
PHYSICAL REVIEW FLUIDS 7, 123601 (2022)

Modeling bubble collapse anisotropy in complex geometries

Elijah D. Andrews * and Ivo R. Peters
Faculty of Engineering and Physical Sciences, University of Southampton

Southampton, SO17 1BJ, United Kingdom

(Received 19 July 2022; accepted 14 November 2022; published 14 December 2022)

A gas or vapor bubble collapsing in the vicinity of a rigid boundary displaces toward the
boundary and produces a high-speed jet directed at the boundary. This behavior has been
shown to be a function of the “anisotropy” of the collapse, measured by a dimensionless
representation of the Kelvin impulse known as the anisotropy parameter [Supponen et al.,
J. Fluid Mech. 802, 263 (2016)]. However, characterization of the anisotropy parameter
in different geometries has been limited to simplified analytic solutions. In this work we
develop an inexpensive numerical model, based on the boundary element method, capable
of predicting the anisotropy parameter for any rigid complex geometry. We experimentally
explore a robust measure of bubble displacement, showing that the bubble displacement
in a range of complex geometries behaves as a single function of the predicted anisotropy
parameter values.

DOI: 10.1103/PhysRevFluids.7.123601

I. INTRODUCTION

Collapsing bubbles have been studied in great depth for many years due to their ubiquity in both
nature and engineering. Common applications include cavitation damage [1–4], cleaning [5–10],
and various biomedical applications [11–15]. Although many such applications feature numerous
bubbles collapsing, it is important to study the fundamental behavior of individual bubbles to
identify how key parameters affect the collapse behavior. This study goes as far back as Rayleigh
[1] where a single spherical void collapsing in an infinite fluid was treated. The study of single
bubbles collapsing has since grown significantly, addressing a wide range of questions. Studies
have experimentally and numerically investigated a wide variety of bubble collapse properties such
as bubble collapse shapes [16–18], induced pressures [19–22], boundary shear stresses [23–27], and
shock wave properties [28–30]. Much of this research focuses on simple boundary geometries such
as flat plates, free surfaces, constant pressure gradients, and other boundaries for which analytic
solutions of the flow field exist. In recent years, there has been increasing interest in complex ge-
ometries. For example, studies have explored jet direction for various complex geometries [31–33],
bubble dynamics near curved rigid surfaces [34], dynamics in combinations of boundaries and free
surfaces [35–37], jetting and shear stress between two walls [26,38], and bubble shape variation at
the corner of a rigid wall [18].

Many parameters of the dynamics of a bubble collapsing near a flat plate depend on the standoff
distance γ = Y/R0 where Y is the distance from a boundary or fluid interface and R0 is the maximum
bubble size [27,39,40]. However, for more complex geometries, it is difficult to define a geometric
equivalent to the standoff parameter. Even with very limited complexity, such as in a corner, it is not
trivial to define such a parameter.
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The Kelvin impulse is a parameter that captures the overall motion of the fluid. The Kelvin
impulse is the net force acting on the fluid integrated over time, effectively the total fluid momentum.
This parameter was described well by Benjamin and Ellis [19] and has been studied analytically
and numerically for many years [16,41–44]. More recently, Supponen et al. [40] presented a
dimensionless version of the Kelvin impulse called the anisotropy parameter, denoted ζ . Analytic
solutions for the anisotropy parameter were derived for a number of different sources of anisotropy
and many bubble collapse properties have been shown to be functions of the anisotropy parameter,
regardless of the source of anisotropy. For example, jet speed, bubble displacement, jet volume [40],
shockwave energy [45], and rebound energy [46]. Thus, the anisotropy parameter is a powerful tool
for predicting bubble collapse behavior.

Harris [43] presented a simple boundary element model for estimating the Kelvin impulse for a
bubble near a complex geometry. In the current research, we present a similar model that predicts the
Kelvin impulse for complex geometries. We extend this model by nondimensionalizing the results
to produce the anisotropy parameter following the example of Supponen et al. [40]. With this model,
anisotropy parameter values can be predicted for complex geometries, whereas they were previously
only studied for geometries with limited analytic solutions. The study of bubble collapse properties
as functions of anisotropy magnitude can thus be extended to complex geometries.

II. METHODS

In this section, the procedure for calculating the general Kelvin impulse is derived and the
procedure for converting this to the anisotropy parameter is presented. These calculations rely on
numerical solutions to the Rayleigh-Plesset equation so various formulations of the Rayleigh-Plesset
equation are compared. Three methods for computing the anisotropy parameter for a range of
geometries are then presented. Finally, the data analysis techniques used to process experimental
results are outlined.

