2)2 sin4 θ

]

+ g�τ cos θ × erf

[
2gτ1τ2�τ cos θ√

c0Fr(a1 + a2)(τ1 + τ2) sin2 θ

]
, (D5)

where erf(x) is the error function. This formula is derived assuming that |�τ |/τ � ε0 � 1. How-
ever, if this formula is used at |�τ |/τ 
 ε0, then it reproduces Eq. (83). Thus, in fact, the formula
can be used at any �τ . This completes the calculation of the average modulus of velocity of
the colliding droplets. Since the first term is relevant only at |�τ |/τ � 1, we can simplify and
symmetrize the formula as given by Eq. (84).
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