A. Computing the anisotropy parameter

The Kelvin impulse, I(τ ), of a fluid during the time period 0 < t < τ can be represented as the
integral of the force acting on the fluid over time,

I(τ ) =
∫ τ

0
F(t )dt, (1)

where τ is an arbitrary point in time and the force F(t ) acting on the fluid is equal and opposite to
the force the fluid exerts on the bounds of the domain. For a bubble in an infinite fluid bounded only
by a rigid geometry, and following the derivation of Blake and Cerone [41], this force can be written
as

F(t ) = −ρ

∫
S

[
1

2
|∇φ|2n − ∂φ

∂n
∇φ

]
dS, (2)

where ρ is the surrounding fluid density, S is the boundary surface, and n is a vector normal to the
surface S. Potential flow is assumed with velocity potential φ and ∂φ/∂n is the derivative of the
potential in the normal direction. Note here that the sign varies from previous works [41,43,47]
where the normal vector is defined as outward from the domain. In Eq. (2) the normal vector
is defined as inward to the domain in accordance with the convention used in this work for the
boundary element method.

On the surface of the boundary, the normal velocity ∂φ/∂n = 0 [43] and thus the force reduces
to the integral of the dynamic pressure on the boundary

F(t ) = −1

2
ρ

∫
S
|∇φ|2ndS. (3)
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The bubble and all boundaries are modeled using point sinks. The strength of these sinks
scales directly with the bubble sink strength mb(t ) which varies with time. Thus, we can express
the velocity ∇φ induced at a position j by a boundary element sink as the bubble sink strength
multiplied by the equivalent velocity ∇φ′ when the bubble sink strength is mb = 1 m3/s. Properties
computed with mb = 1 m3/s are denoted by a prime. As such this velocity is denoted ∇φ′ and we
can write

∇φ| j = mb(t )∇φ′| j . (4)

We therefore express the force as

F(t ) = −1

2
ρ

∫
S
|mb(t )∇φ′

j |2ndS = mb(t )2

[
−1

2
ρ

∫
S
|∇φ′

j |2ndS

]
= mb(t )2F′, (5)

such that

F′ = −1

2
ρ

∫
S
|∇φ′

j |2ndS, (6)

where F′ is the equivalent force for a bubble sink strength of mb = 1 m3/s. F′ is time-independent,
purely depending on the geometry and bubble position, which is assumed to be fixed. Different
methods for calculating F′ are presented in Secs. II C 1–II C 3.

Thus, combining Eqs. (1) and (5), the impulse integral equation becomes

I(τ ) = F′
∫ τ

0
mb(t )2dt . (7)

By assuming that the bubble remains spherical throughout the collapse, and defining the bubble
sink strength to be the rate of change of bubble volume V , the sink strength is given by

mb(t ) = dV

dt
= 4πR2Ṙ, (8)

where R is the bubble radius and Ṙ is the time-derivative of bubble radius.
The Kelvin impulse therefore becomes

I(τ ) = F′
∫ τ

0
[4πR2Ṙ]2dt = 16π2F′

∫ τ

0
R4Ṙ2dt, (9)

which can be computed using a numerical solution to the Rayleigh-Plesset equation.
A scaling between the anisotropy parameter ζ and Kelvin impulse I was presented by Supponen

et al. [40],

I = 4.789R3
0

√
	pρζ, (10)

where R0 is the initial radius of the bubble, which is taken to be its maximum size; 	p is the
difference between the pressure at an infinite distance and the internal pressure of the bubble; and
ρ is the density of the liquid. This relation was analytically derived from the initial expansion and
subsequent collapse of a bubble collapsing in a pressure gradient.

Thus, Eqs. (9) and (10) can be combined to determine the anisotropy parameter for any geometry,

ζ = 16π2F′

4.789R3
0

√
	pρ

∫ τ

0
R4Ṙ2dt, (11)

where τ is now the duration of the initial expansion and collapse.
The vector anisotropy parameter ζ represents both a magnitude and direction. The direction is

equivalent to that previously used to study jet direction in complex geometries [31–33]. In this work
we focus on the magnitude, represented by the scalar anisotropy parameter ζ .
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B. Formulations of the Rayleigh-Plesset equation

To numerically solve the integral in Eq. (11), the radius R and radial velocity Ṙ must be known.
To compute these we use the Rayleigh-Plesset equation which has long been the standard model of
bubble collapse. Various modifications have been derived for differing conditions and assumptions.
By assuming that the bubble collapse is primarily inertial, in an incompressible liquid, with no heat
transferred across the bubble boundary, and with internal gas that behaves isentropically [48], the
Rayleigh-Plesset equation is

−	p

ρL
+ pG0

ρL

(
R0

R

)3k

= RR̈ + 3

2
Ṙ2 + 4νL

R
Ṙ + 2s

ρLR
, (12)

where 	p is the driving pressure of the collapse, often defined as p∞ − pV , where pV is the vapor
pressure of water and p∞ is the far-field pressure; pG0 is the initial pressure of gas inside the bubble;
ρL and νL are the density and kinematic viscosity of the liquid, respectively; s is the surface tension;
and k is the ratio of specific heats of water vapor k = cp/cv ≈ 1.33.

A derivation of the Rayleigh-Plesset equation was presented by Harris [43] that includes the
effect of a nearby rigid wall and the buoyancy of the bubble,

−p∞
ρL

+ pG0

ρL

(
R0

R

)3k

+ gz = RR̈ + 3

2
Ṙ2 − ∂φw

∂t
, (13)

where φw is the velocity potential induced by the wall at the bubble position; g is the acceleration
due to gravity; and z is the depth of the bubble in the water.

Here we shall present a comparison between four different models and experimental data. The
first model is Eq. (12), denoted “Complete.” The second model is the same, but neglecting the effects
of viscosity and surface tension, denoted “Inertial.” The third model, denoted “Wall model,” is based
on Eq. (13); however, the effect of buoyancy is neglected and p∞ is replaced by 	p for consistent
comparison with the other models. The final model, denoted “No internal gas,” assumes a constant
pressure difference between the inside and outside of the bubble, effectively assuming that there is
no internal gas to be compressed. This model is used by Obreschkow et al. [49] to find analytical
approximations to the solution. The equations for each of these models are as follows:

−	p

ρL
+ pG0

ρL

(
R0

R

)3k

= RR̈ + 3

2
Ṙ2 + 4νL

R
Ṙ + 2s

ρLR
, (Complete)

−	p

ρL
+ pG0

ρL

(
R0

R

)3k

= RR̈ + 3

2
Ṙ2, (Inertial)

−	p

ρL
+ pG0

ρL

(
R0

R

)3k

= RR̈ + 3

2
Ṙ2 − ∂φw

∂t
, (Wall model)

−	p

ρL
= RR̈ + 3

2
Ṙ2. (No internal gas)

Figure 1 shows the comparison between these models and experimental data. For simple com-
parison, the models are initiated at maximum bubble size with internal pressure equal to the vapor
pressure of water. For most models, and experimental data, the bubbles collapse to a minimum size
and then rebound. Notably, around the minimum size the bubble collapses and rebounds very fast.
Due to limitations in the temporal resolution of the high-speed camera, the experimental data do not
accurately capture the minimum size of the bubble.

After rebound, all of the Rayleigh-Plesset models with internal gas recover very close to their
initial size, whereas the experimental data shows that the bubbles do not achieve their original size
due to significant energy being dissipated during the collapse.
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FIG. 1. A comparison between the four Rayleigh-Plesset models and experimental data. The experimental
data used here are a series of five bubbles generated in the same location near a slot, the green shaded area shows
the spread of the data. The experimental mean of the radius and position at the maximum bubble size are used
as the initial conditions for numerical models. Bubbles ranged in size from R0 = 1.13 mm to R0 = 1.34 mm.
Radius is normalized with the initial radius R0 and time is normalized with the Rayleigh collapse time tTC [1].

Comparing the two standard models, one with viscosity and surface tension (“Complete”) and
one without (“Inertial”), it is clear that viscosity and surface tension are negligible for this regime
of bubble collapse.

The model that includes the effect of a nearby wall (“Wall model”) consistently overestimates
the collapse duration when compared to experimental data. This is likely due to the assumption of
spherical symmetry in the model. In reality, the side of a bubble opposite to a nearby boundary does
not get impeded by the boundary. However, the wall model assumes spherical symmetry, which
means all sides of the bubble are considered to be equally impeded, resulting in a generally slower
collapse.

In comparison with experimental data, the “Complete,” “Inertial,” and “No internal gas” models
all match well. In general, a benefit of the Kelvin impulse model presented in this work is that
any model for the bubble radius variation with time can be used without significant methodological
modifications. From here onwards, we utilize the “Inertial” model as it is the simplest model that
can capture bubble rebounds.

C. Anisotropy parameter solutions

Now that we have defined the anisotropy parameter and selected a collapse model, we will
proceed to present three solution methods. We will start with analytic solutions, followed by
semianalytic and boundary element methods. All of these models rely on several key assumptions.
The fluid is assumed to be incompressible, irrotational, and inviscid. Therefore, potential flow can
be assumed. The bubble is considered to be spherically symmetrical with only the bubble radius
varying with time.

1. Analytic

Much previous research has focused on calculating the Kelvin impulse analytically. Supponen
et al. [40] have presented anisotropy parameter solutions for several flow conditions. We include the
solution for a flat plate here for completeness.
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Treating the collapsing bubble as a sink in potential flow allows a solid boundary to be modeled
using the method of images. This can then be solved for F′ and the Kelvin impulse I [47] yielding
the equations

F′ = − ρLn
16πY 2

, (14)

I = −0.934R3
0

√
	pρLγ −2n, (15)

where Y is the distance from the boundary; γ = Y/R0 is the standoff distance; and 	p is the initial
difference between the pressure an infinite distance from the bubble and the internal pressure of the
bubble, 	p = p∞ − pV .

Substituting Eq. (19) into Eq. (10) yields

ζ = −0.195γ −2n. (16)

2. Semianalytic

The flow field of a set of geometries can also be solved with the method of images. In par-
ticular, these include bubbles in corner geometries [31] and bubbles inside square and triangular
prisms [32]. The triangular prisms are limited to the three tessellating cases: equilateral triangles,
isosceles right triangles, and 30◦-60◦-90◦ triangles. Although an analytic description of the flow
can be achieved, solving for the Kelvin impulse quickly becomes rather involved. Therefore, we
numerically integrate the pressure over the boundary on a mesh to calculate the Kelvin impulse.
This allows these analytic models to be extended numerically. The velocity at a point is

∇φ| j =
M∑

i=0

mb
(x j − xi )

4π |x j − xi|3 = mb

[
M∑

i=0

(x j − xi )

4π |x j − xi|3
]

= mb∇φ′
j, (17)

where j is any point j �= i and M is the total number of mirror sinks. i = 0 represents the bubble
sink and i > 0 represent the mirror sinks. Although an infinite number of mirror sinks would be
required to exactly match the boundary conditions, relatively few are required to adequately predict
the anisotropy value.

Thus,

∇φ′
j =

M∑
i=0

(x j − xi )

4π |x j − xi|3 . (18)

By assuming that the pressure is constant across an element in the boundary mesh, Eq. (6) can
be discretized over the boundary elements to get

F′ = −1

2
ρ

N∑
j=1

Aj |∇φ′
j |2n j . (19)

where the points j are the centroids of each boundary element, Aj is the area of the boundary element
at j, and N is the total number of boundary elements.

Equation (22) is substituted into Eq. (23) which is combined with Eq. (11) and solved numerically
for the anisotropy parameter ζ.

3. Boundary element method

We use the boundary element method to model geometries for which the flow field cannot
be solved analytically. The boundary element method is a potential flow model that represents a
boundary as a discretized distribution of potential flow elements. The full derivation and solution
methodology used here is discussed in our previous work [33] and the main steps are summarized
here. Each element i of the boundary is represented as a single sink, positioned at the centroid of the
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element xi. The element is assumed to have a sink density σi that is constant over its area Ai such
that the single sink has strength σiAi. Thus, the velocity induced by an element is defined as

∇φ| j = σiAi(x j − xi )

4π |x j − xi|3 , (20)

where j is any point such that x j �= xi.
Considering both the bubble and any boundaries, for any boundary element centroid point j, the

velocity is given by the sum of the bubble sink and N boundary element sinks

∇φ| j = ∇φb| j + ∇φw| j = mb(x j − xb)

4π |x j − xb|3 +
N∑

i=1,i �= j

mb
σ ′

i Ai(x j − xi )

4π |x j − xi|3 + mbσ
′
j

2
n j . (21)

The summation of boundary element sinks is valid for any position i �= j. When i = j a singularity
would be encountered. In the normal direction this is treated with the standard ∇φ| j · n j = σ j/2
[33]. An element is assumed to have no net effect on the tangential velocity at its centroid so no
additional term is included. Note again that the boundary sink densities scale directly with the
bubble sink strength such that σ j = mbσ

′
j where σ ′

j is the boundary sink strength densities computed
for mb = 1 m3/s.

Thus, the velocity ∇φ at any given bubble position, geometry, and time can be represented by a
constant vector ∇φ′ multiplied by the bubble sink strength

∇φ| j = mb

[
(x j − xb)

4π |x j − xb|3 +
N∑

i=1,i �= j

σ ′
i Ai(x j − xi )

4π |x j − xi|3 + σ ′
j

2
n

]
= mb∇φ′

j, (22)

such that

∇φ′
j = (x j − xb)

4π |x j − xb|3 +
N∑

i=1,i �= j

σ ′
i Ai(x j − xi )

4π |x j − xi|3 + σ ′
j

2
n. (23)

As with the semianalytic solution, Eq. (6) is discretized to produce Eq. (23), which is combined
with Eq. (27) to compute F′. This F′ is then substituted into Eq. (11) and solved numerically for the
anisotropy parameter ζ.

D. Experimental data and analysis

Bubble displacement is defined by its direction and distance. Previous work has characterized
the bubble displacement direction in complex geometries [31–33]. Here, we characterize the bubble
displacement distance. The displacement distance 	 is measured from the position at the initial
maximum size of the bubble and terminating at the position of the bubble at its maximum rebound
size. These measurements are defined in Fig. 2.

Some previous work has measured the bubble displacement from inception to end of the first
collapse [40]. However, this measurement is difficult due to the very rapid growth, collapse, and
movement of the bubble at these points in time. Conversely, at its maximum size, the bubble has a
minimum rate of change of radius and minimum displacement velocity. Thus, measuring the bubble
at the size maxima yields more robust measurements.

In addition to the bubble displacement, we measure the rebound size of the bubble R1. In this
work, the displacement and rebound size are both normalized by the maximum bubble radius R0.

Experimental data used in this research are from prior investigations of jet direction for bubbles
in corner geometries [31,50], inside triangular and square prisms [32,51], and above slot geometries
[33,52]. All of these experiments used laser-induced cavitation, with a microscope objective as the
focusing optic. In addition, data has been gathered for a flat plate using the same experimental
setup as Andrews et al. [33]. Recordings were post-processed with Python, as in our previous work
[33]. For each frame, the background was subtracted and a binary threshold filter was applied. The
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FIG. 2. (a) Cropped frames of a bubble collapsing near a boundary. Circles with area equal to the bubble
are shown for each of the size maxima (t = 80 μs and t = 230 μs). (b) Plot showing the measured bubble
radius for the measured time span. (c) Composite of the two size maxima frames with equivalent circles and
measured parameters annotated. R0 is the initial maximum bubble radius. R1 is the maximum bubble radius
during the rebound. 	 is the displacement of the bubble centroid between the first and second bubble maxima.
This movie can be found in the Supplemental Material [54].

number of white pixels was taken as the bubble area A and the centroid of these pixels as the bubble
centroid. The radius was determined by assuming a spherical bubble such that R = √

A/π . This
assumption holds reasonably well for bubbles near their first and second size peaks as shown in
Fig. 2. When the bubble is not spherical, this can simply be taken as an equivalent bubble radius.

III. RESULTS AND DISCUSSION

In this section we apply our numerical framework to a series of geometries with varying
complexity. We begin by comparing models, we then generate anisotropy magnitude maps for
four complex geometries, and finally show that experimental data collapses when combined with
anisotropy parameter predictions.

A. Numerical anisotropy parameter calculations

1. Flat plate model comparison

We start with a flat plate geometry, which can be treated with all three models: analytic,
semianalytic, and boundary element method. The analytic solution is ζ = 0.195γ −2 which is simply
the magnitude of Eq. (16). The semianalytic solution uses a mirror sink and integrates the pressure
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FIG. 3. The anisotropy parameter ζ against standoff γ for a simple flat plate, compared between the
analytic, semianalytic, and boundary element method models, showing a near-perfect match.

over the boundary on the mesh of a 1 m2 plate. The boundary element method solution uses the same
mesh as the semianalytic solution to compute boundary sink strengths and the pressure integration.
In this comparison the mesh consisted of 18 020 elements with most elements concentrated in the
central region. Element lengths ranged between 0.4 and 13.9 mm. The bubbles were positioned at
Y = 5 mm from the boundary and the bubble radius R0 was varied between 0.5 and 5 mm to produce
a range of standoff distances between 1 and 10.

As F′ depends only on bubble position, the series of bubbles can be characterized by a single F′
value. The semianalytic model produced an F′ value 0.5% lower than the analytic model and the
boundary element method model produced an F′ value 3.2% lower than the analytic model. As is
evident from Eq. (11), these cause a proportional decrease in the measured anisotropy magnitude.
Figure 3 shows the comparison between the anisotropy magnitude values calculated by these
models. Both the semianalytic and boundary element method solutions predict lower anisotropy
magnitude values than the analytic solution, this is in part due to integrating the pressure over a finite
plate rather than the infinite plate assumed by the analytic solution. There is also some difference
due to the discretization of the boundary. For the semianalytic solution the discretization is only for
the integration of pressure over the boundary, while for the boundary element method solution the
discretization is in boundary conditions, flow solution, and also the integration of pressure. Finally,
there is some difference due to the Rayleigh-Plesset model used. The analytic solution uses a “No
internal gas”-type model, whereas the other two solutions use the “Inertial” model. Despite these
differences, the three models produce very consistent anisotropy parameter values, and we conclude
that the model is insensitive to these details.

2. Anisotropy maps for complex geometries

Unlike the analytic and semianalytic models, the boundary element method can be applied to
any geometry. In addition, the most expensive part of the boundary element method only needs to
be calculated once for any geometry and the result can be used for all bubble positions. However,
it is vulnerable to ill-conditioned geometries. Although this is generally unlikely to occur, it is a
significant problem for very regular, highly enclosed geometries such as the prisms presented by
Molefe and Peters [32]. In contrast, the semianalytic method can operate with far fewer sinks and is
stable for all valid geometries, but the full calculation must be performed for every bubble position.

The primary computational limitation of the boundary element method is the memory usage.
Memory usage scales with N2 where N is the number of boundary elements. The semianalytic
method separates this scaling into two parts: N points on the pressure mesh and M mirror sinks.
The memory thus scales with NM. Where the semianalytic model is possible, far fewer sinks M
are required to model the boundary compared to the boundary element method, so far more sinks
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FIG. 4. (a) A contour plot of anisotropy magnitude for bubbles positioned around a slot with H/W = 1,
W/R0 = 8, and R0 = 0.5 mm. x = 2X/W and y = Y/W , where X is the horizontal position of the bubble from
the slot center, Y is the vertical position of the bubble from the upper surface, and W is the slot width [33]. The
slot boundary is indicated in solid black with boundary sink positions displayed as black dots. Gray dashed
lines correspond to the horizontal positions in panel (b). (b) Anisotropy magnitude against standoff distance
from the upper surface of the slot for five horizontal positions. The dashed line is the analytic solution for a flat
plate.

N can be used to model the pressure mesh within the same memory constraint. This allows for the
pressure to be more precisely resolved.

Here we present anisotropy magnitude maps for a selection of complex geometries. Figure 4(a)
shows an anisotropy magnitude map for a slot geometry of the type treated by Andrews et al.
[33]. The slot has a width and height W = H = 8R0 for R0 = 0.5 mm. N = 22 939 elements were
used to resolve the boundary. In contrast to the previous work, the bubble size here is important
as it is required for computing the anisotropy magnitude. Due to the finite size of the bubble,
anisotropy values extremely close to the boundary do not have a clear physical meaning despite
being numerically feasible. Thus, the white area near the boundary in Fig. 4(a) is an area of width
R0 for which the anisotropy magnitude was not computed.

At a large horizontal distance from the center of the slot, corresponding to the most negative
x values in Fig. 4(b), the boundary becomes similar to a flat plate, with the anisotropy magni-
tude depending primarily on the vertical standoff distance γ = Y/R0. As the bubble horizontally
approaches the slot, the slot causes a general reduction in anisotropy due to the increase of fluid
volume below the bubble. At the center of the slot, the anisotropy contributions from the slot sides
cancel out horizontally due to symmetry. The anisotropy is found to be strongest in the bottom
corners of the slot where the bubble is most confined on one side but not the other.

Figure 4(b) shows anisotropy magnitude curves for five different horizontal positions with a
range of standoff values where the standoff γ = Y/R0. These are compared to the anisotropy
magnitude for a flat plate. Far from the slot horizontally, the x = −5 curve is very close to the
flat plate curve as the effect of the slot is minimal. For horizontal positions closer to the slot, these
curves deviate significantly from the flat plate curve.

The anisotropy magnitude for triangular prisms, square prisms, and corner geometries were
calculated using the semianalytic method. Figure 5 shows contour plots for anisotropy magnitude
in triangular [Fig. 5(a)] and square [Fig. 5(b)] prisms of the type treated by Molefe and Peters [32]
and in a corner of the type treated by Tagawa and Peters [31] [Fig. 5(c)]. For the same reason as
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FIG. 5. (a) A contour plot of anisotropy magnitude for bubbles positioned in an equilateral triangular prism.
L/R0 = 15 where L is the side length of the triangle. (b) A contour plot of anisotropy magnitude for bubbles
positioned in a square prism. L/R0 = 15 where L is the side length of the square. (c) A contour plot of
anisotropy magnitude for bubbles positioned in a corner with angle θc = π/3. These geometries are of the
type investigated by Tagawa and Peters [31] and Molefe and Peters [32]. The boundaries are indicated by solid
black lines. The area outside of the fluid domain is shaded gray.

given for the slot geometries, anisotropy was not calculated in the white areas near the boundaries.
The two prisms have side length L = 15R0. The triangular prism used M = 12 675 image sinks and
the square prism used M = 4225 image sinks, both with N ≈ 20 000 elements in the pressure mesh.
The corner has an internal angle θc = π/3 and thus used M = 5 mirror sinks. Here the anisotropy
is at a maximum near the corners of each shape showing similar tendencies as the slot geometry.
Toward the center of the shape, bubbles experience decreasing anisotropy as the bubble collapse is
less impeded by the boundaries. At the exact center of the prisms, the anisotropy is expected to be
zero due to symmetry.

B. Experimental results

It has previously been shown that bubble displacement and rebound size depend on the anisotropy
parameter [40,46]. In this section we present experimental measurements of displacement and
rebound size and compare them to anisotropy parameter predictions for each collapse event.

1. Data post-processing

The models presented in this work assume a spherical bubble. However, bubbles in experiments
deviate from being perfectly spherical to varying degrees. When a bubble is initially nucleated a
plasma is formed around the point at which the laser is focused. If the angle of convergence of
the beam is too small (having a low equivalent numerical aperture), then the energy density of the
beam can remain high away from the laser focus. This leads to the plasma forming in an elongated
shape, and sometimes even forming multiple separate spots of plasma [28]. This elongation leads
to an oblate bubble at the maximum bubble size and increases the spread of data for measured
displacement. Figure 6 demonstrates this occurrence. In the first frame, at t = 0 μs, the plasma is
visible and is elongated to the point of having two almost-separated sections. In the second frame,
at t = 100 μs where the bubble is at its maximum size, the bubble is slightly oblate. We quantify
the deviation from a perfect sphere using the eccentricity of the bubble image, where eccentricity is
defined as the eccentricity of an ellipse with second moments equal to the bubble image region. At
its maximum size, the bubble in Fig. 6 had a measured eccentricity of 0.36. By contrast, the bubble
shown in Fig. 2 had an eccentricity of 0.25 at its maximum size. The third frame, at t = 190 μs,
shows that the bubble collapses as expected. However, when it rebounds in the fourth frame at
t = 240 μs, it retains the oblate deformation.

Bubbles that are deformed upon formation are expected to result in spread in experimental
measurements. Figure 7 shows the spread of data as a function of bubble eccentricity at their
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FIG. 6. A series of frames showing a bubble collapsing near a slot. The laser enters from the top of frame.
The frame at t = 0 μs shows the initial plasma generated by the laser. The orange line on the frame at t =
100 μs shows a perfect circle encompassing the bubble for comparison. The eccentricity of the bubble was
0.36 at t = 100 μs. This movie can be found in the Supplemental Material [54].

maximum size. Here the spread is defined as the percentage difference between a data point and a
power law curve that has been fitted across all data. The curve fit used for this determination is shown
in Fig. 8(a). Although the error bars are quite large in some areas of Fig. 7, it is clear that greater
eccentricity leads to a greater spread in measured displacement. To compare consistent bubbles,
and because we expect nonspherical bubbles to deviate most strongly from our model, we filter
our experimental data by eccentricity. Thus, by filtering out highly eccentric bubbles, the spread of
data can be reduced to more closely align with the idealized scenario of a spherical bubble. Filtered
data are shown in Fig. 8 with unfiltered data shown in the inset plots. As expected, when the data
are filtered, the spread of data reduces and many of the most significant outliers are removed. The
eccentricity values used to filter these data are set separately for each geometry. Some geometries
have many data points (the slots data set has 5094 points) whereas others have far fewer (the flat

FIG. 7. A plot showing how the spread of data varies with eccentricity. The spread is defined as the
percentage difference between a data point and a curve fitted across all data. Data are placed in discrete bins
and the mean of each bin is shown at the bin center with the 95% confidence interval shown by the error bars.
Only bins with five or more data points are included. Frames showing examples of select eccentricities are
displayed above the plot with perfect circles surrounding the bubbles for comparison. These movies can be
found in the Supplemental Material [54].
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FIG. 8. Experimental data for a flat plate, a series of slots, a triangular prism, a square prism, and two
corners. Experimental data is plotted against anisotropy magnitude predictions using the numerical models in
this work. (a) Normalized bubble displacement 	/R0 against anisotropy magnitude ζ . A power law curve fit
for all the data combined is shown by the black dash-dotted line. (b) Ratio of second bubble size maximum
to first bubble size maximum R1/R0 against anisotropy magnitude ζ . The black dashed line is derived from
Supponen et al. [46]. Inset axes of both plots include all data unfiltered.

plate data set has only 82). Thus, much more stringent eccentricity filters are applied to larger data
sets. Overall, with eccentricity limits varying between 0.2 (for slots) and 0.28 (for the flat plate),
2124 data points were retained after filtering across all data, comprising 31% of the available data.

2. Experimental data for all geometries

For any geometry, the displacement and radius ratio measurements can be plotted against
predicted anisotropy magnitudes. All considered geometries are shown in Fig. 8. The corner, square
prism and triangular prism data are plotted with semianalytic anisotropy model predictions. The
corner used M = 3 or M = 5, depending on corner angle, and N ≈ 50 000 elements in the pressure
mesh. The triangular prism model used M = 11 163 image sinks with N ≈ 30 000 elements in the
pressure mesh. The square prism model used M = 4225 image sinks with N ≈ 50 000 elements in
the pressure mesh. The flat plate and slot data are plotted using boundary element method anisotropy
model predictions with N = 19 896 and 19 662 � N � 20 142, respectively. There is some variation
in the number of elements used for the slot geometries due to varying slot sizes.

For the bubble displacement, shown in Fig. 8(a), all data collapses well onto a single line within
the experimental variance of the data. The most significant deviation from this curve is at very low
anisotropy magnitude values, where the bubbles move very little. Because of the small displacement,
random noise is expected to contribute more to the deviation, although the data appears biased
toward smaller displacement values. However, data in this region is sparse, so care should be taken
to draw any conclusions from it. We further observe deviations at very high anisotropy magnitude
values, where bubbles are very close to the walls and thus can become constrained. This constraint
limits any meaningful measurement of the displacement and therefore also precludes any validation
of the numerical model in this regime. The collapsed curve conforms to the power law 	/R0 =
4.54ζ 0.51.

Figure 8(b) shows the radius ratio R1/R0 as a function of the predicted anisotropy magnitude ζ .
It is clear that there is much more spread in the data compared to the displacement data of Fig. 8(a).
However, looking first at the flat plate and slot data, both data sets approximately collapse onto
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a single curve. The data for the two corners has a slightly higher spread than the slots data, and
tends to have a lower radius ratio at high anisotropies. Finally, the triangle and square data have
the highest spread. The biggest grouping of square data falls close to the collapsed slot and flat
plate data, however the triangle data is most significantly grouped below the other data sets. Due
to experimental limitations, the triangle and square data is comprised of relatively small bubbles
at a greater distance from the camera, producing small images in the frame with short collapse
times. Smaller images cannot be measured as accurately as larger images which leads to greater
measurement error in determining the radius ratio. In addition, shorter collapse times lead to fewer
frames of data which can cause the radius to be measured at the wrong time. However, neither of
these factors can fully account for such spread of data. It is noted that more confined geometries
tend to have higher spreads of radius ratio which suggests that shockwave reflections might play
a more important role in such geometries. Despite these variations, much of the data collapses
reasonably well (in particular the slots and flat plate data), suggesting that it does strongly depend
on the anisotropy parameter as has been previously reported [46].

Supponen et al. [46] presented the ratio of energy between first and second size maxima as
a function of the anisotropy parameter. The energy was calculated from the radius and thus the
radius ratio function can be determined from the given rebound energy ratio function. This function
is plotted alongside the data in Fig. 8(b) and significantly deviates from the experimental data.
Although the cause of this deviation is not known, we speculate that minor variations in the
experimental methodology could lead to different amounts of energy dissipation during the collapse,
thus producing different radius ratio curves. The sensitivity to experimental conditions could also
explain the large spread in the data in Fig. 8(b). One such parameter is the amount of noncondensable
gas present in the bubble which is difficult to measure experimentally and has previously been shown
to strongly affect the size of bubble rebounds [30,53]. Variation in the amount of noncondensable
gas is therefore a good candidate as the cause of the variation between previous work and the data
presented here. This variation of rebound radius presents a challenge in the use of the collapsed
curves presented in the current work. Displacement measured from bubble inception to the end of
the first collapse [40] is unaffected by rebound size and so the relation between displacement and
the anisotropy parameter would be expected to remain constant across all experiments. However,
displacement measured from the initial bubble size peak to the rebound size peak would vary as
the rebound size varies. Thus, it is expected that the collapsed curves presented in Fig. 8 are not
universal.

Despite the lack of universality, this data corroborates the assertion of Supponen et al. [40] that
many bubble collapse properties depend primarily on the anisotropy parameter. The collapse of
the data also serves to validate the numerical models presented in this work. These models, in
combination with established scaling functions [40], can therefore be used to predict bubble collapse
properties, such as jet velocity and jet volume, for any rigid geometry.

IV. CONCLUSION AND OUTLOOK

In this work we have presented a numerical model for computing the anisotropy parameter
defined by Supponen et al. [40]. We have applied this model to a series of complex geometries and
demonstrated how the anisotropy parameter varies with bubble position. The anisotropy magnitude
is found to be highest when the bubble is highly confined in one or more directions but with open
fluid in another direction. This configuration is mostly found near concave corners of geometries.
The anisotropy magnitude is found to be at a minimum far from geometries and in highly symmetric
areas.

We have experimentally measured two parameters of bubble collapse that can both be measured
robustly: the bubble displacement and ratio of bubble radius between the first two size maxima.
Using the anisotropy magnitude predicted by the numerical model, we have shown that the bubble
displacement collapses onto a single curve which conforms to the power law 	/R0 = 4.54ζ 0.51

where 	/R0 is the dimensionless displacement and ζ is the anisotropy parameter magnitude. A
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large portion of the radius ratio data collapses approximately onto a single curve; however, there is
very high spread in some data sets and some significant overall deviation from the collapsed curve.
In addition, it is clear that this data does not collapse onto the same curve as was presented by
Supponen et al. [46]. We suggest that this variation could be significantly influenced by experimental
differences such as the noncondensable gas content of the bubble. Such a variation should also lead
to a variation in shockwave energy so the energy partition could be used to test this theory [53]. We
recommend further investigation of this discrepancy, aiming to identify the key parameters that lead
to such variation between experimental setups and how those parameters can be controlled.

Previous research has shown that the anisotropy parameter is a good predictor of various collapse
properties in a range of simple geometries [40]. The anisotropy parameter model presented here,
in combination with experimental data, has shown that the anisotropy parameter remains a good
predictor of collapse properties, even in complex geometries. Thus, this model can be combined
with scaling laws, such as those presented by Supponen et al. [40], to predict many bubble collapse
properties, such as jet velocity, jet volume, and jet impact time. The anisotropy vector direction
produced by this model is equivalent to the directions produced by models that have already been
investigated in connection with the bubble displacement direction [31–33]. This model can therefore
provide a complete prediction of the bubble displacement for any rigid geometry.

Data and code supporting this study are openly available from the University of Southampton
repository [55].
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